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Talk	
  outline	
  

§  MoCvaCon	
  for	
  tomography	
  
§  Problems	
  with	
  quantum	
  state	
  and	
  quantum	
  process	
  

tomography.	
  
§  Gate	
  set	
  tomography	
  (GST)	
  framework	
  

§  Linear	
  gate	
  set	
  tomography	
  
§  Least-­‐squares	
  gate	
  set	
  tomography	
  

§  How	
  to	
  characterize	
  the	
  “accuracy”	
  of	
  GST	
  
§  Simulated	
  characterizaCon	
  
§  Experimental	
  characterizaCon	
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  true	
  QIP	
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2
, Y⇡

2
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Gest

ij

= Gexp

ij

+ "
ij

Goal	
  of	
  tomography:	
  
Make	
  εij	
  as	
  small	
  as	
  possible	
  as	
  

cheaply	
  as	
  possible.	
  
	
  



The	
  problem	
  with	
  tomography	
  

CriCcal	
  problem:	
  relies	
  on	
  precalibrated	
  reference	
  frames	
  that	
  
don’t	
  really	
  exist	
  in	
  hardware!	
  

Goal:	
  	
  CalibraCon-­‐free	
  tomography.	
  



“Black	
  box	
  picture”	
  of	
  quantum	
  informaCon	
  processor	
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“Black	
  box	
  picture”	
  of	
  quantum	
  informaCon	
  processor	
  

prepare	
  

do	
  experiments	
  

measure	
  

outcome	
  

Markovian	
  model:	
  
d
dt = 0



fm ⇡ hE|Gi1 · · ·Gil |⇢i

Gate	
  Set	
  Tomography	
  Framework	
  

G1

G2 G3

G1 G1

G2 G1

G3 G1 G1

· · ·
�?

�?

�?

�?

�?
1.  Perform	
  collecCon	
  of	
  

experiments.	
  
	
  

	
  	
  

2.  Compute:	
  

...

Gest = F (f1 · · · fm)

Many	
  choices	
  for	
  gate	
  strings,	
  esCmator	
  F.	
  

f1 ⇡ hE|G1|⇢i



Gate	
  Set	
  Tomography	
  

§ Simplest	
  algorithm:	
  	
  
Linear	
  Inversion	
  
(LGST)	
  

§ “Process	
  
tomography	
  
without	
  calibraCon”.	
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Linear	
  Inversion	
  
(LGST)	
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tomography	
  
without	
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G2⇢ GiG3G2

⇢ Gi

⇢ GiG1

G3⇢ GiG2

G3G2⇢ GiG1 G3G2

· · ·



Linear	
  gate	
  set	
  tomography	
  
§  Use	
  unknown	
  gates	
  as	
  
uncalibrated	
  “fiducials”.	
  

§  Run	
  “process	
  tomography”	
  
on	
  each	
  gate,	
  and	
  on	
  empty	
  
gate	
  string.	
  

§  Linear	
  algebra	
  à	
  gate	
  set.	
  
§  arXiv:1310.4492	
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G2⇢ GiG3G2

⇢ Gi

⇢ GiG1

G3⇢ GiG2

G3G2⇢ GiG1 G3G2

· · ·

G2⇢ GiG3G2

⇢ Gi

⇢ GiG1

G3⇢ GiG2

G3G2⇢ GiG1 G3G2

· · ·

Gi

G
x

Gy

{}

F( (= Gest



How	
  does	
  LGST	
  perform?	
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Error =

vuut 1

k(dimG)

2

kX

i=1

⇣
||G(k)

est

�G(k)
exp

||
F

⌘2

“RMS	
  Frobenius	
  distance”:	
  
Gest

ij

= Gexp

ij

+ "
ij

Error = h"ijiRMS
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Works nicely; limited by

1p
N

LGST	
  on	
  simulated	
  data	
  



LGST	
  review	
  

1.  N	
  increases:	
  εà0	
  
2.  No	
  self-­‐calibraCon	
  problem	
  
3.  Experimentally	
  demonstrated	
  
4.  ε	
  decreases	
  slowly.	
  	
