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ABSTRACT
Network topologies can have significant effect on the costs
of parallel algorithms due to inter-processor communication.
For particular combinations of computations and network
topologies, costly network contention may inevitably be-
come a bottleneck, even if algorithms are optimally designed
so that each processor communicates as little as possible.
We obtain novel contention lower bounds that are functions
of the network and the computation graph parameters. For
several combinations of fundamental computations and com-
mon network topologies our new analysis improves upon pre-
vious per-processor lower bounds. We consider torus and
mesh topologies, universal fat-trees, and hypercubes; algo-
rithms covered include classical matrix multiplication and
direct numerical linear algebra, fast matrix multiplication
algorithms, programs that reference arrays, N-body compu-
tations, and the FFT. For example, we show that fast matrix
multiplication algorithms (e.g., Strassen’s) run on a 3D torus
will suffer from contention bottlenecks. On the other hand,
this network is likely sufficient for a classical matrix mul-
tiplication algorithm. Our new lower bounds are matched
by existing algorithms only in very few cases, leaving many
open problems for network and algorithmic design.

1. INTRODUCTION
Good connectivity of the inter-processor network is nec-

essary for fast execution of parallel algorithms. Insufficient
connectivity provably slows down specific parallel algorithms
that are communication intensive. Parallel algorithms that
ignore network topology can suffer from congestion along
network links, and for particular combinations of computa-
tions and network topologies, costly network contention may
be inevitable, even for optimally designed algorithms. In
this paper we obtain novel lower bounds on such contention
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costs, and point out cases where this cost is a performance
bottleneck.

In our model a 〈P,M,GNet〉-machine has P identical pro-
cessors, each with local memory of size M , connected with
interprocessor network GNet.

1 The network GNet may have
P vertices where each vertex is both a processor and a router
(direct networks like tori and hypercubes) or may have more
than P vertices, where some vertices represent routers (in-
direct networks like fat-trees). Edges of GNet are network
links with weights corresponding to bandwidth. All weights
are typically the same in a torus or hypercube, but not in a
fat-tree. We ignore processor injection rates in this model.

Most previous communication cost lower bounds for par-
allel algorithms utilize per-processor analysis. That is, the
lower bounds establish that some processor must communi-
cate a given amount of data. These include classical ma-
trix multiply, direct and iterative linear algebra algorithms,
FFT, Strassen and Strassen-like fast algorithms, graph re-
lated algorithms, N -body, sorting, programs that reference
arrays and others (cf. [1, 4, 5, 7, 11, 17, 22, 24, 27, 30, 37]).

We demonstrate the usefulness of our novel analysis by
applying it to a spectrum of algorithm and network combi-
nations, including many of the algorithms above, with net-
works such as meshes and tori of any dimension, universal
fat-trees, and hypercubes. We note that the current five
fastest supercomputers in the world [34] have either torus
or fat-tree network topologies (as of November 2014). By
considering the network graphs, we introduce communica-
tion lower bounds for certain computations and networks
that are tighter than what was previously known. We also
show that often, but not always, the worst contention is ex-
pected across the network bisection, supporting a trend that
appears in various network designs for decades, namely that
a network’s bisection is one of its most important parame-
ters.

By considering the network graphs, we introduce com-
munication lower bounds for certain computations and net-
works that are tighter than what was previously known. In
this work, we bound from below the number of words com-
municated between a subset of processors and the rest of
the processors for a given parallel algorithm (defined by a
computation graph and work assignment to the processors),

1This model is a variant of the distributed-memory commu-
nication model (cf, [7, 12, 15]), where all-to-all connectiv-
ity is assumed, and the bandwidth-cost of an algorithm is
proportional to the number of words communicated by the
worst processor.
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and divide it by the number of words that the network is ca-
pable of communicating simultaneously between that subset
of processors and the rest of the graph. This relates to the
contention cost of the algorithm, which we specify in Def-
inition 2.2. Applying the main theorems we improve (i.e.,
increase) communication cost lower bounds for several com-
binations of fundamental computations on common network
topologies. Note that we inherit any assumptions made in
the original per-processor lower bounds, e.g., assuming no
recomputation. Our new lower bounds are matched by ex-
isting algorithms only in very few cases, leaving exciting
open problems for network and algorithmic design such as
when scheduling heavily utilized computation kernels on (a
subset of) a supercomputer.

2. CONTENTION LOWER BOUNDS
In this section we state our main result, which translates

per-processor bandwidth cost lower bounds to contention
cost lower bounds. The following definitions differentiate
these costs.

Definition 2.1. Let a parallel algorithm be run on a dist-
ributed-memory machine with P processors. The per-processor
bandwidth cost Wproc is the maximum over processors 1 ≤
p ≤ P of the number of words sent/received by processor p.

Observe that forWproc there exist two types of per-processor
lower bounds: memory-independent Wproc(P,N) (cf. [5])
and memory-dependent Wproc(P,M,N) (cf. [6, 7, 8, 17,
27]) where N is the input and output data size.

Definition 2.2. Consider a 〈P,M,GNet〉-machine run-
ning an algorithm. The contention cost Wlink is the maxi-
mum over edges e ∈ E(GNet) of the number of words com-
municated along e during the execution of the algorithm.

In order to prove our result, we will use graph expan-
sion analysis. Recall that the small set expansion hs(G) of

a d-regular graph G = (V, Ê) is the minimum normalized
number of edges leaving a set of vertices of size at most s
[25]. Formally, for s ≤ |V |/2, we have

hs(G) = min
S⊆V,|S|≤s

|E(S, V \ S)|
|E(S)|

where E(S) is the set of edges that have at least one endpoint
in vertex subset S and E(S, S̄) is the set of edges with only
one endpoint in S. The cardinality of a set S is represented
by |S|. In the case of d-regular graphs, |E(S)| ≤ d|S|.

