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Abstract. Numerous domains, ranging from medical diagnostics to intelligence analysis, involve visual search tasks in 
which people must find and identify specific items within large sets of imagery. These tasks rely heavily on human judg-
ment, making fully automated systems infeasible in many cases. Researchers have investigated methods for combining 
human judgment with computational processing to increase the speed at which humans can triage large image sets. One 
such method is rapid serial visual presentation (RSVP), in which images are presented in rapid succession to a human 
viewer. While viewing the images and looking for targets of interest, the participant’s brain activity is recorded using elec-
troencephalography (EEG). The EEG signals can be time-locked to the presentation of each image, producing event-
related potentials (ERPs) that provide information about the brain’s response to those stimuli. The participants’ judgments 
about whether or not each set of images contained a target and the ERPs elicited by target and non-target images are used 
to identify subsets of images that merit close expert scrutiny [1]. Although the RSVP/EEG paradigm holds promise for 
helping professional visual searchers to triage imagery rapidly, it may be limited by the nature of the target items. Targets
that do not vary a great deal in appearance are likely to elicit useable ERPs, but more variable targets may not. In the pre-
sent study, we sought to extend the RSVP/EEG paradigm to the domain of aviation security screening, and in doing so to 
explore the limitations of the technique for different types of targets. Professional Transportation Security Officers (TSOs) 
viewed bag X-rays that were presented using an RSVP paradigm. The TSOs viewed bursts of images containing 50 seg-
ments of bag X-rays that were presented for 100 milliseconds each. Following each burst of images, the TSOs indicated 
whether or not they thought there was a threat item in any of the images in that set. EEG was recorded during each burst 
of images and ERPs were calculated by time-locking the EEG signal to the presentation of images containing threats and 
matched images that were identical except for the presence of the threat item. Half of the threat items had a prototypical 
appearance and half did not. We found that the bag images containing threat items with a prototypical appearance reliably 
elicited a P300 ERP component, while those without a prototypical appearance did not. These findings have implications 
for the application of the RSVP/EEG technique to real-world visual search domains.
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1 Introduction

A wide variety of domains, ranging from medical diagnostics to intelligence analysis, involve searching through 
large sets of imagery to find and identify specific items. These domains rely on people’s ability to discriminate be-
tween relevant and irrelevant images as accurately and efficiently as possible.  While computer vision systems have 
been employed in image classification [2], purely computerized systems may lack the sensitivity, specificity, and 
ability to generalize possessed by humans [1], [3], making fully automated systems infeasible in these complex do-
mains. Since visual search and inspection tasks rely primarily on human judgment, researchers have sought other 
methods for increasing the speed at which humans can triage large sets of imagery. In one such method, termed 
rapid serial visual presentation (RSVP), images are presented serially in a fixed location, typically at a rate of 3-20 
items per second [4]. Intraub [5] demonstrated that participants can accurately identify targets within a rapid stream 
of images. The RSVP technique has subsequently been employed to study phenomena ranging from language pro-
cessing [6], to emotion [7], to attention [8].

Recently, researchers have investigated combining the RSVP technique with brain-computer interface (BCI) 
technology. In this approach, participants typically view image chips in which a larger image is segmented into 
many small parts. The chips are presented rapidly, in short bursts, and the participants judge whether or not there 

SAND2015-1127C

mailto:mctrumb,%20lematze,%20aussilv,%20mjhaass,%20kmdivis,%20aespeed%7d@sandia.gov


was a target present in any of the images in that group. Meanwhile, participants’ brain activity is recorded using 
electroencephalography (EEG), a neuroimaging technique that provides temporal resolution on the order of milli-
seconds [9]. EEG signals can be time-locked to the presentation of stimuli, producing event-related potentials 
(ERPs) that provide information about the brain’s response to those stimuli. The participants’ judgments about 
whether or not each set of images contained a target and the ERPs elicited by target and non-target images are used 
to identify subsets of images that merit close expert scrutiny [1]. This approach can allow imagery analysts to hone 
in on the relevant information very rapidly. The ERP signals can also be combined with machine learning tech-
niques to develop classifiers, which can then be used to process additional data and identify blocks of images that 
are likely to contain a target based on the degree of similarity to trained data [1], [3], [10,11,12].

