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Epoxies are important class of structural adhesives.
Basically, they are a highly crosslinked polymer network.
What is the mechanical behavior of a highly crosslinked network,

and how does it depend on various molecular attributes of the network
and system?

Past, did modeling & simulation of epoxies as highly crosslinked polymer
network.
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What’s New?

* New model that matches T403 crosslinker’'s geometry

— Most important, packing at solid substrate does not have layers of
crosslinker and resin

« Open surface geometry has corners, which possess stress singularity
in continuum limit

* Much larger systems
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Modeling Epoxies

* Polymer models

— coarse-grained models to treat long time scales &‘
» bead spring model .’.:.
= random walk paradigm ::
» focus is on trends (not single quantities) & molecular mechanisms

— atomistic models
= available time scales typically too short
» time step = 1 fs = total time ~ 10-100 ns

= more appropriate for the liquid mixture interaction with surface
= force-fields available are probably poor

« Epoxies
— complex chemical structure = atomistic simulations unreasonable
— glass = weak strain rate dependence
— view as highly crosslinked polymer network
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Original Epoxy Model

 Original model: minimal
— simple, highly crosslinked network (i.e. very short strands between crosslinks)

— network has 2 beads between each crosslinker
— crosslinker is a single particle of functionality f

* new version matches geometry better
» important for packing at surface

— resin model is a dimer

example molecules
A\ % A
CHp- CH-CH2~O—@-?—@—O—CH2- CH-CH,
CH4
ICH?_{- OCH,CH(CH,)},NH,
CHSCHZCIJCHzll OCH,CH(CH,)}- NH,
CH,+OCH,CH(CH,)},NH,

X+y+2=~53

models
minimal ‘“T403’
(original)
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Potentials

Lennard-Jones (LJ) potential (van der Waals)

i 12 6
4u d— - d—
Fi Fij

* Energy unit: u
* Length unit: d
* Here all types equivalent

Bond potential

« FENE (non breakable) = -kR, log(1-(r/R;)?)
 breakable (smooth quartic)

No angle potential: full flexible chains
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Formation of Model Epoxy Adhesive

Equilibrate liquid mixture at T > T solid wall
and zero load
(allow volume to adjust).
0-0-+ x . liquid
solid wall
E &i’ PBC
inx&y
1) Bond to walls .
2) crosslink under load
> 95% cured
» X

Lowerto T < Tg. v
Shrinks. 1
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Tensile stress-strain curve: Molecular Mechanisms
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Failure Strain: Minimal Paths in Network

For each bond to the top surface there is a
minimal path of length P through the
network to the bottom surface

* Failure strain is determined by maximum
minimal path
— At the strain equivalent to the maximum P,

all bonds in the paths connecting the two
surfaces must be stressed

*|In the presence of defects, failure occurs at
smaller strains, because of nonuniform
strains.

T
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(Old) Tensile strain data

Lot of data for original model YO
- System size dependence ¢ H=200/7 -
- Interfacial bond density dependence 4| .
a4 ]
| ]
surface bond coverage & ? B
0% : QWE

— 10% 01""1""{”_1' ]

— 25% | T © N

500/0 § T 0) :

—— 75% 74 - A

——100% 7 * e o ;

= 2 ‘ h— ' ‘ D ]

8 ‘ i |

O | I | l L 1 1 l 1 :.,: 1 1 l’.l | I — ‘Tél@l_—‘

0 0.5 1 0 0.5 1
strain strain

Failure strain varies with height.

Failure stress does not vary with height.

*100% coverage has master stress-strain curve.
-Partial coverages follow master curve til failure. Macromolecules 2001, 34, 2710-2718

ﬁan_dla I Mark Stevens
ationa _ msteve @sandia.gov
Laboratories



Bulk Data

Same procedure, but no surfaces and full PBC.
Calculate elastic moduli by deforming simulation cell.