  (1/Sqrt(N))	
  

	
   	
  Can	
  we	
  do	
  beger?	
  

20	
  



21	
  

Want to be sensitive to small errors.!

Can we beat 1p
N
?

G = e�i✓�z

✓ << 1



Push         : 
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✓

h�zi ⇡ 1� ✓2

2

Can we beat 1p
N
?

Need	
  Ο(θ-­‐2)	
  
measurements	
  to	
  
disCnguish	
  from	
  I.	
  



	
  	
  	
  Push	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  L	
  Cmes:	
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h�zi = cosL✓

Can	
  amplify	
  coherent	
  errors!	
  

Can we beat 1p
N
?

h�zi ⌧ 1� ✓2

2
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Can we beat 1p
N
?

Can measure with
accuracy ± ✓ :

L = O(✓�1), N = O(1)

L = O(1), N = O(✓�2)

OR

If we don’t know ✓,
proceed iteratively.

(L = 1, 2, 4, · · · , 512)
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Can we beat 1p
N
?

Can	
  each	
  experiment	
  just	
  be	
  a	
  
different	
  gate	
  repeated	
  many	
  
Cmes?	
  
	
  	
  	
  	
  e.g.	
  Gx

2,	
  Gx
4,...,	
  Gy

2,	
  Gy
4...	
  

	
  
Not	
  sufficient.	
  	
  Need	
  to	
  amplify	
  
other	
  errors	
  as	
  well.	
  
	
  	
  	
  	
  e.g.	
  Tilt	
  error	
  
	
  
Also	
  want	
  sequences	
  like	
  
	
  	
  	
  GxGy,	
  (GxGy)2,	
  (GxGy)4...	
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Call	
  these	
  short	
  sequences	
  germs.	
  	
  Germs	
  chosen	
  to	
  
amplify	
  errors.	
  	
  (E.g.	
  Clt,	
  over-­‐rotaCon,	
  dephasing.)	
  
	
  
Do	
  LGST	
  on	
  successively	
  longer	
  “powers”.	
  
	
  
We	
  call	
  this	
  extended	
  linear	
  gate	
  set	
  tomography	
  (eLGST).	
  

Can we beat 1p
N
?



§  eLGST	
  can	
  give	
  us	
  a	
  rich	
  
data	
  set,	
  but	
  how	
  to	
  
best	
  analyze	
  it?	
  

§  Maximum	
  likelihood?	
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Can we beat 1p
N
?

1.  Use	
  LGST	
  to	
  esCmate,	
  e.g.,	
  Gx,	
  Gy.	
  
2.  Use	
  LGST	
  to	
  esCmate	
  sequences	
  of	
  length	
  2:	
  e.g.	
  

Gx
2,	
  Gy

2,	
  GxGy.	
  
3.  Refine	
  Gx,	
  Gy	
  esCmates	
  to	
  be	
  consistent	
  with	
  step	
  2.	
  
4.  Repeat	
  steps	
  2,	
  3	
  with	
  sequences	
  of	
  length	
  4,	
  8,	
  etc.	
  



Does	
  esCmate	
  fit	
  data?	
  
§  Can	
  use	
  this	
  eLGST	
  procedure	
  to	
  esCmate	
  gates;	
  works,	
  but	
  

we	
  can	
  do	
  beger.	
  
§  How	
  do	
  we	
  measure	
  success?	
  	
  χ2	
  staCsCc-­‐	
  “goodness	
  of	
  fit”.	
  