Thorpe and colleagues [13] demonstrated the feasibility of pairing EEG with rapid image presentation by asking 
participants to classify nature scenes presented for 20 ms under a go/no-go paradigm. They found a frontal negativi-
ty specific to no-go trails that developed approximately 150 ms following stimulus onset. In the domain of intelli-
gence analysis, Mathan and colleagues [3] used an EEG/RSVP approach with analysts examining satellite imagery. 
They showed that neurophysiologically driven image classification with rapid image presentation exhibits roughly a 
five-fold reduction in time required to identify targets relative to conventional image analysis, while retaining a high 
degree of accuracy. This technique has also been demonstrated using experts searching for masses in mammogram 
images [12].

The EEG signals used in these imagery triage applications are typically event-related potentials (ERPs). ERPs are 
obtained when an EEG signal is time-locked to a relevant stimulus [14]. In research settings, ERPs are often aver-
aged across many trials in order to wash out noise (from sources such as eye blinks and facial muscle activity) that 
can overwhelm the ERP signals. However, the method of averaging across repeated trials is impractical for triage 
implementations where efficiency is of critical value. In such domains, promise lies in single-trial ERP detection 
which incorporates spatial information across EEG sensors [15,16]. Such spatiotemporal EEG activity has revealed 
distinct patterns for target-present and target-absent images following stimulus presentation that could be exploited 
for purposes of constructing a single-trial ERP classifier [17]. 

One of the most useful ERPs for single-trial applications is the P300, or P3. The P3 refers to a positive deflection 
in voltage that occurs in the latency range of 250-500 ms, typically evoked using an oddball task in which an infre-
quent “oddball” target (e.g., an image containing a threat) is displayed within a series of frequent distractor stimuli 
(e.g., innocuous images), and the participant is asked to discriminate between target and non-target stimuli [18,19]. 
P3 amplitudes are significantly larger in response to infrequent target items, though in order to evoke a P3 the task 
must force attention and categorization of stimuli [19]. There are thought to be two subcomponents of the P3, re-
ferred to as P3a and P3b, which have distinct neural generators that present as particular scalp topography in the 
EEG signal. The P3a subcomponent is thought to reflect stimuli-driven frontal attention mechanisms and is therefore 
maximal over frontal and central electrode locations, while the P3b subcomponent is associated with temporal and 
parietal lobe activity reflective of memory processing [18]. Therefore, one potential mechanism for the P3 wave as a 
whole is stimulus detection that engages memory processes [18].

Although the RSVP/EEG paradigm holds promise for helping professional visual searchers to triage imagery rap-
idly, it may be limited by the nature of the target items. Targets that do not vary a great deal in appearance are likely 
to elicit ERPs that can be classified by brain-computer interfaces, but more variable targets may not. In the present 
study, we sought to extend the RSVP/EEG paradigm to the domain of aviation security screening, and in doing so to 
explore the limitations of the technique for different types of targets. Airport screeners typically inspect X-ray imag-
es of baggage in search of threats, such as guns or explosive devices, and other prohibited items, such as flammable 
materials. As in the other domains in which the RSVP/EEG technique has been applied, the screeners must contend 
with large sets of imagery and time pressure while making high-consequence decisions. However, unlike domains 
such as mammography and satellite imagery analysis, the targets that are of interest to an aviation security screener 
can vary quite drastically in appearance and are sometimes deliberately concealed. In this study, we presented pro-
fessional Transportation Security Officers (TSOs) with rapid successions of image chips taken from false color bag-
gage X-rays in order to determine if various types of threat items could elicit P3 ERPs. We hypothesized that targets 
that have a prototypical appearance would elicit a useable P3 signal, but concealed targets or targets that do not have 
a prototypical appearance would not.



2 Method

2.1 Participants

Twelve individuals (3 female; mean age 32.7, range 21-63), currently working as Transportation Security Officers 
(TSOs) with duties that include baggage screening, participated in this experiment and were paid for their time. All 
participants provided written informed consent and were right-handed, had no early exposure to languages other 
than English, had no history of neurological disease or defect, and possessed normal or corrected-to-normal vision 
and hearing.

