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2. Brilloun Active Membrane

1. Photon-phonon interaction & SBS

3. Photonic-phononic emitter-receiver
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Photon-phonon 
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Raman 
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Opto-
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Optically driven 

mechanical vibration

A phonon is an elementary vibrational mode in QM 
with the wave-particle duality.



Optical Force 1: Radiation Pressure

P. T. Rakich, et al., Optics Letters 36, 217 (2011).
P. T. Rakich, et al., Physical Review X 2, 011008 (2012).
W. Qiu, et al., Optics Express 21, 31402 (2013).

1. Large at nanoscales.

2. Force localized to boundary.

3. Entirely depends on 

geometry.
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Light within a cavity:

p

p

p

pLight within a waveguide:

� = 	ℏ� = ℎ�/�

Radiation Pressure.

�

�′
Momentum
change Radiation Pressure



Optical Force 2: Electrostrictive Force

P. T. Rakich, et al., Optics Letters 36, 217 (2011).
P. T. Rakich, et al., Physical Review X 2, 011008 (2012).
W. Qiu, et al., Optics Express 21, 31402 (2013).
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Electrostriction:

Dynamic response of media to light.

Geometry 
& Ex-field

Force Density Force Direction1. Force distributed within volume.

2. Directed outward or inward.

- Sign of pijkl constants

3. Depends on material.

- Increases as n4.

- proportional to pijkl constants

 2RPES ff 

Net SBS effect

SBS: Stimulated Brillouin scattering
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Nonlinear System
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Stimulated Brillouin Scattering
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Phase matching conditions ?

ω�

Ω

ω�

1. Coupling between photons and acoustic phonons.

2. Absorbing a pump photon (     ).

3. Creating a Stokes photon (     ) and a GHz frequency phonon ().

ω�

ω�

1. Coupling between photons and acoustic phonons.

Kabakova, et al., OPN, Feb. 2015 

Applications: narrow band amplifier, sensor, SBS laser, 
slow/fast light, etc.

Light scattering from acoustic waves (phonons)
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SBS Phase matching condition - 1

• Strong effect in optical fibers.
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Backward SBS

• Light is scattered backward.

How does backward-SBS work?

� ∗ Ω/(2�) = ��������� ∗ Ω/(2�) = �������� = ������

sP From dynamic material 
response.

Electrostriction:

pP

sω

Pump 
Wave

Stokes 
Wave

pω
pk

sP

sk

sp ωω   0ωω  sp

�

ω�

Ω

ω�

������
sP

pP



9

2
/1

9
/2

0
1

5

Kang, et al., Nature 
Phys. 5, 276 (2009)

Strong forward SBS

Russell
Forward SBS

• Co-propagation

• Structure dependent resonant frequency

How does forward-SBS work?

pP

s

Pump Wave

Stokes Wave

ppk

sP sk
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��

SBS Phase matching condition - 2



Engineered 
structure



Dainese, Nat. Phys. (2006)

SBS in Micro-Structured Fibers

Trend: Brillouin interactions become stronger at smaller length-scales  

SBS in Bulk X-tal

Chiao, PRL (1964) Ippen, APL (1972)

SBS in Optical Fibers
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Pant, OE (2011)

On-chip SBS

Micro-structure

Trend: Photon-phonon waveguides at nanoscale can enhance SBS effects

Timeline for SBS

Nano-structure 
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Brillouin Laser in ring resonator

Lee, Nat. Photonics (2012)

SBS in Silicon waveguide

?

Si

Silicon Waveguide

SiO2

Phonon Dissipation



2. Brilloun Active Membrane waveguide

1. Photon-phonon interaction & SBS

3. Photonic-phononic emitter-receiver
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Outline



Light

Each slot acts as a 
wideband phonon mirror.

Si3N4 membrane

Air slots

Creation of SBS in novel structure

Brillouin Active Membrane 
(BAM) waveguide
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Si waveguide

Shin, et al., Nature Comm. 4, 1944 (2013).

