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Resonant silicon micro-photonics

= Why resonant silicon photonics?
= Small size (<4 um dia.)

= Resonant frequency 2 DWDM modulators & mux/demux

= Benefits
- I—OW energy (9 1 fJ/bIt) Tungsten
= High bandwidth density (= 1 Tb/s/line) ™
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. . I Si-Microdisk I
= Resonant Variations sipus» "
f
= Manufacturing Variations
= Temperature Variations U
o
= QOptical Power (1s density) % 0.6}
= Aging? 2 0.4} OV .
: E 2V reverse

= Requirements: 0ol

= Resolution: +/-0.25 °C (1 dB Laser penalty) AT=5°C

= Range: 0-85 °C (depending) o0 -g?equency%hiﬂ(GH;O 100
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Approaches to short reach optical ) s
interconnects =2 400 Gb/sto 1 Tb/s

= Most current approaches use parallel fibers
at 100 Gb/s and above

= Higher cost for fiber
= Lower density

= Some CWDM solutions 4 x 25 Gb/s @ 100
Gb/s

= Dense wavelength division multiplexing

(DWDM) X X YOR -

= Highest density solution ‘ ‘ ‘ O

= Need resonant wavelength stability in silicon ( ( ( (
micro-rings RX * ¥ *

d1 d2 d3 d4 5




Optical Interconnects

= Evolutionary (Modules)
= GbE and 10GbE Products

= 100 GbE modules soon w/
VCSELs and Si Photonics

= TbE modules on the horizon

* Revolutionary (3DI)

— Higher bandwidth density
- DWDM is required!!

— Drastic potential power
reduction
* No 50 Q lines, pre-
emphasis or equalization
* Receiver has high
transimpedance, few gain
stages

« Shared CDR (less delay
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50 ohm lines with _~| HIGH' POWER DISSIPATION
Pre-emphasis & BETWEEN ELECTRONICS AND
Equalization PHOTONICS

Electronic
IC

10 Bandwidth has
Nothing to do with

optical interconnects
(3 Th/s, 2005)

OPTICS FOR DISTANCE

No 50 ohm terminations
No pre-emphasis/EQ
No encoders

No High Power Drivers

Ultra-small devices (100ks of them)
Low cap modulator
Low P compared to E driver
Low cap Photodiode
Big voltage swing - direct to Logic.

Integrated
Electronics
&
Photonics

Cost can approach
pennies per Gb/s*

DWDM for 100 Gb/s to
1 Tb/s PER IO

1000 10 = 1 Pb/s!

Optical
Power

variation and jitter)

OPTICS FOR LOW POWER, HIGH BANDWIDTH DENSITY,
COST, SIZE, WEIGHT, DISTANCE




A new approach to high
performance computing

= Instead of ... Evolutionary
architecture approach:

= Design around limited (network and
memory) interconnect bandwidth

(<< 1 bit per second/flop)

= Pursue ... Revolutionary approach:

= Small silicon micro-photonic
devices intimately integrated with
network and processor ICs

= Chip-scale 100s Tbps 10

= <100 femtojoule/bit 2 <10sW 10

TLD [86 pA| 4.0 mm |47 046 x |5.44 um 52 ° | 1.00 kV

Photonic Layer —|

f
Fiber
Interface

—
Package/Printed Circuit Board.

—1 um

(a) N i Output Monitor
= ‘Ring Filter with Heater 10 um |
N D

Optical Input | /

Through Port Detector
—‘—:*

Heater Command

t—— Drop Port 'i'a|; :
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Ge Detectors
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- Input Tap-DC