§  Minimize	
  total	
  χ2	
  at	
  each	
  step.	
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Sequence j =

�2
j = Nj

(pj � fj)2

pj(1� pj)

L = 1

Gi

L = 2

· · ·

L = 512



Algorithm	
  summary	
  

1.  Start	
  with	
  experimental	
  gate	
  set,	
  eg.	
  {Gi,	
  Gx,	
  Gy}	
  	
  
2.  From	
  knowledge	
  of	
  target	
  gate	
  set,	
  determine	
  set	
  of	
  germs	
  

e.g.	
  {Gx,	
  Gy,	
  Gi,	
  GxGy,	
  GxGyGi,	
  GxGiGy,	
  GxGiGi,	
  GyGiGi,	
  
GxGxGiGy,	
  GxGyGyGi,	
  GxGxGyGxGyGy}	
  

3.  For	
  varying	
  maximum	
  sequence	
  length	
  (L=1,2,…,512),	
  
perform	
  “process	
  tomography”	
  experiments	
  on	
  each	
  
“extended	
  germ”	
  

4.  Using	
  least-­‐squares,	
  iteraCvely	
  find	
  gate	
  set	
  esCmates	
  that	
  	
  
minimize	
  χ2.	
  

5.  Compare	
  to	
  target	
  gate	
  set.	
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How	
  do	
  we	
  measure	
  success?	
  

1.  Can	
  we	
  find	
  “good	
  esCmate”	
  
with	
  high	
  probability?	
  

	
  
2.  Can	
  we	
  find	
  accurate	
  esCmate	
  

cheaply?	
  	
  (Can	
  we	
  beat	
  N-­‐0.5?)	
  
	
  
3.  Can	
  we	
  find	
  esCmate	
  that	
  fits	
  

the	
  data	
  well	
  (small	
  χ2)?	
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Success	
  probability	
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log2 L log2 L

l
o
g

2
N

l
o
g

2
N

Sample N times : hE|Gk(GiGj)
LGm|⇢i
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log2 L log2 L

l
o
g

2
N

l
o
g

2
N

SUCCESS!	
  
Sample N times : hE|Gk(GiGj)

LGm|⇢i
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Can we beat 1p
N
?

Error scales as ⇠ 1
L !
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Can we beat 1p
N
?

N�1



N�2
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Can we beat 1p
N
?



N�3.9
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Can we beat 1p
N
?

Scaling at least as good as N�3.9
!

Maybe as good as e�N
?



Experimental	
  implementaCon?	
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GST	
   {|⇢
est

i, hE
est

|, Gi

est

, Gx

est

, Gy

est

}

gatesets: the fidelity, the trace distance, and the Frobenius-norm di↵erence. These quantities are listed in

table 7. The fidelity between gates Ga and Gb is given by F = Tr

✓qp
(A)B

p
(A)

◆2

, where A and B are the

Choi process matrices corresponding to gate matrices Ga and Gb respectively. Similarly, the trace distance
between gates is given by Tr(|A � B|). The Frobenius-norm di↵erence acts directly on the gate “action”
matrices, and is the standard Frobenius norm of the di↵erence Ga � Gb. The fidelity indicates how many

measurements would need to be performed in order to distinguish the gates with high probability, whereas
the trace distance indicates the probability of correctly distinguishing the gates given a single measurement.
Robin to expound upon this more. The Frobenius distance lacks a probabilistic interpretation, but
provides an intuitive measure of the average element-wise di↵erence between the gate matrices.

While the metrics displayed in table 7 capture the di↵erence between two gates in a single number, one
would often like to know more details as to why the two gates di↵er. For example, the ability to distinguish
between a gate that depolarizes and one that over-rotates could be very valuable to the experimentalist
trying to improve the gates’ perfomance. In table 8 the gates of the estimated gateset are decomposed into
rotation and depolarization, when possible, which can be compared with a the similar decomposition of the
target gates (cf. table 2).