Theorem 2.3. Consider a 〈P,M,GNet〉-machine. Given
a computation with input and output data size N and lower
bounds on the per-processor bandwidth cost Wproc(P,M,N)
and Wproc(P,N), for all algorithms that distribute the work-
load so that every processor performs Ω(1/P ) of the compu-
tation, and distributing the input and output data such that
every processor stores O(1/P ) of the data, the contention
cost is bounded below by

Wlink(P,M,N) ≥ max
t∈T

Wproc(P/t,M · t,N)

d · t · ht(GNet)
and

Wlink(P,N) ≥ max
t∈T

Wproc(P/t,N)

d · t · ht(GNet)
,

where

T = {t : 1 ≤ t ≤ P/2, ∃ S ⊆ V such that |S| = t and

ht(G) = |E(S, V \ S)|/|E(S)|}.

Proof. Consider a partitioning of the P processors into
P/t subsets of size t ∈ T (w.l.o.g., P is divisible by t), where
at least one of the subsets st is connected to the rest of the
network graph with at most d · t · ht(GNet) edges.2 The
existence of such a set st is guaranteed by the definition of
hs(GNet) and T . Then st has a total of M · t local mem-
ory. By the workload distribution assumption, the proces-
sors in st perform a fraction Ω(t/P ) of the flops, and by the
data distribution assumption, st has local access to frac-
tion O(t/P ) of the input/output. Hence we can emulate
this computation by a parallel machine with P/t processors,
each with M · t local memory (see Figure 1), and apply the
corresponding per-processor lower bound deducing that the
processors in st require at least Wproc(P/t,M · t,N) words
to be sent/received to the processors outside st throughout
the running of the algorithm. At most d · t · ht(GNet) edges
connect st to the rest of the graph. Hence at least one edge

communicates at least
Wproc(P/t,M·t,N)

d·t·ht(GNet)
words. Since t is a

free parameter, we can pick it to maximize Wlink(P,M,N),
and the memory-dependent contention bound follows. The
memory-independent lower bound is derived similarly.

Figure 1: Computation of t = 4 processors on a
16-processor machine can be emulated as the com-
putation of one processor on a 4-processor machine.

In the case of irregular or indirect network topologies, we
may not be able to easily identify the edge expansion of the
network graph. For these cases, we state a more general the-
orem that leads to valid but possibly weaker lower bounds.
Intuitively, one can partition the processors in any way and
apply the per-processor bound to the partitioned network
graph to obtain a valid contention bound. While Theorem
2.3 uses subsets attaining the edge expansion to maximize
the lower bound, one can also choose contention-bound sub-
sets by hand. The following theorem states this formally for
uniformly sized partitions; we omit the proof because it is
nearly identical to Theorem 2.3.

Theorem 2.4. Consider a 〈P,M,GNet〉-machine. Let {Pi}
be a set of partitions of the P processors, where each parti-
tion consists of equally sized subsets of size ti, and define

Li = min
Sj∈Pi

|E(Sj , V \ Sj)|

2Note that st is connected to the rest of the network graph
with exactly d · t · ht(GNet) edges only when |E(S)| = d|S|.



to be the smallest aggregate bandwidth for any subset of pro-
cessors in partitioning Pi. Given a computation with in-
put and output data size N , and lower bounds on the per-
processor bandwidth cost Wproc(P,M,N) and Wproc(P,N),
for all algorithms that distribute the workload so that ev-
ery processor performs Ω(1/P ) of the computation, and dis-
tributing the input and output data such that every processor
stores O(1/P ) of the data, the contention cost is bounded be-
low by

Wlink(P,M,N) ≥ max
i
Wproc(P/ti,Mti, N)/Li

and

Wlink(P,N) ≥ max
i
Wproc(P/ti, N)/Li.

3. PRELIMINARIES

3.1 Per-Processor Lower Bounds
Before deriving bounds on link contention, we review the

per-processor communication bounds for several classes of
algorithms.

Classical Linear Algebra.
Most classical direct linear algebra computations can be

specified by three nested loops, and for dense n×n matrices,
the number of flops performed is Θ(n3).3 Informally, such
computations, which include matrix multiplication, Cholesky
and LU decompositions, and many others, can be defined by

Cij = fij({gijk(Aik, Bkj)}1≤k≤n) for 1 ≤ i, j ≤ n (1)

where f and g are sets of functions particular to the compu-
tation. For example, in the case of classical matrix multipli-
cation, fij is a summation and gijk is a scalar multiplication
for all i, j, k. For a more formal definition, see [3, Definition
4.1]. For such computations, we have the following lower
bound:

Theorem 3.1 ([7],[27]). Consider an algorithm perform-
ing a computation of the form given by equation (1) on P
processors, each with local memory of size M , and assume
one copy of the input data is initially distributed across pro-
cessors and the computation is load balanced. Then the num-
ber of words some processor must communicate is at least

Wproc(P,M,N) = Ω

(
n3

PM1/2

)
= Ω

(
N3/2

PM1/2

)
.

Note that the local memory size M appears in the denom-
inator of the expression above, which is why we refer to it
as the memory-dependent bound. Additionally, such com-
putations also inherit a memory-independent lower bound:

Theorem 3.2 ([5]). Consider an algorithm performing
a computation of the form given by equation (1) on P pro-
cessors, and assume just one copy of the input data is ini-
tially distributed across processors and the computation is
load balanced. Then the number of words some processor
must communicate is at least

Wproc(P,N) = Ω

(
n2

P 2/3

)
= Ω

(
N

P 2/3

)
.

3For matrix computations, we denote the size of the in-
put/output to be N = Θ(n2).