Tunable : /
Laser

| Thermal Phase Shifter M2zI-DC
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DWDM Networks for data centers @&

a e i i S et 3 -~ b c
/ Silicon photonics ‘: <— 0.52mm —>|
: monitor —
in Tunable |__| MUXand , a
] filter ADD output N
| VOA i ]
~VOAs | "
4 channels 4 channels added R
dropped
£
d 0. 21.7 dB of £
equalization I @
g2 ! | 0
2 ' | S
’ : = 340 ‘\ 'x >
L Lap ) 5 i E ‘
UCcsSD MORDIA ring DCN -60 “Jrhl K« W l H“ I ollll' H "- M
6 hosts, 4 servers / host 1531 1532 1533 1534 —
’ Electrical pads
each 10 Gbps SFP+ DWDM Wavelength (nm)

Ryan Aguinaldo et. al., 2014 IEEE IPC Post-deadline paper
(UCSD & Sandia collaboration)

= DWDM networks lead to lower SWaP-c and enhanced
functionality compared to multiple fiber networks




Requirements for wavelength locking




Effect of temperature on loss budget @
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Filter allowable temperature drift.
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Optical Filter Response (dbB)

10 Gbps,
100 GHz channel spacing,
12.5 GHz laser stability,

3 O P
L o J . ) .
: )

Lock filter to laser,
et not reference

kO=+/-2.5%
k1/kO=+/-2.5%

(7 o
.:Z' £ o
//. g5
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192.9
Optical Frequency (THz)
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A Stability: Differential temperature differences () s,

= Should we let the laser wavelength drift with temperature?
= Range requirements 0 — 85 °C
= CWDM lasers (up to 10% efficient (0.7 — 1.2 nm/ °C) SiP ~ 0.8 nm/°C)
= Lock laser to resonator (Oracle 2.5% - 5% efficient)

° 18
1.56 %19 | 5X10
—low — current
€ —SiP 2 | - - delta=20 TN
= “'—"’4_ ’f"' 4
< 1.556 = | --delta=20 | _--
2 g |
: 8
© 1.554¢ .
S 2 2r
= 5
1.552} £ |
1,55~ - ' - f— .
20 40 60 80 20 40 50 50

Temperature Temperature



Cyclical Channels

Example: 4 x 100GHz channel spacing

a) Designed alignment

b) 13 °C heating — 130 GHz shift

c) 7 °Ccontrolled heating to 200 GHz shift

Maximum heating = channel spacing / df/dT:
100GHz/10GHz/°C = 10°C

0.8f
N. Binkert et al., S
ISCA 2011: g 0osp
c I I
. I |
M. Gorgas et. al., © 0.4 ! |
IEEE CICC, 2011 = | |
0.2} : :
A. Krishnamoorthy et. al., ! | . i .
IEEE Photonics J., 2011 50 0 500 700

Frequency Shift (GHz)
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Circuit for DWDM channel alighment @mg
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MOSIS: Ring Oscillator 1.21 nW/MHz/gate - 0.3 fl/bit (45 nm)
Inverter, | = 0.25 flJ/bit (1 fF/1V)

Logic Gate, L = 0.5 fJ/bit (2 fF/1V)
Mux, M = (Sc-1)*L; Sc= SA\ power of 2
Register, R = 10°L = 5 fl/bit

Buffer fan-out, F=Sel

Back of envelope example: N=40, S=6

= 2N registers (humber of channels)

= 80 * 5 fJ/bit = 400 fl/‘word’ i
= FanoutofS

= 40 * 6 * 0.25f)/bit = 60 fJ/'word’
= N S:1 multiplexers

= 40 * (7) * 0.5f)/bit = 140 f)/'word’
= Sum =600 fJ/'word’ = 15 fJ/bit
= SLOW circuitry

= Control of the shifter

= Extra laser channel




Resonant Wavelength Closed Loop @&
Control

= Control Loop

In Out

= Measurement M+, V- Modulator

= Temperature Heater

= Power (shown) Monitor

= Phase (BHD, PDH) ZAN

= Bit errors Measurement } }
" |ntegration (Pl Loop) J\f err Stimulus
= Stimulus > 4’

" Integral Heater (shown) Integrator

Reference

= Forward bias (heater/
carriers)

= Reverse bias (carriers)