2.2 Stimuli

False color X-ray images, created using the same types of scanners that are used in airport security checkpoints,
were supplied by the Transportation Security Administration (TSA). These images were created by scanning actual 
pieces of luggage and were representative of the types of bags that are typically seen by TSOs at the airports. Each 
image presented a single piece of luggage (e.g., a briefcase, a duffle bag). For every piece of luggage there were two 
images, one showing a top view and one showing a side view. Some of the bags contained a prohibited item (threat 
bags), some contained no prohibited items (clear bags), and some threat bags were imaged again with the threat item 
removed (cleared threat bags). The threat bags contained one of two types of weapons, one of which is generally 
easier to detect than the other. We will refer to the two types of weapons as Threat A (easier to detect) and Threat B 
(more difficult to detect). The cleared threat bags were identical to the threat bags in all respects other than the ab-
sence of the threat item. The difficulty of the bags was rated by the TSA as easy, medium or hard, based on the 
amount of clutter in the bags and the types of concealment used for the threat items. Only bags rated as easy by the 
TSA were used for this study.

Each of the false color X-ray images was decomposed into image chips and grouped into blocks of 50, with all 
images in a given group consisting of either 400 x 400 pixel chips (generated from images depicting the top view of 
luggage) or 400 x 250 pixel chips (generated from images depicting the side view of luggage). Within each block of 
50 image chips, there were 49 distractor images taken from clear bags and one target item. The target image chip 
either contained a threat or the equivalent section of a cleared threat bag. For target images that contained a threat, 
the entirety of the prohibited item was presented in the image. Within each block of 50 images, all of the images 
were of the same type and were taken from the same quadrant of a bag. In other words, if the target image showed 
the top left corner of the top view of a suitcase, all of the distractors within that same block also showed the top left 
corner of the top view of a suitcase. If the target image was the bottom right corner of the side view of a backpack, 
all of the distractors showed the same quadrant and same view of other images of backpacks, and so forth.

A total of 10 blocks of images were used for training and 100 blocks of images were used in the main experiment. 
Of the 100 trials in the experiment, the target image chip was a threat in 60 trials and a cleared threat in 40 trials. 
Given the finite number of images provided by the TSA and the high number of image chips that were required to 
generate all of the trials, some of the distractor images were used more than once in different trials. Among the 
5,500 image chips that were used (5,000 for the task trials and 500 for the 10 trials in the training block), there were 
1,653 distractor image chips that appeared more than once. No target images were repeated, and the order of distrac-
tor repetition was balanced across participants.

2.3 Procedure for EEG Recording

The EEG was recorded from 128 silver/silver-chloride electrodes embedded in an elastic cap (ANT WaveGuard, 
“Duke” layout) using a high-impedance amplifier with active shielding. The electrodes were referenced on-line to 
the average of all electrodes. Following the experiment, the electrodes were re-referenced off-line to the average of 
the left and right mastoids. All of the electrodes were tested prior to recording in order to ensure that their imped-
ance was below 50 KOhms. The EEG was digitized with a sampling rate of 256 Hz.

ERPs were computed at each electrode for each experimental condition by averaging the EEG data from 100 ms
before the onset of an image chip until 920 ms after onset.  Trials containing blinks, eye movement, or muscle ac-
tivity were excluded from the averages.  The mean amplitude of the ERPs within time windows of interest was cal-
culated using data digitally filtered off-line using a bandpass filter of 0.2 to 20 Hz.



2.4 Rapid Serial Visual Presentation (RSVP) Task

Participants were seated in a dimly-lit, sound-attenuating booth at a viewing distance of approximately 92cm from a 
computer monitor with a refresh rate of 60Hz. Trial presentation was consistent with similar RSVP studies [3], [10]. 
Each trial began with a fixation cross that was presented in the center of the screen for 1000 ms. Participants were 
instructed to keep their eyes on the fixation cross for the duration of its presentation, and to avoid blinking or mov-
ing their eyes during the subsequent presentation of images. The stimuli within each trial consisted of a group of 50 
images that were presented serially against a white background in rapid succession. Following each set of images, 
participants were asked to indicate via a button press whether or not they believed a threat to be present in any of the 
images in that set. The participants were given 5 seconds to make their response. See Figure 1 for an illustration of 
the trial structure.