Strassen-like Fast Matrix Multiplication.
Similar lower bounds exist for Strassen’s matrix multipli-

cation and similar algorithms, though the proof techniques
differ substantially. Informally, we use the term “Strassen-
like” to refer to algorithms that recursively multiply matri-
ces according to a base-case computation. For square algo-
rithms, this corresponds to multiplying n0×n0 matrices with
m0 scalar multiplications, where n0 and m0 are constants.
Using recursion, this results in a square matrix multiplica-
tion flop count of Θ(nω0) where ω0 = logn0

m0. Note that
additional technical assumptions are required for the com-
munication lower bounds to apply and that Strassen-like
algorithms may have a rectangular base case; see [8, Section
5.1] for more details. The memory-dependent communica-
tion lower bound for Strassen-like algorithms is:

Theorem 3.3 ([8, Corollary 1.5]). Consider a
Strassen-like matrix multiplication algorithm that requires
Θ(nω0) total flops. Suppose a parallel algorithm performs
the computation using P processors (each with local mem-
ory of size M), load balances the flops, and performs no
redundant computation. Then the number of words some
processor must communicate is at least

Wproc(P,M,N) = Ω

(
nω0

PMω0/2−1

)
= Ω

(
Nω0/2

PMω0/2−1

)
.

Additionally, such computations also inherit a memory-
independent lower bound:

Theorem 3.4. Suppose a parallel algorithm performs a
Strassen-like matrix multiplication algorithm requiring Θ(nω0)
flops, load balances the computation across P processors,
and performs no redundant computation. Then under some
technical assumptions (see [8]) the number of words some
processor must communicate is at least

Wproc(P,N) = Ω

(
n2

P 2/ω0

)
= Ω

(
N

P 2/ω0

)
.

The proof is identical to [5, Theorem 2.1], with ω0 replac-
ing log2 7.

Programs Referencing Arrays.
The model defined in Equation (1) encompasses most di-

rect linear algebra computations, but lower bounds can be
obtained for a more general set of computations. In par-
ticular, Christ et al. [17] consider programs of the following
form:

for all I ∈ Z ⊆ Zd, in some order,

inner loop(I, (A1, . . . , Am), (φ1, . . . , φm))
(2)

where Zd is the d-dimensional space of integers and inner loop()
represents a computation involving arrays A1, ..., Am of di-
mensions d1, ..., dm that are referenced by the correspond-
ing subscripts φ1(I), ..., φm(I) where φi are affine maps φj :
Zd → Zdj for iteration I = (i1, ..., id). For example, matrix-
matrix multiplication has (A1, A2, A3) = (A,B,C), φ1(I) =
φ1(i1, i2, i3) = (i1, i3), φ2(I) = φ2(i1, i2, i3) = (i3, i2), φ3(I) =
φ3(i1, i2, i3) = (i1, i2) and the function inner loop() is de-
fined as A3(φ3(I)) = A3(φ3(I)) +A1(φ1(I)) ∗A2(φ2(I)).

Because the work inside the loop is currently defined as
a general function, the space of potential executions of in-
ner loop() must be restricted in a manageable manner, or



to “legal parallel executions” as defined in [17]. To express
the lower bounds, we define a set of linear constraints on a
vector of unknown scalars (s1, ..., sm)

rank(H) ≤
m∑
j=1

sjrank(φj(H)), (3)

for all subgroups H of Zd, where rank(H) is the cardinality
of any maximal subset of Abelian group H that is linearly
independent.4 For such computations we have the following
lower bound:

Theorem 3.5 ([17]). Consider an algorithm perform-
ing a computation of the form given by (2) on P processors,
each with local memory of size M , and assume the input
data is initially evenly distributed across processors. Then
for any legal parallel execution and sufficiently large |Z|/P ,
the number of words some processor must communicate is at
least

Wproc(P,M,N) = Ω

(
|Z|

PMsHBL−1

)
,

where sHBL is the minimum value of
∑m
i=1 si subject to In-

equality (3), assuming that this linear program is feasible
(see [17]).

We restate the memory-independent bound from [17] for
such computations (note that the formal proof has not yet
appeared). For legal parallel executions of computations of
the form (2) on P processors, some processor must move

Wproc(P,N) = Ω

((
|Z|
P

)1/sHBL
)

(4)

words where sHBL is defined as in Theorem 3.5.
Note that Theorem 3.5 generalizes Theorem 3.1. For ex-

ample, matrix multiplication satisfies both forms (1) and
(2), where in the latter case |Z| = n3 and sHBL = 3/2.

Theorem 3.5 also applies to, for example, N -body com-
putations where all pairs of interactions are computed [20].
In the this case, |Z| = Θ(N2) and sHBL = 2, yielding lower
bounds ofWproc(P,M,N) = Ω(N2/(PM)) andWproc(P,N) =

Ω(N/P 1/2). We also note that Theorem 3.5 applies to N -
body computations that use a distance cutoff to reduce the
number of neighbor interations, i.e. |Z| � N2.

FFT/Sorting.
We next discuss per-processor communication cost bounds

for the FFT and comparison sorts. A sequential communi-
cation cost lower bound of Ω(n logn/ logM) was given by
Hong and Kung [24]. A parallel memory-independent per-
processor bound has been proven for the LPRAM model [1]
and the BSP model [11].

Theorem 3.6 ([1, 11]). The per-processor communica-
tion cost of FFT algorithm on input of size N , run on a
〈P,M,GNet〉-machine with no recomputation is bounded be-
low by

Wproc(P,N) = Ω

(
N logN

P log(N/P )

)
.

4The rank of an Abelian group is analogous to the concept
of the dimension of a vector space.

We are unaware of a previous memory-dependent per-
processor bound for FFT, although this is a straightforward
extension of the existing sequential lower bounds in [24] or
the one in [35] for memory hierarchy model. We provide it
here for completeness.