Resonant Wavelength Locking ) .
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Frequency Offset L.
= Lock on side ot resonance = vock at minimum power




Previous Methods )
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Temperature Sensor (Sandia) ) e

= First attempt at resonant CP
wavelength control E A N rena

Control —‘

Integrated
£ eSZ % Integrated

Temperatur u
Sensor eater

" |ntegral temperature
sensors (diode)

= Sensor not independent Modulator
Heater-Sensor-Modulator

100,

of background I VS o A e
temperature ; :;*%"\ '
= More complex device " \"\\
= Not measuring other R S

0 30 40 50 60 70 80
Temperature (Celsius)

wavelength shifting
affects

= Simple electronics (Pl
loop with P=k, I=0) C.T. DeRose, et. al., CLEO 2011




Locking using Power Sensors

(MIT, Columbia, Rice, Orac

. Modulator
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e) Measurement I I
/\/ err ’ Stimulus
Ref. Integrator

Transmission/Optical Power

100

(@) 108t AD |

Xilinx FPGA
l ™ |‘_ -l LowDoped

Si heaters

A5\

€ 6-um Dlameter >

Si tethers

0.0 T T v - 0.0+ T v v v
1565 1570 1575 1580 1585 1565 1570 1575 1580 1585

-? 00 -50 0 50 Resonator with heater, without sensor
Frequency Offset (Timurdogan et. al., CLEO 2012)
. - ) 1.0 f¢ - Measured(1st Ring)
"L, oy e B e
© optical Fiber (=) Electrical Cable g 081" y A So'e e
— BRSPS & veryorrres WS prerarcres M prveymery DO 5 0 3 8¢
100 Hz - 1 kHz act_ o Ve = %(2,04_
e @ come £ R BE
Circuit N z2
10-MHz PD/A 190, ® 0.2 0.24
A5‘ # S S | 5 5

Modulator with bias induced temperature

Wavelength(nm) Wavelength(nm)

Scattering from a dual-ring modulator

change (Padmaraju, OFC 2012)

(Qui et. al. Opt. Exp., 2011)




Locking using a dither signal (Columbia) ) i,

Laboratories

= Creates a signal that is anti- A e
symmetric (lock at zero) INE e . . Output

= More complex electrically Heater O\
. . . R oS — T T
Simple optically S / O

= Some small degradation in the
optical performance with dither

= Best for filter locking

Filter Control

...............................................................................

I
] H $
Low-Pass |- : | Feedback
: i : 'G')
I

SQ

K. Padmaraiju, et. al. JLT 32 (3) (2014)




Modulator wavelength stabilization =

using bit errors (Sandia)
= Direct measurement of the bit errors

= Requires high speed circuitry
= Most compact solution (no low pass filtering)

Modulator._| -
. 7 rd .
Driver - Remote Receiver
Local Receiver
N—.——>
Heater H . Data
Driver - Link Rx__ Decision | Received
Logic 1 Rx  Decision
 _Error 2
Control Error

Logic ogic 0 Detection T I€

Data Sent Error

R

Input Light

=

1idwy

\opn

W. A. Zortman et. al.,
IEEE Micro (2012)
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Balanced Homodyne Detection
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Balanced Homodyne Detection ) .

Optical Phase Shifter
t ,\/\@\/\/} a WA
<10%/‘ [ ! \ 3
C ) — )} c(t)
Laser Sources Micro-resonator O <

L I O~ WG S

A

50% DC Balanced Detector

)
Drop Port Splitter Filter Ouput

Tuning l L(s) \

Signal Loop Filter

y(t)

 Filter or Modulator

« Lock to zero: No calibration or reference level needed for locking

« Amplitude insensitive: Locking point not influenced by optical intensity

* Precision locking: Resonator is not disturbed

 Minimum circuit complexity: Power and area consumption of control
electronics is minimized

J.A. Cox, A.L. Lentine, D.C. Trotter and A.L. Starbuck, “Control of integrated micro-
resonator wavelength via balanced homodyne locking,” Opt. Express Vol. 22(9) (2014)
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BHD Transfer Function h) e,

4 I
Phase Shifter | Ei E;
A¢
\§ _J
4 )
Optical Resonator | E: E,
Source A(w) f
\§ J
50% Coupler v
Drop Port

BHD Error Signal

Ideal Response of 1st Order BHD
Positive and Negative Photodetector Signals

T T T T
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S : N ' ' : : % é
% 0 : e T —
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Effect of Phase Imbalance ) ..