During an initial training period of 10 trials, images were presented at the rate of 5 images/second (200
ms/image) and participants were given feedback following each trial regarding the accuracy of their response. Fol-
lowing training, presentation rate was set to 10 images/second (100 ms/image) and feedback was no longer provid-
ed. 100 trials were presented in this fashion; 60 trials contained a threat and 40 trials did not. Within each trial, im-
age chips presented a consistent view and resolution; 50 trials consisted entirely of 400 x 400 pixel image chips 
displaying the front view of a bag, while 50 trials consisted of 400 x 250 pixel image chips displaying the side view 
of a bag. All target image chips were quasi-randomly inserted among the distractor stimuli, with the constraint that 
target chips were never presented within the first or last 500 ms (5 images) of a trial in order to prevent overlap with 
ERP signals related to the onset or offset of trials. Participants were given a self-paced break of up to one minute 
after every 10 trials in order to minimize potential eye strain and fatigue. 

Fig. 1. Time-line of each RSVP trial. Note that response feedback was only provided during the training session.

3 Results

3.1 Behavioral Results

The participants’ average accuracy for each threat condition is shown in Figure 2. For Threat A, the threat with a 
stereotypical appearance, the participants responded correctly to an average of 98% (SD = 3%) of top-view trials 
and 65% (SD = 20%) of side-view trials. For Threat B, the threat without a stereotypical appearance, the participants 
responded correctly to an average of 39% (SD = 18%) of top-view trials and 32% (SD = 19%) of side-view trials. 
For the trials containing cleared threat bags (i.e. no threat), participants responded correctly to 75% (SD = 16%) of 
the top-view trials and 72% (SD = 21%) of the side-view trials. For the participants’ average accuracy in each condi-
tion, 3x2 ANOVA (threat type by bag view) showed a significant main effect of threat type (F(2, 22) = 26.04, p < 
0.01), a significant main effect of bag view (F(1,11) = 51.58, p < 0.01), and a significant interaction between threat 
type and bag view (F(2,22) = 9.24, p < 0.01). Pairwise comparisons between the threat conditions using paired t-
tests showed that participants were significantly more accurate for Threat A trials than for Threat B trials, in both the 
top-view (t(11) = 11.36, p < 0.001) and side view (t(11) = 5.92, p < 0.001) conditions. In addition, participants were 
significantly more accurate for top-view than for side-view trials for both Threat A (t(11) = 5.51, p < 0.001) and 
Threat B (t(11) = 2.00, p < 0.05).



Fig. 2. Average proportion of correct answers for each threat condition

The participants’ average reaction times for each threat condition are shown in Figure 3. For the average reaction 
times in each condition, a 3x2 ANOVA showed a significant effect to threat type (F(2,22) = 17.63, p < 0.01) and a 
significant effect of bag view (F(1,11) = 19.66, p < 0.01). There was not a significant interaction between threat type 
and bag view (F(2,22) = 2.25, p = 0.13). Pairwise comparisons between the threat conditions using paired t-tests 
showed that participants responded significantly faster to top-view trials than to side view trials, and significantly 
faster to Threat A trials than to Threat B trials.