Theorem 3.7. The per-processor communication cost of
FFT algorithm on input of size N , run on a 〈P,M,GNet〉-
machine with no recomputation is

Wproc(P,M,N) = Ω

(
N logN

P logM
−M

)
.

Proof. The bound follows from the same logic as the
partitioning argument in Hong-Kung [24], applied to one of
the processors that performs Θ((N logN)/P ) of the com-
putations. Since (as in [24]) each M -partition may have no
more than M logM vertices, the number of M -partitions is
at least N logN/(PM logM). Thus, the total per-processor
bandwidth is Ω(Mb((N logN)/(PM logM)c), and the the-
orem follows.

Note that this memory dependent bound is dominated by
the memory independent one, since we assume MP ≥ N .

3.2 Small Set Expansion of Torus Networks
Torus networks are common topologies among current su-

percomputers (four of the current top five [34], for example).
Cray’s XK7 [18] and IBM’s Blue Gene/P [26] machines uti-
lize 3D tori, Blue Gene/Q a 5-dimensional torus [16], and
the K computer in Japan a 6-dimensional network topology
[2]. Intel Xeon Phi coprocessors rely on a ring-based (a 1-
dimensional torus) on-chip communication network between
cores [28]. In this section, we derive a tight bound on the
network small set expansion for this class of networks.

The D-dimensional torus or mesh graph GNet has degree
at most d = O(D) and the small set expansion shown below.
We treat D here as a constant. For a fixed dimension D the
bounds are tight, up to a constant factor. For a tighter
analysis of these graphs, see [13].

Lemma 3.8. Let G be a D-dimensional torus or mesh,
with kD vertices. Then asymptotically in s,

hs(G) = Θ
(
s−1/D

)
.

Proof. For an upper bound on hs(G) consider a subset

S ∈ V (G) which is a D-dimensional submesh of length s1/D

in each dimension. The number of neighbors of this sub-

mesh on each of its 2D faces is O(s
D−1
D ). Thus |E(S, V \

S)| = 2D · O(s
D−1
D ). The number of vertices of S is s.

The degree of each vertex is O(D). Hence hs(G) ≤ 2D ·
O(s(D−1)/D)/(O(D)s) = O(s−1/D).

For a lower bound on hs(G) we use the Loomis-Whitney
inequality [32]. Consider a set S ⊆ V (G) of size s ≤ V (G)/2.
Let A1, A2, ..., AD be the projections of S onto the (D− 1)-
dimensional coordinate hyperplanes; let a1, ..., aD be their
corresponding sizes. Then by the Loomis-Whitney inequal-
ity we have sD−1 ≤

∏
1≤i≤D ai. Letting m = argmaxi{ai},

we have s1−1/D ≤ am. Consider the “pencil” of vertices that
corresponds to a point in Am: if there exists a vertex in
the pencil that is not in S, then the pencil contributes at
least one edge to the cut E(S, V \S). We say such a pen-
cil is partially full. We later show that there are at least
(1− 1/21/D)am partially-full pencils. Thus they contribute



a total of at least (1 − 1/21/D)am ≥ (1 − 1/21/D)s1−1/D

edges to the cut. Hence hs(G) ≥ (1−1/21/D)/(2D ·s1/D) =

Ω(s−1/D). To see that the number of partially-full pencils is

indeed at least (1− 1/21/D)am, assume for the sake of con-

tradiction that more than am/2
1/D pencils are full (i.e. have

all their vertices in S). This implies that s > kam/2
1/D ≥

ks1−1/D/21/D, thus s > kD/2 = |V |/2, which is a contra-
diction since s ≤ |V |/2.

3.3 Universal Fat-Trees
We also consider universal fat-trees [31], which are indi-

rect networks consisting of processors connected by a bi-
nary tree of router nodes. As of November 2014, the world’s
fastest supercomputer [34] is China’s National University of
Defense Technology Tianhe-2, which has a custom intercon-
nect with a fat-tree topology [19]. In a fat-tree network,
the bandwidth capacity of links between routers varies, in-
creasing from links connecting the processor leaves to the
“fattest” links connected to the root node. Universal fat-
trees are parametrized by the root links’ capacity: w words
of data per unit time, where the capacity of the leaf links
(to processors) is normalized to 1. Given the parameter w,
the capacity of each link at level 0 ≤ i ≤ logP in the tree
is min{P/2i,w/22i/3}. This implies that the capacities of
the links between subsequent levels of the tree differs by ei-
ther a factor of 2 or 22/3. Because the fat-tree network graph
consists of both processor and router nodes (an indirect net-
work) and link capacities are variable, we will not be able to
apply Theorem 2.3 straightforwardly; instead we will appeal
to the more general Theorem 2.4.

4. APPLICATIONS
In this section, we apply the general contention lower

bounds of Theorems 2.3 and 2.4 to pairs of computations
and network topologies. That is, we combine the previously
known per-processor bounds of a computation with prop-
erties of the network topology to obtain novel contention
bounds that are tighter in some scenarios. We first de-
rive contention lower bounds for all the computations on
D-dimensional tori (or meshes) in Section 4.1, and then in
Section 4.2 we compare the bounds to determine in which
scenarios each lower bound dominates. We also derive con-
tention bounds for the computations on fat-tree topologies
in Section 4.3; we discuss the comparisons among bounds
for that topology more briefly, as the relationships are qual-
itatively similar. Table 1 presents the communication lower
bounds for each of the computations on both D-dimensional
tori and fat-trees with root capacity w.

We have applied similar analysis for these computations to
hypercube topologies, but we omit the derivations because
we obtain no tighter lower bounds than the per-processor
bounds. Although the lack of tighter bounds does not im-
ply hypercubes will never be contention bound for the these
computations, the failure of this line of analysis is some-
what expected because, for example, any bisection cut of a
P -processor hypercube includes at least P/2 links [13].