:7 - - . |A|2 i
0.25mrrad

Signal (a.u.)

2 . ‘ , .
.5 | I T\ A I S il -
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(_U ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
c
2
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Control Loop
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Op-Amp Integrator

=  Simplest possible circuit for analog or o
digital implementation on-chip LI
= Smallest component values critical for iy
analog design on ASIC TIA Ve
. . R
= Dual voltage operation automatically 105 VIR>— AN,
provides inverted feedback | —> Heater
= Loop stable regardless of BHD polarity F
A BHD Error Vm
Signal GND
40 dB
Element | Value
Q 1.6 MHz Ce 10°pF
_TE’ / Re 1 MQ
©
] S R 10 kQ
16 kHz

Frequency (kHz)
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Sandia’s Silicon Photonics Process (@ i.

= Low energy modulators

= Fast (45 GHz) detectors

= Compact switch elements

= Wavelength tunable devices
= Sj, Siridge, SiN guides -------------

Pad Opening =~

Metal

Nitride Optical Vertical ;
Interconnect and off chip Junction Ridge Cut

Silicon Handle Wafer




Resonant locking of a DWDM filter @

|l W\r W/Lock Enabled

1
0 10 20 30 40 50

gnal (V)
o

= Problem: locking on minimum power
level does not lend itself to a simple
control loop

o

o
N
T

1.5

= Solution: Homodyne detection with
balanced detection gives optimal
locking solution

L H L
10 20 30 40 50

dn L A dn

10 20 30 40 50

ThroughPower (W)  Heater Command (V) [Error Si
o

o

Time (s)
(a) Output Monitor (b)
o DAC BHD Transfer Function
. Detector oaf ' ' ' -]
Optical Input' z Filter Resonance
>° 0.05 1
Heater Command = /
© - n i
Vad- U i
Tunable | | e O m— ] e i%noos_ Al P aad )
Laser ! h /’l ]
= 0 ZIO 4—0_ GIO B 8.0 1(;0

' Loop Filter

Wavelength Detuning (GHz)




Modulator Stabilization System ) ..

10 nm sweep (1532 1542 nm)

 Lock to zero: No calibration or
reference level needed for locking

 Amplitude insensitive: Locking point
not influenced by optical intensity

Error Signal (V)
g

1.25 THz, 125C equivalent!

* Precision locking: Resonator is not % Il
disturbed s 1

« Minimum circuit complexity: Power § | .
and area consumption of control e
electronics is minimized |

BHD Transfer Function

Filter Resonance

EDFA

Fixed
Frequency
Laser

0.05 -~

Heater Command

Error Signal (V)

L
1
I
1
1
1
I
1
/

X /
1

1 4
1
1
1

-0.05 |- \ ]

7
13 w-—’, A A I3

0 20 40 60 80 100

e(t) Wavelength Detuning (GHz)

Source
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Modulator Design and Performance @ .
i 5 Gbit/s Modulation
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W. Zortman, A. Lentine, D. Trotter, and M. Watts, "Integrated CMOS Compatible Low Power 10Gbps
Silicon Photonic Heater Modulator,” in Optical Fiber Communication Conference, OW4l.5. (2012)
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Error Rate vs. Temperature

10
5 GHz modulation applied
Modulator locked, and phase
shifter adjusted once for
lowest BER.

Y

o,
L
o

Wavelength held constant.
Chip temperature varied
from 5—60° C while locked.