Calculating T,
original model: T403 model
E =33.0 uy/d3 NN
G =65.0 Uo/d3 shear 1.00 | .
K =117 u,/d3 — 2 095
v =0.41 T 0.90
0.85
‘é 1.50
g 1.00
;2 0.50
h 0.00
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System with corners

» To create system with corner, the PBC is removed in one direction

» To contain liquid, a temporary wall potential is used to confine the
system during initial equilibration and bonding to wall

» Crosslink liquid without wall potential

constant velocity 4 v
Tensile pull (or strain rate)
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Systems

h N w
1 424 256k 208 w/h ~10
2 761 20M 832
3 1490 7.7M 1668
4
5

2225 17.1M 2502
295.0 30.7M 3338

h N failure strain crack strain w
1 424 256k 1.41 1.35 208
2 761 20M 1.31 1.08 832
3 1490 7.7M 1.23 0.96 1668
4 2225 17.1M 1.05 0.74 2502
5 295.0 30.7M 0.96 0.58 3338
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Stress vs. Strain

stress

! ‘u‘( ‘wl;}j‘ il |

! i WH\L il \HAII\W*MM

0.0 0.9 1.0 1.5

San_dia Mark Stevens
National ) msteve@sandia.gov
Laboratories




G

Sandia
National
Laboratories

1.5

Strains vs. Thickness
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System 4

274a 0
strain = 0.00

275a0

necking strain = 0.54

shear _—

1 crack starts

275a 13
strain = 0.69

275a 35
strain = 0.93
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Zoom to crack initiation

275a 16 zoom
strain =0.72
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r213 zoom iconf=57

San_dia Mark Stevens
National ) msteve@sandia.gov
Laboratories



r213 iconf=58

San_dia Mark Stevens
National ) msteve@sandia.gov
Laboratories



Conclusions

Crack 1nitiation at corners does occur within molecular simulation.

Failure strain is strongly system size dependent in these ‘small’ systems.

Stress 1s noticably concentrated at corners for small strain.

Shear stress in corner important because of pull-in at sides yields an acute angle of

the polymer network surface in the corner.
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MD: local stress

Do MD with local stress calculation
— large fluctuations?

* What does simulation say about traction-separation o Force between
relation’? N | F | particle pair:
— shape of the function how much stress
— stress & structure at corners \. goes in each

. 2
= can MD show stress divergence? mesh volume
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Network Structure

Original model

« Every strand between junction has 2 beads in
original model

« Random network formation
— Start with binary liquid of crosslinker and resin
— Crosslink to form network
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T403 n}odel

A
R

strands can
have 4, 5 or 6 beads

between junctions
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Formation of Epoxy Adhesive

» Equilibrate binary liquid of crosslinker and resin

» Cure by dynamically crosslinking in simulation {
— obtain highly-crosslinked network with short strands e 1
* Vary number of bonds allowed to bottom surface L )
imics SAM treatment of experiment SN f/
— MIMICS reatment o1 experiments f / f N\t
S
P
r"‘ |

model — network structure — stress-strain curves
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Polymer Modeling: Length Scales

coil diameter ~ 100A

Persistence length Bond length ~ 1.5A

~10A
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Varying Crosslink Temperature

Created systems (very small, original model) crosslinked at different temperatures, T,.
Performed tensile pull simulations.

 Large fluctuations in stress due to small system size

* yield stress independent of T,

 only large strain data appears dependent on T,

« But? need to have much longer crosslink times for lower T,?
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Units

« Mapping using SAMs
— Stress to separate two SAMs with different endgroups
» R. Thomas, et al., JACS, 117, 3830 (1995).

Separation Load

CH3-CHa3: 320 £160 MPa | vdW separation stress > measured

COOH-NH2: 3400 MPa bonded separation stress
Simulation:

bonded SAMs 112 Juy / d®

LJ SAMs 5.6

LJ maps: 1u,/d3=3400/112 = 30 MPa
= 320/5.6 =57 MPa

U, / d® =40 MPa
d=0.5nm (This d value better matches new model)
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