4.1 Contention Lower Bounds for Tori
In this section, we derive contention lower bounds by plug-

ging the memory-dependent and memory-independent per-
processor lower bounds [5, 8, 17, 27] into Theorem 2.3 and
using the properties of D-dimensional tori. Table 1 summa-

rizes these results. In the algebra that follows, we assume
the network topology to be a D-dimensional torus or mesh.

Direct Linear Algebra, Strassen-like, and N-body.
We apply Theorem 2.3 to the relevant per-processor bounds

given in Section 3.1. Let F denote the number of work op-
erations (e.g. flops or loop iterations) of the different com-
putations. The per-processor memory-dependent bound is
thus:

Wproc(P,M,N) = Ω

(
F

PMα−1

)
(5)

where α = 3/2 for direct dense linear algebra, α = ω0/2 for
Strassen-like matrix multiplication, α = 2 for the O(N2) N-
body problem. By Lemma 3.8, for a D-dimensional torus,
the denominators of the contention bounds in Theorem 2.3
are 2D · t · Θ(t−1/D). Thus, the memory-dependent con-
tention bound is:

W tor
link(P,M,N) = max

t∈T
Ω

(
F

PMα−1
· t1−α+1/D

)
.

Note that t1−α+1/D is monotonic (in the given range), but
that the exponent can be positive, negative or zero. If the
exponent of t is negative or zero, then the expression is max-
imized at t = 1, reproducing the per-processor bound (up
to a constant factor). If the exponent is positive, namely
D ≤ D1 = 1/(α − 1), then the expression is maximized at
t = P/2,5 and we obtain a new and tighter bound:

W tor
link(P,M,N) = Ω

(
F

Pα−1/DMα−1

)
.

The per-processor memory-independent bound is

Wproc(P,N) = Ω

(
N

P 1/α

)
, (6)

and we can apply Theorem 2.3 to obtain:

W tor
link(P,N) = max

t∈T
Ω

(
N

P 1/α
· t1/α−1+1/D

)
.

Again, t1/α−1+1/D is monotonic and may be positive, neg-
ative or zero. If the exponent of t is negative or zero, then
the expression is maximized at t = 1, reproducing the per-
processor bound (up to a constant factor). If the exponent
is positive, namely D ≤ D2 = α/(α−1), then the expression
is maximized at t = P/2, and we obtain a new and tighter
bound:

W tor
link(P,N) = Ω

(
N

P 1−1/D

)
.

Programs that Reference Arrays.
According to Theorem 3.5, the memory-dependent per-

processor bandwidth lower bound for programs defined by
(2) is Wproc(P,M,N) = Ω(|Z|/(PMsHBL−1)). Similar to
the derivation for the previous problems (albeit with α =

5 Note that there may not be a subset of the vertices of GNet
that attains the small set expansion ht(GNet) of size exactly
P/2. However, the small set expansion of tori and meshes is
attained for small sets of size P/c for some constant c ≥ 2
(e.g. consider a sub-torus), hence the following contention
analysis holds up to a constant factor.



Memory Dependent Memory Independent

Wproc Ω
(

N3/2

PM1/2

)
Ω
(

N

P2/3

)
Direct
Linear W tor

link Ω
(

N3/2

P3/2−1/DM1/2

)
Ω
(

N

P1−1/D

)
Algebra

W f-t
link Ω

(
N3/2

w(MP )1/2

)
Ω
(
N
w

)
Wproc Ω

(
Nω0/2

PMω0/2−1

)
Ω
(

N

P2/ω0

)
Strassen

and W tor
link Ω

(
Nω0/2

Pω0/2−1/DMω0/2−1

)
Ω
(

N

P1−1/D

)
Strassen-like

W f-t
link Ω

(
Nω0/2

w(MP )ω0/2−1

)
Ω
(
N
w

)
Wproc Ω

(
N2

PM

)
Ω
(

N

P1/2

)
O(N2) N-body W tor

link Ω
(

N2

P2−1/DM

)
Ω
(

N

P1−1/D

)
W f-t

link Ω
(

N2

wMP

)
Ω
(
N
w

)
Wproc Ω

(
F

PMsHBL−1

)
Ω
((

F
P

)1/sHBL
)

Programs
Referencing W tor

link Ω
(

F

PsHBL−1/DMsHBL−1

)
Ω
(
F1/sHBL

P1−1/D

)
Arrays

W f-t
link Ω

(
F

w(MP )
sHBL−1

)
Ω
(
F1/sHBL

w

)
Wproc Ω

(
N log(N)
P log(M)

)
Ω
(

N log(N)
P log(N/P )

)
FFT/Sorting W tor

link Ω
(

N log(N)

P1−1/D(log(M)+log(P ))

)
Ω
(

N

P1−1/D

)
W f-t

link Ω
(

N logN
w log(MP )

)
Ω
(
N
w

)
Table 1: Per-processor bounds (Wproc) vs. the new contention bounds (Wlink) on a D-dimensional torus and
fat-trees with root capacity w for classical (dense) linear algebra, fast matrix multiplication, O(N2) N-body,
a general set of programs that reference arrays, and Fast Fourier Transform (FFT) and comparison sorting.

sHBL), the contention bound becomes

W tor
link(P,M,N) = max

1≤t≤P/2
Ω

(
|Z|

PMsHBL−1
· t1−sHBL+1/D

)
which is maximized at either t = 1 (the per-processor bound),
or t = P/2 (see Footnote 5). So, we obtain

W tor
link(P,M,N) = Ω

(
|Z|

P sHBL−1/DMsHBL−1

)
as a memory-dependent lower bound on contention. In a
similar manner, we can derive a memory-independent con-
tention lower bound from Equation (4). Observing that the
contention bound is maximized at either t = 1 or t = P/2,
we derive the memory-independent lower bound on con-
tention at t = P/2: W tor

link(P,N) = Ω(|Z|1/sHBL/(P 1−1/D)).