Additionally, finding the closest unitary gate to each estimated gate, and then decomposing that unitary
gate, can lend further insight into the action of the estimated gates. This information is summarized in table
9. Since in many circumstances the choice of precisely which unitary gates are targeted is less important
than obtaining a set of mutually independent unitaries, the di↵erence between an estimated gate and its

Gate Fidelity Trace Dist. Frobenius Dist. Error Generator

Gi 0.996539 0.053209 0.020453

0 0 0 0
0 0 �0.003 0.001
0 0.009 �0.01 �0.036
0 0 0.037 �0.003

Gx 0.999738 0.009888 0.004233

0 0 0.006 0.003
0 0 �0.001 �0.001

�0.002 0.001 0 �0.004
�0.005 0 �0.001 0

Gy 0.999936 0.006494 0.002594

0 �0.002 0 �0.001
�0.001 0 �0.001 0.004

0 �0.002 0 �0.001
�0.002 �0.002 �0.003 0

Table 7: Metrics between the estimated gatset and the target gateset

Gate Eigenvalues Fixed pt Rotn. axis Angle Diag. decay O↵-diag. decay

Gi

0.994ei0.0

0.994e�i0.0

1.0
1.0

1.0
0

0.003
0.001

0
0.974
0.029
0.223

0.011693⇡ 0 0.006247

Gx

1.0ei1.6

1.0e�i1.6

1.0
1.0

�0.98
0.198
�0.004
�0.001

�0.144
�0.99

0
�0.001

0.500627⇡ 0 0

Gy

1.0ei1.6

1.0e�i1.6

1.0
1.0

1.0
0

�0.705
0

�0.26
0.001
�0.966
�0.002

0.500867⇡ 0 0

Table 8: Decomposition of the estimated gateset based on action matrix eigenvalues.

4

Should	
  you	
  believe	
  us?	
  
	
  
If	
  χ2	
  is	
  small,	
  then	
  yes!	
  



Simulated	
  χ2	
  

41	
  



Experimental	
  χ2	
  

42	
  

plots” can aid in identifying specific sources and types of non-Markovian noise which may be to blame if the
GST algorithms are unable to produce a “good” estimate. Similar pixel plots for the intermediate estimates
whose total �2 is listed in table 11 can be found in appendix A.

In addition to the �2 values, we compare with some more stu↵, to be explained later.

Figure 1: Box plot of best gateset �2 values.

7
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7

Experim
ental	
  

Good	
  fit	
  at	
  small	
  L,	
  not	
  at	
  large	
  L.	
  
	
  

d
dt

6= 0 System	
  is	
  non-­‐Markovian!	
  



Take	
  out	
  Gi	
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plots” can aid in identifying specific sources and types of non-Markovian noise which may be to blame if the
GST algorithms are unable to produce a “good” estimate. Similar pixel plots for the intermediate estimates
whose total �2 is listed in table 11 can be found in appendix A.

In addition to the �2 values, we compare with some more stu↵, to be explained later.

Figure 1: Box plot of best gateset �2 values.

Figure 2: Box plot of best gateset �2 values with box order inverted. Each large box now corresponds to
sandwiching each base string with a given pair of fiducial strings.

7

gatesets: the fidelity, the trace distance, and the Frobenius-norm di↵erence. These quantities are listed in

table 7. The fidelity between gates Ga and Gb is given by F = Tr

✓qp
(A)B

p
(A)

◆2

, where A and B are the

Choi process matrices corresponding to gate matrices Ga and Gb respectively. Similarly, the trace distance
between gates is given by Tr(|A � B|). The Frobenius-norm di↵erence acts directly on the gate “action”
matrices, and is the standard Frobenius norm of the di↵erence Ga � Gb. The fidelity indicates how many

measurements would need to be performed in order to distinguish the gates with high probability, whereas
the trace distance indicates the probability of correctly distinguishing the gates given a single measurement.
Robin to expound upon this more. The Frobenius distance lacks a probabilistic interpretation, but
provides an intuitive measure of the average element-wise di↵erence between the gate matrices.

While the metrics displayed in table 7 capture the di↵erence between two gates in a single number, one
would often like to know more details as to why the two gates di↵er. For example, the ability to distinguish
between a gate that depolarizes and one that over-rotates could be very valuable to the experimentalist
trying to improve the gates’ perfomance. In table 8 the gates of the estimated gateset are decomposed into
rotation and depolarization, when possible, which can be compared with a the similar decomposition of the
target gates (cf. table 2).

