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3. Photonic-phononic emitter-receiver




A phonon is an elementary vibrational mog
with the wave-particle duality. Raman

scattering
-
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Photon-phonon
interaction

Brillouin
scattering

Optically driven Opto-
mechanical vibration mechanics




2 Optical Force 1: Radiation Pressure
Radiation Pressure.
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P. T. Rakich, et al., Optics Letters 36,217 (2011).
P. T. Rakich, et al., Physical Review X 2, 011008 (2012).
W. Qiu, et al., Optics Express 21, 31402 (2013).




&J Optical Force 2: Electrostrictive Force

Electrostriction:

Dynamic response of media to light.

1. Force distributed within volume.

2. Directed outward or inward.

- Sign of p;,, constants

3. Depends on material.

- Increases as n4.

- proportional to p;;, constants

P. T. Rakich, et al., Optics Letters 36,217 (2011).
P. T. Rakich, et al., Physical Review X 2, 011008 (2012).
W. Qiu, et al., Optics Express 21, 31402 (2013).
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SBS: Stimulated Brillouin scattering




Light scattering from acoustic waves (phonons)
4 Nonlinear System )
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1. Coupling between photons and acoustic phonons.

2. Absorbing a pump photon (wp).

3. Creating a Stokes photon (ws) and a GHz frequency phonon (Q2).

Applications: narrow band amplifier, sensor, SBS laser,

slow/fast light, etc.

Phase matching conditions ?

Kabakova, et al., OPN, Feb. "2015




SBS Phase matching condition - 1

Backward SBS

« Light is scattered backward. P ———->
VUsound
- Strong effect in optical fibers. kp
%




SBS Phase matching condition - 2

Forward SBS Strong forward SBS

Russell

« Co-propagation

« Structure dependent resonant frequency

Kang, et al., Nature
Phys. 5, 276 (2009)

Stokes forward-SBS
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2\4 Timeline for SBS

Phonon Dissipation
L
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=2 Creation of SBS in novel structure
e

Si;N, membrane

Brillouin Active Membrane
(BAM) waveguide -

W  Airslots

Si;N, membrane

Si waveguide

Si waveguide

— Air slots

* Reducing phonon dissipation
Each slot acts as a
wideband phonon mirror. *

* Phononic waveguide (SiN between slots)

Photonic waveguide (silicon)

« Strong photon-phonon confinement
A Light

Shin, et al., Nature Comm. 4, 1944 (2013).




&) Tailorable SBS nonlinearity

By varying phononic waveguide dimension.
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« As waveguide dimension increases, more guided modes are allowable.
« By lithographically varying waveguide dimension, the phononic

S
resonant frequency is tuned by 13 GHz 13

Unprecedented tailorability of nonlinearities
| Nature Comm. 4, 1944 (2013). .




Elastic wave displacement E
E-field distributi |
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* Photons are confined near the waveguide.
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Elastic wave displacement

« Phonons are created in the optical waveguide.

* Phonons exists all over the membrane.

Change at distinct place from pump light.

Delocalized photon-phonon interaction.

Nat. Nanotech. 9, 913 (2014)
Nat. Nanotech. N&V, 9, 878 (2014)
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5 Traveling-wave photonic-phononic emitter-receiver (PPER)

Optical signals =» Phononic signals =» Phononic Filter = Optical signals |

« Dual channel BAM waveguides

 Selective information transduction
between distinct waveguides

Optical input signals emit phonons.

Phonons with certain frequency
range can be transferred to the
receiver channel.

Phonons impart a phase shift on
the probe field.
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tJ Lossy Phononic Mirror

Phononic mirrors with

oartial transmittance. » Periodic pattern in 2D (square lattice)

Phononic Bragg reflection Impedance mismatching
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L) How does this PPER system work?
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Phonon
mediated
energy
transfer
(i.e. filter
response)
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L2 Theoretical study of PPER system
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::) Filters with the second order response function
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9 Traveling-wave photon-phonon emitter-receiver
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Photonic-phononic emitter-receiver (PPER)
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Laser bandwidth, 5 MHz

Wavelength 1535 nm & 1546 nm




::) Pump power dependence

Peak signal conversion efficiency P &P,

Pb
Created Stokes power s - - -

Transmitted Probe power Pb

P, &P2
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Scalable conversion efficiency
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::] Engineering RF response of a PPER pair
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L) Comparison with all-optical photonic filters
o

RF Photonic Filters by All-optical methods ' l

Asymmetric MZI Bragg grating
Whispering gallery mode resonator Ring resonator
Resonator based optical filters
Signalin Throughput Requires high optical Q (~108).
Low power handling.
Requires frequency locking.
Drop Add First order response.
6" Order Filter — . —
T 20f i Higher order response.
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Difficult to fabricate coupled ring resonators. | 55
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IEEE Phot. Tech. Lett. 16, 2263 (2004)



PPER as an RF photonic filter
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