FFT/Sorting.
As with the previous algorithms, we apply Theorem 2.3

to the relevant per-processor bounds given in Section 3.1. As
we mentioned earlier, the memory-independent per-processor
bound always dominates the memory-dependent bound be-
cause we assume that M ≥ N/P .

The per-processor memory-independent bound is

Wproc(P,N) = Ω

(
N log(N)

P log(N/P )

)
,

and we can apply this bound to Theorem 2.3 to obtain:

W tor
link(P,N) = max

1≤t≤P/2
Ω

(
N log(N)

P log(Nt/P )t−1/D

)
=
N log(N)

P
max

1≤t≤P/2
Ω

(
t1/D

log(Nt/P )

)
. (7)

Again, when t = 1 we obtain the original per-processor
bound. Equation (7) has a stationary point at t = P2D/N ,
but via consideration of the second derivative with respect
to t, it can be shown that this point is a minima for all
relevant values of N , P , and D. Thus, we can derive a
memory-independent contention bound by setting t = P/2:

W tor
link(P,N) = Ω

(
N

P 1−1/D

)
.

4.2 Analysis and Interpretation for Tori

Which bound dominates?.
Our first observation is that, for these computations, the

memory-independent contention bound dominates the memory-
dependent contention bound for many algorithms. In the
cases of direct linear algebra, Strassen and Strassen-like, and
the O(N2) N-body problem we prove this by contradiction:



if the memory-dependent contention bound dominates, then
the problem is too large to be distributed across all the pro-
cessors’ local memories. Thus, if

F

Pα−1/DMα−1
>

N

P 1−1/D

then, as F = θ(Nα), we have Nα−1 > Pα−1Mα−1 which is
a contradiction as we assumed that N ≤ PM . For programs
that reference arrays, the proof requires a bit more of the
theoretical apparatus from [17] and is proven in Appendix A.
We note that in practice the value of constants may result in
the memory-dependent contention bound being dominant,
despite the asymptotic result.

For direct linear algebra, Strassen, Strassen-like andO(N2)
N -body algorithms, Figure 2 illustrates the relationships be-
tween the four types of bounds for a fixed computation, fixed
problem size N , and fixed local memory size M , varying the
number of processors P and the torus dimension D. See Ap-
pendix B for the derivation of the expressions used in Figure
2.

Depending on the dimension of the torus and number of
processors, the tightest bound may be one of the previously
known per-processor bounds or the memory-independent con-
tention bound. We first consider subdividing the vertical
axis of Figure 2, which corresponds to the torus dimension
D. Intuitively speaking, the smaller D is, the more likely
contention will dominate communication costs. For a given
algorithm, we let D = b1/(α − 1)c = bD1c is the maxi-
mum torus dimension such that the communication cost is
dominated by contention for all input and machine param-
eters. Similarly, we let D = dα/(α− 1)e= dD2e be the min-
imum torus dimension so that the communication cost is
not dominated by the contention (at least not by the bound
proved here). Note that for a combination of an algorithm
and a D-dimensional torus such that D1 < D < D2, either
the per-processor memory-dependent bound or the memory-
independent contention bound may dominate. See Table 2
for values of D1 and D2 for various matrix multiplication
algorithms. In particular, note that for the classical algo-
rithm, a 2D torus is not sufficient to avoid contention. While
Cannon’s algorithm [14] does not suffer from contention on
a 2D torus network, it is also not communication-optimal.
The more communication-efficient “3D” algorithms [10, 1,
33, 38], which utilize extra memory and have the ability
to strong scale perfectly, require a 3D torus to attain the
per-processor lower bounds. For matrix multiplication algo-
rithms with smaller exponents, the torus dimension require-
ments for remaining contention-free are even larger.

Range of perfect strong scaling.
We next consider subdividing the horizontal axis of Fig-

ure 2, which corresponds to the number of processors P .
Because Figure 2 shows a fixed problem size, increasing P
(moving to the right) corresponds to “strong scaling.” We
differentiate between whether or not the computation has
the possibility of strong scaling perfectly: that is, for a
fixed problem size, increasing the number of processors by a
constant factor reduces the communication costs (and run-
ning time) by the same constant factor. Note that of the
bounds, the memory-dependent per-processor bound (see
Equation (5) for example) exhibits this possibility of per-
fect strong scaling, as P appears in the denominator with
an exponent of 1. However, as P increases, one of the

Algorithm ω0 bD1c dD2e
Classical 3 2 3
Strassen (1969) [39] ≈ 2.81 2 4
Schönhage (1981) [36] ≈ 2.55 3 5
Strassen (1987) [40] ≈ 2.48 4 6
Le Gall (2014) [21] ≈ 2.3729 5 7

Table 2: Torus dimensions so that communication
cost is either always contention bound (D ≤ bD1c) or
never contention bound (D ≥ dD2e) for a selection
of matrix multiplication algorithms. The assertions
regarding the last three algorithms are under some
technical assumptions / conjectures, see [8].

memory-independent bounds eventually dominates and per-
fect strong scaling is no longer possible. See [5] for a discus-
sion of this behavior given only per-processor bounds.

For direct linear algebra, Strassen-like methods and the

O(N2) N-body problem, whenD ≥ D2 and P ≤ (F/NMα−1)
α
α−1 ,

then the memory-dependent per-processor bound dominates.
When this happens, we have a perfect strong scaling range.
For values of P beyond this range, the communication cost is
dominated by the memory-independent per-processor bound
(see [5] for further discussion). When D1 < D < D2, a
smaller strong-scaling ranges exists for P ≤ (F/NMα−1)D;
for values of P beyond this range, the communication cost
bound is dominated by contention. If D ≤ D1, then the
contention bounds always dominate and there is no strong-
scaling range. A similar analysis can demonstrate such a
region of perfect strong scaling in runtime for programs that
reference arrays.