Additionally, finding the closest unitary gate to each estimated gate, and then decomposing that unitary
gate, can lend further insight into the action of the estimated gates. This information is summarized in table
9. Since in many circumstances the choice of precisely which unitary gates are targeted is less important
than obtaining a set of mutually independent unitaries, the di↵erence between an estimated gate and its

Gate Fidelity Trace Dist. Frobenius Dist. Error Generator

Gi 0.988231 0.064058 0.025256

0 0 0 0
0 �0.012 �0.019 0.032
0 0.038 �0.014 0.009
0 �0.023 0.004 �0.02

Gx 0.999952 0.005906 0.002689

0 0 0.003 0
0 0 0 0.001

0.002 �0.001 0 �0.004
�0.002 0.001 0.001 �0.001

Gy 0.999955 0.005571 0.002222

0 �0.003 0 �0.001
�0.001 0 �0.001 0.002

0 0.001 0 0.001
�0.003 �0.003 �0.001 0

Table 7: Metrics between the estimated gatset and the target gateset

Gate Eigenvalues Fixed pt Rotn. axis Angle Diag. decay O↵-diag. decay

Gi

0.983ei0.0

0.983e�i0.0

1.0
0.989

�1.0
�0.013
�0.014
�0.007

�0.002
�0.039
0.86
0.508

0.012014⇡ 0.011013 0.017331

Gx

1.0ei1.6

1.0e�i1.6

1.0
1.0

1.0
0
0

0.002

0
�1.0
0

0.001

0.500809⇡ 0 0

Gy

1.0ei1.6

1.0e�i1.6

1.0
1.0

1.0
0

�11.471
�0.005

�0.109
0

0.994
0

0.500817⇡ 0 0

Table 8: Decomposition of the estimated gateset based on action matrix eigenvalues.

4

We	
  isolated	
  non-­‐
Markovian	
  

behavior;	
  found	
  
Gx,	
  Gy	
  nearly	
  
Markovian!	
  



Are	
  we	
  successful?	
  

1.  Can	
  we	
  find	
  “good	
  esCmate”	
  
with	
  high	
  probability?	
  

	
  
	
  
2.  Can	
  we	
  find	
  accurate	
  esCmate	
  

cheaply?	
  	
  (Can	
  we	
  beat	
  N-­‐0.5?)	
  
	
  
	
  
3.  Can	
  we	
  find	
  esCmate	
  that	
  fits	
  

the	
  data	
  well	
  (small	
  χ2)?	
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(When	
  system	
  
is	
  Markovian!)	
  

> 99%

< N�3.9



Conclusions	
  
§  Can	
  use	
  GST	
  to	
  get	
  reliable,	
  highly	
  accurate	
  esCmates	
  which	
  match	
  

experimental	
  data;	
  far	
  cheaper	
  than	
  standard	
  tomography.	
  

§  Can	
  use	
  GST	
  to	
  diagnose	
  when	
  non-­‐Markovian	
  noise	
  becomes	
  an	
  
issue.	
  

§  Can	
  even	
  someCmes	
  use	
  GST	
  to	
  figure	
  out	
  where	
  non-­‐Markovianity	
  
is	
  coming	
  from!	
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Future	
  direcCons	
  	
  

§  MulC-­‐qubit	
  systems	
  
§  Randomized	
  benchmarking	
  predicCons	
  
§  Non-­‐Markovian	
  analysis	
  
§  Driu	
  control.	
  

§  More	
  experimental	
  implenetaBon	
  
	
  Contact	
  me!	
  
	
  kmrudin@sandia.gov	
  

	
  
§  Thank	
  you!	
  

§  Gnome	
  image	
  courtesy	
  of	
  hgp://sweetclipart.com/friendly-­‐garden-­‐gnome-­‐1464	
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