Fig. 3. Average reaction time for responses to each threat condition

3.2 ERP Results

The ERPs were calculated by time-locking the EEG data to the onset of the target chip in each trial and averaging 
across trials in the same condition. The grand average ERPs were calculated by averaging across all trials in each 
condition for each participant. One participant’s ERPs were excluded due to poor signal quality. For each threat 
type, the ERPs were compared for the threat and cleared threat bags. These stimuli were identical apart from the 
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presence or absence of the threat in the bag. Representative ERPs from each scalp region are shown in Figure 4 for 
Threat A and Figure 6 for Threat B. Scalp maps showing all electrodes are shown in Figures 5 and 7. For Threat A, 
the threat with a prototypical appearance, there were two ERP components that differed between the threat and 
cleared threat bags. The first was a positive peak over the front of the scalp, peaking at approximately 400 ms. The 
second was a positive peak over the central electrodes with a corresponding negative peak over the frontal ele c-
trodes, peaking at approximately 600 ms. For Threat B, the threat that does not have a prototypical appearance, there 
were no ERP components that differed between the threat and cleared threat bags. The ERPs were quantified for 
analysis by computing the mean amplitudes, post baseline correction, of the 250-500 and 500-800 ms intervals. The 
electrodes were divided into seven scalp regions: left anterior, central anterior, right anterior, central, left posterior, 
central posterior, and right posterior. Within-subjects ANOVAs were conducted for each of these time windows and 
regions with the factors stimulus type (threat or match bag) and electrode site. For Threat A, there was a significant 
difference between the threat and match conditions in all scalp regions in the 250 -500 ms time window (all Fs 
>12.61, all ps < 0.003). In the 500-800 ms time window, there were significant differences between the threat and 
match conditions in the central scalp region (F(1,24) = 114.84, p < 0.001), the central anterior scalp region (F(1,24) 
= 42.09, p < 0.001), and the left anterior scalp region (F(1,24) = 7.91, p < 0.02).

Fig. 4. Representative ERPs from electrodes in each of the seven scalp regions used in the analysisof Threat A



Fig. 5. Grand average ERP scalp maps for the threat and cleared threat trials for Threat A

Fig. 6. Representative ERPs from electrodes in each of the seven scalp regions used in the analysis of Threat B



Fig. 7. Grand average ERP scalp maps for the threat and cleared threat trials for Threat B

4 Discussion

Similar to satellite imagery analysts and radiologists, TSO bag screeners operate in a domain concerned 
with low-frequency, high-consequence targets buried among innocuous clutter. For satellite imagery analysts, the 
problem of image search centers on the vast number of continuously updating images in conjunction with an insuffi-
cient number of trained analysis [20] such that RSVP/EEG driven search offers the opportunity for otherwise un-
reviewed images to be subjected to at least a cursory analysis. TSOs are not confronted with a vast image database 
in the same way that satellite imagery analysts are, in that every single item of luggage is screened. However, unless 
an item is flagged for further investigation, it is only viewed once by a single screener, making this a domain that 
stands to benefit from a triage technique which would allow for an efficient double-checking scheme. 

The aim of the current study was to examine the viability of constructing a neurophysiologically driven 
classifier within the domain of TSO baggage screening by determining if the basis for constructing such a classifier 
exists within an RSVP paradigm. A P300 frontal effect was observed for threats with a stereotyped appearance 
(Threat A), while for trials containing a threat with a highly variable instantiation (Threat B) we did not observe a 
P300. Additionally, behavioral performance indicated participants experienced difficulty detecting this more varia-
ble class of threats. Responses were more accurate when threats were of a stereotyped nature and when presented via 
top-down (as opposed to side) view. Even when participants correctly indicated the presence of a threat for a given 
trial they may not have been basing their response on the critical image in the trial burst, such that a P300 is not 
timelocked to the chips of interest. 

Currently, fully-automated systems are not viable within complex domains due to issues regarding specific-
ity, sensitivity, and ability to generalize [1], [3].  Leveraging the human perceptual system may facilitate generaliza-
tion since brain response may be specific to detection of attended targets independent of specific target features, 
thereby obviating the need to train a classifier that is sensitive to each individual target type. In a domain such as 
luggage screening in which the size, shape, orientation, and nature of targets may vary substantially and change over 
time, the flexibility of the human brain may continue to prove superior to fully automated methods of image classifi-
cation. This is evidenced by research demonstrating variability between images classes (i.e., target vs. distractor) 
may be low relative to variability within class (i.e., target-to-target variability; [3]). The current work reveals that 
within the domain of luggage screening, EEG variability between image class (target vs. distractor) is low relative to 
variability within a class (gun-to-gun, IED-to-IED, gun-to-IED), suggesting that humans are capable of discrimina-
tion between target and distractor images even when the nature of the target may vary substantially. It is worth not-
ing that participants in the current study were not told which types of prohibited items may be present in image 
blocks, but to simply following their standard operating procedure for identification of threats.