Figure 3 shows this behavior for Strassen’s matrix multi-
plication (where α = (log2 7)/2) given the relevant torus di-
mensions. For Strassen, F/NMα−1 = (N/M)α−1 = Pα−1

min ,
where Pmin is the minimum number of processors required
to store the problem as F = O(nα). Note that the lower
subfigure in Figure 3 is a log-log scale, while the upper sub-
figure’s y-axis is linear. For a good enough network (D ≥ 4),

the perfect strong scaling range is Pmin < P < P
(log2 7)/2
min ≈

P 1.40
min . For a 3D torus, the perfect strong scaling range

shrinks to Pmin < P < P
3(log2 7−2)/2
min ≈ P 1.21

min . On 2D torus,
perfect strong scaling is impossible. These three regions of
network dimension (D ≥ D2, D ≤ D1 and D1 < D < D2)
are illustrated in Figure 2 as being the points of transition
between dominance of the various bounds. The upper por-
tion of Figure 3 demonstrates the regions of dominance for
the various network dimensions in the case of Strassen’s al-
gorithm.

4.3 Contention Lower Bounds for Fat-Trees
To obtain contention bounds for fat-trees, we use Theo-

rem 2.4. Thus, we must define a set of partitions {Pi} and
compute the corresponding aggregate bandwidths {Li}. We
consider partitioning the processors into complete subtrees
of sizes ranging from one processor to P/2 processors. In
this case, each subset of processors has one external link
from its root node to the next level in the tree. We let Pi
be a partition of the processors into 2i subsets, where each
subset of processors consists of a complete binary subtree of
P/2i processors. In this case, the minimum aggregate band-
width is given by the capacity of the link connected to the
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(

F
NMα−1

)α/(α−1)
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(

F
NMα−1

)D
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(

F
NMα−1

)1/(α−1)

1
α−1
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Figure 2: Relationship between the per-processor and contention communication lower bounds for direct
linear algebra, Strassen/Strassen-like and the O(N2) N-body problems.

Figure 3: Communication bounds for Strassen’s al-
gorithm on D-dimensional tori. The lower plot is
log-log, while the upper is linear on the y-axis. Hor-
izontal lines in the lower plot correspond to perfect
strong scaling.

root of the subtree:

Li = min

{
P

2i
,

w

22i/3

}
. (8)

Direct Linear Algebra, Strassen-like, and N-body.
We first consider direct linear algebra, Strassen-like ma-

trix multiplication, and O(N2) N-body algorithms with per-
processor lower bounds given by Equations (5) and (6) where
1 < α ≤ 2, depending on the algorithm. The aggregate
bandwidth of a complete subtree of size P/2i is given by
Equation (8), so by Theorem 2.4 our memory-dependent
contention bound is

W f-t
link(P,M,N) = max

1≤i≤logP
Ω

(
F

2i(MP/2i)α−1

min{P/2i,w/22i/3}

)

= max
1≤i≤logP

Ω

(
F · 2i(α−1)

PαMα−1
+
F · 2i(α−4/3)

w(MP )α−1

)
.

The first term is an increasing function of i because α >
1. The second term can be either increasing or decreasing
(it will be decreasing for a fast matrix multiplication algo-
rithm with exponent ω0 < 2.66). The maximum is therefore
achieved at either i = 1 or i = logP , so in order to obtain a
new lower bound we evaluate the expression at i = 1 to ob-
tain W f-t

link(P,M,N) = Ω
(
F/
(
w(MP )α−1

))
. Likewise, the

memory-independent contention bound is

W f-t
link(P,N) = max

1≤i≤logP
Ω

(
N/(2i)1/α

min{P/2i,w/22i/3}

)
= max

1≤i≤logP
Ω

(
N

P
· 2i(1−1/α)+

N

w
· 2i(2/3−1/α)

)
.

As before, the first term is always increasing but the second
term can be decreasing (this time for fast matrix multipli-
cation with exponent ω0 < 3), so the maximum could be
achieved at either endpoint. By plugging in i = 1 we obtain
a new bound of W f-t

link(P,N) = Ω(N/w).
As in the case of torus networks, of the two contention

bounds, the memory-independent one dominates the memory-
dependent one assuming N < MP , or that the data fits
across all processors’ memories. Relationships among the
two per-processor bounds and memory-independent contention
bound can be derived as in Section 4.2 for torus networks
(see Figures 2 and 3). We note that the memory-independent
contention bound is the tightest bound for Strassen-like ma-



trix multiplication when, for example, the fat-tree param-
eter w falls in the range P 2/3 ≤ w < P 2/ω0 = P 1/α and
P = Ω((N/M)ω0/2). That is, the bound w > P 1/α for a fat-
tree is analogous to the value D > D2 = dα/(α − 1)e for a
torus. We do not obtain any tighter bounds for direct linear
algebra or the N-body problem. This analysis suggests that
for those computations, a fat-tree with the cheapest choice
of w = P 2/3 is sufficient to avoid contention becoming the
communication bottleneck, though we point out that tighter
contention bounds may exist that contradict this conjecture.

Programs Referencing Arrays.
The analysis for programs referencing arrays follows that

of direct linear algebra, matrix-multiplication, and N -body
computations. Replacing F with |Z|, N with |Z|1/sHBL , and
α with sHBL, we obtain the contention boundsW f-t

link(P,M,N) =

Ω
(
|Z|/

(
w(MP )sHBL−1

))
andW f-t

link(P,N) = Ω(|Z|1/sHBL/w).
The dominance of the memory-independent bound follows
from Claim A.1, and we can also conclude that choosing
w > P 1/sHBL guarantees that these contention bounds do
not dominate the per-processor bounds.