Bit Error Rate

-

(=]
L
s

Error free from 5—55° C ‘
(251 bits) L ........ Errf'or'f‘re'e' 6Qér'120'3' @) .............

Error rate rises at 60° C due 102
to thermal phase imbalance

in interferometer

0 10 20 30 40 50 60
Temperature (°C)
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Design Considerations

* Hpypothesis: Path length imbalance and thermal gradients from modulator
heater cause shift in locking point

« Test: Vary chip temperature while tuning heater to hold resonant wavelength

constant

-0.1

h

Sandia
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. K -

-

1539.5 1539.6 1539.
Wavelength (a.u.)

7

" 1539.8 1539.9 1540 1540.1
Wavelength (nm)



CMOS ASIC Design (currently in fab) M.

= |BM 45 nm CMOS ASIC designed at Sandia

= Power consumption: 1.07 mW (steady-state); 0.27 mW (TIA) and 0.8 mW
(integrator) (30 — 100 fJ/bit @ 30Gbps-10Gbps) [1]

= Heater time constant = large integrator resistor and capacitor in loop filter
= Heater driver: Class-B “push-pull”
= |nverter implemented with analog switch network

81 um

<€ >

238 um
[1] recent result by X. Zheng (OpX 2014) 200uW, 2600 um? for ‘power meter’ control

31



Summary ) o,

BHD provides a scalable, robust method for resonant modulator and filter
wavelength stabilization

= Advantages
= Suitable for DWDM networks

= |nsensitive to laser intensity noise

Arbitrary locking reference not required (lock to zero)
Simple control circuitry for dense on-chip integration

Precision locking for other micro-resonators application

0.1 -

0.05 -

-0.05 - ﬂ 4

0 20 40 60 80 100

J.A. Cox, A.L. Lentine, D.C. Trotter and A.L. Starbuck, “Control of integrated micro-
resonator wavelength via balanced homodyne locking,” Opt. Express Vol. 22(9) (2014)
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Balanced Homodyne Detection

Optlcal Phase Shifter

Socy DC Balanced Detector
<1o<y/‘

e(t)
Laser Sources Micro-resonator

>90%
‘H| % "’0\ \a2 -
>FiIter Ouput

Drop Port Splitter

y(t)
1\ |

Tuning (s)
Signal Loop Filter
BHD Transfer Function
I
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e e e e
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What is Silicon Photonics? ) iz,
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= Active and Passive Photonics on/in Silicon

Oxide Encapsulation

= Passive:

= Waveguides, spectral filters, splitters, polarizers,
polarization rotators, gratings, isolators*

= Active
= Modulators(EO), switches, detectors (OE, Ge),
lasers*
Si-Bus=»

- /7
= Thermal Shift of index ; ,,I/?angffn&o“qﬂ ‘
= Electro-refraction A 4
= Electro-absorption (SiGe) $‘ila”95t‘i» - - /

| Si-Microdisk | km

rou
_ ,Ld/ L/’;;e

"= Most applications require intimate |
integration with CMOS Electronics SRR 2

= Heterogeneous integration
= Flip-chip bonding, Wafer bonding, etc.

= Monolithic integration * Heterogeneous integratjgn

4um Si-Microdisk




2 x 2 silicon photonics switches

= Fast (< 100ps) *
= Broadband
= 1plJ/switching event

= No static power
= 1 mm size

MZ — free carrier effect

= Fast (< 100ps)

= Wavelength selective™ pg

= 1f)J/switching event
= No static power
= <10 umsize

Ring — free carrier effect
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= Slow (10 us)
= Broadband

= ~15mW/2n
= Static power in one state
= <10 um size + coupler
MZ - thermo-optic

= Slow (10 us)
= Wavelength selective
= ~4 uW/GHz (200uW)

= Static power in one state

" <10 umsize

Ring — thermo-optic

*Can also switch all channels at once if free spectral range = channel spacing
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