Our results suggest the possibility of implementing a triage technique within the domain of luggage screen-
ing. However, there are a number of important limitations to consider. Presentation of cropped or compressed imag-
es is typical of this body of research (e.g, [1], [3], [11,12]), and the current study is no exception, utilizing cropped 
images (chips) rather than compressing the visually dense broad images in order to retain discriminability of image 
components. Rapid presentation rate is a necessity for triage techniques to maintain efficiency, but combination with 
image chips represents a double-edge sword. The pace of image presentation does not afford time for saccadic 
search of individual stimuli, which improves EEG signal to noise by minimizing artifactual eye movements. How-
ever, as targets become distal from the fixation point, detection rate may decrease [11], [17].  

In addition, under RSVP conditions participants have been shown to exhibit difficulty detecting targets that 
lay in the boundary between chips [3]. In the current study, each target was entirely contained within a particular 
image chip. This was intentional given the preliminary nature of the study, but in a real world setting automatic im-
age decomposition is highly unlikely to result in target items entirely falling within the boundary of the generated 
image chips. It is possible that overlapping image chips, as used in prior RSVP/EEG research [10] would enhance 
spatial context, thereby mitigating the issue of boundary items, though such overlap results in an overall decrease in 
the efficiency of the triage system given that a greater number of images are needed to cover the same amount of 
image space. Efficiency may be further compromised by the need for frequent breaks to avoid mental fatigue or eye-
strain. The current study offered a self-paced break of up to 1 minute after every ten trials (500 images); additional 
work is necessary to determine at what point physical or mental fatigue becomes a factor. 

The advantage to EEG provided by limiting eye movement is only valuable if the EEG signal itself is valu-
able. Recent research suggests that within an RSVP/EEG paradigm, the behavioral performance of participants 
tracks the detection of evoked response in the EEG signal [11]. In other words, image blocks that contain a target 
only elicit a distinct EEG signal when the participant is consciously aware that the image block contains a target, 
such that neuroimaging adds little value beyond overt behavioral information. This stands in contrast to Hope et al. 
[12] who demonstrated that receiver operating characteristic area under the curve increased from .62-.86 to .75-.94 
when moving from a single electrode to multiple electrodes in an RSVP image triage paradigm. Likewise, Healy and 
Smeaton [21] demonstrated that using a mere 4 channels of EEG increases image classification accuracy by nearly 
50% beyond using only overt behavioral response. The current study did not attempt construction of a classifier or 
implementation of modeling for automatic detection of P300s. Instances in which participants responded incorrectly 
(e.g., threat present to a threat absent trial) are grouped by response and grand averaged such that instances in which 
a threat is subconsciously detected may have washed out. Behaviorally, there were not enough instances of false 
negatives to allow for analysis of a potential subconscious P300. Although the current work was unable to evaluate 
brain responses on a single-trial basis, it does suggest that for certain items at least a neural response is elicited 
which may allow for future construction of a classifier capable of automatic peak identification, thereby allowing 
neurophysiology to identify the presence of threats in a way not captured by behavioral responses. It is also im-
portant to note that such a classifier may provide a better basis for localization of target-containing images within a 
sequence due to the high temporal resolution associated with ERPs relative to the substantial latency inherent in 
motor responses [3].

It is currently unknown if task familiarity plays a role in image triage performance within this domain. In 
the current study, we tracked the amount of time each TSO had spent working in the capacity of a baggage screener 
in order to determine if job experience related to ability to accurately identify targets in a domain-specific RSVP 
paradigm.  However, all participants were naïve to high throughput analysis of images as experienced in this study, 
and it is possible that training within this paradigm would result in enhanced ability to discriminate between target 
and non-target blocks of images. Individual differences may also play a role, as previous investigation has demon-
strated that a slower rate of presentation may be necessary in order to attain an acceptable level of accuracy for some 
individuals [17]. 

Given the equipment expense and time cost of setup and analysis of EEG data, it is important to determine 
the extent to which EEG provides a benefit above and beyond overt behavioral data, and if task practice and/or iden-
tification of individuals adept at high throughput screening may obviate the need for neurophysiological data.  While 
the current study utilized a 128 channel EEG system, other work has found a small number of electrodes to be suffi-
cient for substantial increases in classification accuracy [12], [21] such that low cost consumer-grade EEG systems 
may prove a viable option.
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