FFT/Sorting.
To obtain a contention bound for the FFT on a fat-tree, we

combine (via Theorem 2.4) the per-processor bounds given
in Theorems 3.6 and 3.7 with the aggregate bandwidth de-
fined by Equation (8). This yields a memory-independent
contention bound of

W f-t
link(P,N) = max

1≤i≤logP
Ω

( N logN
2i log(N/2i)

min{P/2i,w/22i/3}

)

= max
1≤i≤logP

Ω

(
N logN

P log(N/2i)
+

N logN

w log(N/2i)2i/3

)
.

Again, this function is maximized at either endpoint, so to
obtain a new bound we choose i = 1, which evaluates to
W f-t

link(P,N) = Ω(N/w). The memory-dependent contention
bound can be derived similarly, evaluating to

W f-t
link(P,M,N) = Ω(N logN/(w log(MP ))).

As in the per-processor case, the memory-independent
contention bound dominates the memory-dependent con-
tention bound because N < MP . However, either of the
two memory-independent bounds may dominate; the con-
tention bound dominates when w < P (1 − (logP/ logN)).
That is, for sufficiently small N (N close to P ), contention
is not a bottleneck even for w = P 2/3; for sufficiently large
N (N = PC for some constant C), then contention will
bottleneck the computation unless w is chosen to be Ω(P ).

5. DISCUSSION AND FUTURE RESEARCH

Is it always about bisection bandwidth?.
For the algorithms discussed in this paper on torus and

fat-tree networks, the contention lower bound, when it dif-
fers from the per-processor bound, is maximized for t = P/2;
that is, the contention bound corresponds to a network bi-
section cut. Is this always the case, or do we expect to have
combinations of algorithms and machines where contention
bounds dominate, but the constricting cut is not balanced?
A contrived example could be when hs(GNet) is not a de-
creasing function of s; for example, two networks of proces-

sors, a large and a small one, where each of them is well
connected, but the connection between the large and the
small one is narrow (e.g., two racks with one router each,
connected with a narrow link one to the other, where the
racks contain different numbers of processors).

Applicability.
Immediate applications of the technique include combina-

tions of other networks (e.g. dragonfly networks [29]) and
other classes of algorithms for which per-processor lower
bounds are known. A network may have expansion suffi-
ciently large to preclude the use of our contention bound on
a given computation, yet the contention may still dominate
the communication cost. This calls for further study on how
well computations and networks match each other. Similar
questions have been addressed by Leiserson and others [9,
23, 31], and had a large impact on the design of supercom-
puter networks. In particular, a parallel computer that uses
a fat tree communication network can simulate any other
routing network, at the cost of at most polylogarithmic slow-
down.

Contention-Efficient Algorithms.
Some parallel algorithms attaining per-processor commu-

nication lower bounds have also been tuned to particular
topologies (cf. [38] for classical matrix multiplication on
3D torus). Algorithmic analysis of the contention costs will
likely show that the contention bounds for these and re-
lated computations are attainable. Many other algorithms
are communication optimal when all-to-all connectivity is
assumed, but their performance on other topologies has not
yet been studied. Are there algorithms that attain the com-
munication lower bounds for any realistic network graph,
either by automatic tuning or topology-oblivious tools?
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APPENDIX
A. DOMINANCE OF MEMORY-INDEPENDENT

CONTENTION BOUND

Claim A.1. Let Alg be an algorithm performing a com-
putation of the form given by (2) on P processors, each with
local memory of size M , and assume the input data is ini-
tially evenly distributed across processors. Then,

|Z|1/sHBL

M
≤

m∑
j=1

|φj(Z)|
M

.

As the minimum number of processors required to hold the
problem is the right-hand side of this inequality, we conclude
that the memory-independent contention bound dominates
the memory-dependent contention bound as the two bounds
are equivalent when P = |Z|1/sHBL/M .

Proof. To begin a proof, the HBL bound discussed in
Christ et al. [17], states (with certain assumptions) that

|Z| ≤
m∏
j=1

|φj(Z)|sj .

To detail an argument from Section 2 of [17], we present
several greater upper bounds on |Z| that will allow us to
demonstrate the desired result:

|Z| ≤
m∏
j=1

|φj(Z)|sj ≤
m∏
j=1

(
m

max
j=1
|φj(Z)|

)sj

=

(
m

max
j=1
|φj(Z)|

)∑m
j=1 sj

=

(
m

max
j=1
|φj(Z)|

)sHBL

As maxmj=1 xj ≤
∑m
j=1 xj if all xj ≥ 0,

|Z| ≤
(

m
max
j=1
|φj(Z)|

)sHBL

≤

(
m∑
j=1

|φj(Z)|

)sHBL

which proves the desired inequality if we take sHBLth root
of both sides and divide by M .

B. DERIVATION OF EXPRESSIONS IN
FIGURE 2

• Equivalence point for per-processor bounds

We set the per-processor bounds equal to each other,
and solve for P :

F

PMα−1
= Θ

(
N

P 1/α

)

P = Θ

(
F

NMα−1

)α/(α−1)

• Equivalence point for contention bounds

We set the contention bounds equal to each other, and
solve for P :

F

Pα−1/DMα−1
= Θ

(
N

P 1−1/D

)

P = Θ

(
F

NMα−1

)1/(α−1)

• Equivalence point for the memory-dependent per-
processor and memory-independent contention
bounds

We set the memory-dependent per-processor and memory-
independent contention bounds equal to each other,
and solve for P as a function of D:

F

PMα−1
= Θ

(
N

P 1−1/D

)

P = Θ

(
F

NMα−1

)D


