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Combining Different Modalities L

Example Data Sources
RGB+IR Optical Image
LiDAR Height Map

GIS Road Polygons

1. Georegister data to have spatial location
as the common semantic space.

2. Take the best information provided by
each data source and build semantic

hierarchies. Land Cover Map

Location Database
Social Network Data, etc.

Multi-Modality Imagery Land Cover*

Spatiotemporal Graph Returned Matches

(2,3] [3,+) (2,3] [3,+0)

(1,2] [2,3)
Additional Data /7 @ @ @
(-0,1][1,2) (-0,1] [2,3) (-0,1] [3,40)  {-00,1] [3,400)  (-o0,1] [3,+0)
Address Data
id Name Address Latitude Longitude

P1 Consulate of Italy 150 S. Independent Mall West #1026 =~ -75.14895 39.94884
P2 Congress Hall 41 N 6th Street -75.14920  39.94899
P3 Independence Hall 520 Chestnut Street -75.15000  39.94889

Graph Query
P4  Graduate School USA 150 S. Independence Mall West #674  -75.15090  39.94819
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* O’Neil-Dunne, et al, An object-based system for LiDAR data fusion and feature extraction, Geocarto (28), pp. 227-242, 2012.



Data Re||ab|||ty Confusion Matrix*

Reference data

Tree Grass/ Bare Roads/ Other

Example Data Sources Classified data canopy shrub  soil  Water Buildings railroads Paved User's
'LiDAR HEIght Map : Tree canopy 647 7 0 2 5 6 3 979
: | — Grass/shrub 8 641 15 0 2 8 25 2%
1 i 1 Bare soil 0 3 28 4 0 | 4 70%
'RGB+IR Optical Image / Water 3 ! 0 158 0 0 0 98%
! Buildings 8 ] 0 0 505 0 9 96%
'GIS Road Polygons : Roads/railroads 2 3 0 0 0 289 4 91%
1 1 Other paved 8 21 6 | 12 5 487 90%
i Landcover ! Producer’s 96%  94%  57%  96% 96% 94% 92% 2755

iLocation Database !
1 Social Network Data, etc.!

Confidence levels

Propagate uncertainty

Multi-Modality Imagery Land Cover*

Spatiotemporal Graph Returned Matches

(2,3] [3,+) (2,3] [3,+0)

(1,21 [2,3)

Additional Data /7 @ @ @
(-0,1][1,2) {-o0,1] [2,3) {-0,1] [3,+o0) {-00,1] [3,+o0) {-00,1] [3,+o0)
Address Data

id Name Address Latitude Longitude

P1 Consulate of Italy 150 S. Independent Mall West #1026 =~ -75.14895 39.94884
P2 Congress Hall 41 N 6th Street -75.14920  39.94899
P3 Independence Hall 520 Chestnut Street 7515000  39.94889 G ra p h Qu e ry

P4  Graduate School USA 150 S. Independence Mall West #674  -75.15090  39.94819

* O’Neil-Dunne, et al, An object-based system for LiDAR data fusion and feature extraction, Geocarto (28), pp. 227-242, 2012.




Expected discrepancies among the sources/ @ i=,

Laboratories

Purposely misleading information/

Changes over time

Discrepancies due to phenomenology
= LiDAR: True position, shadows.

= Optical: Perspective effects, shadows.

Discrepancies due to denial and deception

= Qverhead Images: Camouflage, Covering.

=  Social Network Data:

= Geotag at upload position instead of
image capture position.

= Fake profile, comment, location data.

Changes over time

= Explicit representation, assuming
durable features seen twice are
invariant between observations.

(2,3] [3,+0) (2,3] [3,+0)

(0,11 [1,2) (-0,1] [2,3) (-00,1] [3,420)  (-o0,1] [3,40)  (-o0,1] [3,4o0)

= Changes may be physical
(ex. adding a wing to a building), or
semantic (ex. a business is sold).



Presenting Results / Computing Uncertainty

Geospatial r
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BACKUP SLIDES




Site Activity Analysis

Dlver5|ty ‘of Problems

Construction Analysis
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All of these were solved by the same code. 8

Some image data UVM.




Building and Tree Segmentation iL

Distinguishing buildings and trees:

Z Height Z Deviation

Sandia
National
Laboratories

From O'Neil-Dunne, et al, “An Object-Based System for LIDAR Data Fusion and Feature Extraction,” Geocarto International, 2012.

Image data provided by UVM.



Sandia

Power Plant Results: True Positives @
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Sandia

Power Plant Results: False Positives ™.
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