• Reducing phonon dissipation

• Photonic waveguide (silicon)

• Phononic waveguide (SiN between slots)

• Strong photon-phonon confinement

Air slots

Si3N4 membrane

Si waveguide



w

13 GHz

w = 3.8 um

w = 2.8 um

w = 1.8 um

w = 0.8 um

Tailorable SBS nonlinearity
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• By lithographically varying waveguide dimension, the phononic 
resonant frequency is tuned by 13 GHz

• Unprecedented tailorability of nonlinearities

• As waveguide dimension increases, more guided modes are allowable.

By varying phononic waveguide dimension.

Nature Comm. 4, 1944 (2013).



Elastic wave displacement
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• Photons are confined near the waveguide.

Delocalized photon-phonon interaction.

a = 194 nm
t = 124 nm

a

b
b = 313 nm

Elastic wave displacement

E-field distribution

Nat. Nanotech. 9, 913 (2014)
Nat. Nanotech. N&V, 9, 878 (2014)

 Photon-phonon emitter-receiver

• Phonons are created in the optical waveguide.

• Phonons exists all over the membrane.

• Change at distinct place from pump light.



2. Brilloun Active Membrane

1. Photon-phonon interaction & SBS

3. Photonic-phononic emitter-receiver
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Traveling-wave photonic-phononic emitter-receiver (PPER)

Optical signals  Phononic signals  Phononic Filter  Optical signals

• Dual channel BAM waveguides

• Selective information transduction 
between distinct waveguides

• Optical input signals emit phonons.

• Phonons with certain frequency 
range can be transferred to the 
receiver channel.

• Phonons impart a phase shift on 
the probe field.
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Lossy Phononic Mirror

Phononic mirrors with 

partial transmittance.
• Periodic pattern in 2D (square lattice)

a = 1 m
r  = 0.385 m

r
a

Impedance mismatchingPhononic Bragg reflection
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How does this PPER system work?

(a)

(b)
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Theoretical study of PPER system

Coupled mode theory
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Nonlinear susceptibility 
(or gain coefficient)



3rd order 
filter
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Filters with the second order response function

Signal 

Sharp drop-off (high selectivity)

Second order response filter

v

Ideal bandpass 
filter

Single Lorentzian 
shape

2nd order 
filter
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Traveling-wave photon-phonon emitter-receiver

Photonic-phononic emitter-receiver (PPER)



22

RF response of a PPER pair

Center frequency, fo = 2.93 GHz

3-dB bandpass bandwidth, B = 3.15 MHz

Stopband attenuation, A > 70 dB

Rejection bandwidth, BR = 1.9 GHZ

High power handling, 36 mW 

(110 mW for 3 dB/cm loss)

Laser bandwidth, 5 MHz

Wavelength 1535 nm & 1546 nm
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Pump power dependence

• Peak signal conversion efficiency

=
��
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Created Stokes power
Transmitted Probe power
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Engineering RF response of a PPER pair

• Desired center frequency 

• Bandwidth varies with the number 
of outer PnC hole layers by 
changing phonon lifetime.

• Peak separation varies with the 
number of PnC hole layers 
between two waveguides by 
changing phononic coupling ratio.

W W

• By changing the phononic 
waveguide dimension, W.



Comparison with all-optical photonic filters
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Higher order response.

Difficult to fabricate coupled ring resonators.

Low power handling & frequency locking.

IEEE Phot. Tech. Lett. 16, 2263 (2004)

Ring resonatorWhispering gallery mode resonator

Bragg gratingAsymmetric MZI

RF Photonic Filters by All-optical methods

• Resonator based optical filters

Requires high optical Q (~108).

Low power handling.

Requires frequency locking.

First order response.

Signal in

Drop Add

Throughput
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• Wavelength (and bandwidth) insensitivity

• High power handling

• Independent control of photonic and phononic modes

• Narrow bandwidth (high selectivity) with high Q factor

• Multiport system with 2nd order response function

• High dynamic range

• Compatible with CMOS technologies

PPER as an RF photonic filter

W W

b bN Nc N

H. Shin, J. Cox, R. Jarecki, A. Starbuck, Z. Wang, and P.T. Rakich, “Control of coherent information via on chip 
photonic-phononic emitter-receivers,” Accepted to Nature Communications (ArXiv:1409.0580 [physics.optics])
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