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Talk outline )

= Motivation for tomography
" Problems with quantum state and quantum process
tomography.

= Gate set tomography (GST) framework
= Linear gate set tomography
= Least-squares gate set tomography

= How to characterize the “accuracy” of GST
= Simulated characterization
= Experimental characterization
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est exrp
Gij = Gyt

Goal of tomography:

Make €; as small as possible as
cheaply as possible.



The problem with tomography
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Critical problem: relies on precalibrated reference frames that

don’t really exist in hardware!

Goal: Calibration-free tomography.
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Markovian model:
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Gate Set Tomography Framework

1. Perform collection of
experiments.

Ji~ <E\G1\p>

fm = (E|Gi, -~ Gy |p)
2. Compute:
gest — F(fl fm)

Many choices for gate strings, estimator F.
- ]




Gate Set Tomography ) £z

= Simplest algorithm:
Linear Inversion
(LGST)

= “Process

Process i
Tomography\ *

tOmography Experiments
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without calibration”.
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Gate Set Tomography )

= Simplest algorithm:
Linear Inversion
(LGST)

=" “Process

tomography
without calibration”.
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Linear gate set tomography

= Use unknown gates as
uncalibrated “fiducials”.

" Run “process tomography”
on each gate, and on empty
gate string.

%

Val K — gest

Gy

= Linear algebra > gate set.
= arXiv:1310.4492 17




How does LGST perform? ) e

“RMS Frobenius distance”:

est __ ,YEITDP
Gy =Gy + ey

Error = <€z'j>RMS

k
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LGST on simulated data ) .
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Works nicely; limited by \/LN
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LGST review =

N increases: €20
No self-calibration problem
Experimentally demonstrated

r LN R

€ decreases slowly. (1/Sqrt(N))
Can we do better?
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Can we beat —7? ) i
v N
Want to be sensitive to small errors.
—100
G=c¢e¢ z

0 <<1

21



— 7 )
Can we beat Nd
Push (G} :
2
<UZ> ~ 1 = 97
Need O(6-?)

measurements to
distinguish from /.
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Can we beat ——7? ) de_

Push . L times:
o.,) = cos L6

an amplify coherent errors!
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Can we beat ——7? rh) g
V' N

Can measure with
accuracy =+ 0 :

L=0(), N=0(6"?)
OR

L=00"", N=0(1)

If we don’t know 6,
proceed iteratively.

(L=1,2,4,---,512)
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Can we beat ——7? rh) tima

I

Can each experiment just be a
different gate repeated many
times?

eg G2 GA..., G2 GA.

Not sufficient. Need to amplify
other errors as well.

e.g. Tilt error

Also want sequences like
G,G,, (GXGy)Z, (G,G,)*...

25
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P

Call these short sequences germs. Germs chosen to
amplify errors. (E.g. tilt, over-rotation, dephasing.)

Do LGST on successively longer “powers”.

We call this extended linear gate set tomography (eLGST).
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Can we beat

= elLGST can give us arich
data set, but how to
best analyze it?

= Maximum likelihood?

Use LGST to estimate, e.g., G,, Gy.

2. Use LGST to estimate sequences of length 2: e.g.
G2 Gyz, G,G,.

3. Refine G,, G, estimates to be consistent with step 2.

4. Repeat steps 2, 3 with sequences of length 4, 8, etc. ,,
I




Does estimate fit data? h

= Can use this eLGST procedure to estimate gates; works, but
we can do better.

= How do we measure success? ¥’ statistic- “goodness of fit”.
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Sequence j = [PHEHEHEHEHGHEHGHEHD)S

(pj — fi)°
p;i(1 —pj)

= Minimize total x? at each step.

2
X; = IVj

G,
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Algorithm summary i

1. Start with experimental gate set, eg. {Gi, Gx, Gy}
From knowledge of target gate set, determine set of germs
e.g. {Gx, Gy, Gi, GxGy, GxGyGi, GxGiGy, GxGiGi, GyGiGi,
GxGxGiGy, GxGyGyGi, GxGxGyGxGyGy}

3. For varying maximum sequence length (L=1,2,...,512),

perform “process tomography” experiments on each
“extended germ”

4. Using least-squares, iteratively find gate set estimates that
minimize x.
5. Compare to target gate set.

Sandia
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How do we measure success?

1. Can we find “good estimate”
with high probability?

2. Can we find accurate estimate
cheaply? (Can we beat N-0->?)

3. Can we find estimate that fits
the data well (small x?)?
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How do we measure success?

1. Can we find “good estimate”
with high probability?
2. Can we find accurate estimate =

cheaply? (Can we beat N0>?) =

3. Can we find estimate that fits
the data well (small x?)?
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log, N

National

Success probability )

GST failures (out of 100) GST failures (out of 100)
Small rotation error in gate set

1% depol. error in gate set
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102 Average Frobenius distance vs. Max. Sequence Length
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Maybe as good as eV ?

39




Sandia
National

Experimental implementation? @&z

%

{|p68t>7< 6875‘ Gest? est? gst}

Gate | Fidelity | Trace Dist. | Frobenius Dist. Shou Id you bel ieve us?
Gi | 0.996539 | 0.053209 0.020453
If % is small, then yes!
Gx | 0.999738 | 0.009888 0.004233
Gy | 0.999936 | 0.006494 0.002594
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Simulated x?

Gx-Gi-Gy
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Take out G,

We isolated non-

Markovian

found

(]
’

nearly

ior
y [ ]
Markovian

G
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Gi

Gx
Gy
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Are we successful? h) e,

1. Can we find “good estimate” / > 99 %

with high probability?
2. Can we find accurate estimate N_ 3.9
cheaply? (Can we beat N0->?) <

3. Can we find estimate that fits (When system
the data well (small x?)? is Markovian!)
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Conclusions rh) e,

Can use GST to get reliable, highly accurate estimates which match
experimental data; far cheaper than standard tomography.

Can use GST to diagnose when non-Markovian noise becomes an
issue.

Can even sometimes use GST to figure out where non-Markovianity
is coming from!
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Future directions

= Multi-qubit systems
= Randomized benchmarking predictions

= Non-Markovian analysis
= Drift control.

= More experimental implenetation
Contact me!
kmrudin@sandia.gov

= Thank you!

Gnome image courtesy of http://sweetclipart.com/friendly-garden-gnome-1464 48




