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OVERVIEW
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• Interested in large multiphysics systems with multiple length- and time-
scales

• When time-scales of interest are much slower than the fastest time-
scales in the system, implicit or IMEX time integration is a good option
when efficient linear solvers are available

• Multifluid plasma equations as motivating example

• Take a physics-based approach to preconditioning
• Block preconditioners segregated by physical degrees of freedom
• Use properties known at a high level about the physics to improve

and automatically tune the preconditioner to different use cases

• Illustrate this preconditioning strategy by analyzing multifluid plasma
system

• Results and conclusions
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MULTIFLUID PLASMA MODEL
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CONTINUUM PLASMA MODELS
• Obtained from moments of a Boltzmann equation (5-

moment, 13-moment models) + Maxwell equations

• Valid for dense plasmas where PIC models are prohibitively
expensive

• Valid for finite charge separation where MHD approximations
do not hold

• Set of hydrodynamic equations for each species (e.g.
electrons, ions, neutrals) coupled through currents in
Maxwell equations and Lorentz forces
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MHD Tokamak Equilibrium
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ELECTRON-ION PLASMA SIMULATION

• 2D electron/ion plasma driven by an external current pulse
with background magnetic field and density gradient

• Plasma scales:
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MULTIFLUID 5-MOMENT PLASMA MODEL
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TIME INTEGRATION FOR MULTIFLUID PLASMAS
Eigen-values for 5M Euler
Eqn for each species

Time-scales from Maxwell
Eqn. & EM source terms

A, = (u, , u, + NATT,/m,)

TEm = Ax/c; 7,
pa

A possible ordering of time-scales:

TEM < Tcope < Twee < Twpi
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Need linear solvers that can
handle integrating over fast
time-scales. Must be flexible
about time-scale ordering.

Of course stablilty does not imply accuracy.
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TIME-SCALES AND OPERATORS

IN THE PLASMA EQUATIONS
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PHYSICS-BASED PHILOSOPHY

FOR BLOCK PRECONDITIONING



BLOCK PRECONDITIONING IN CFD

• Navier-Stokes
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B 0

• Blocks precond
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Laplace

• LSC: req
• Both wor
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Knowing which approximations
work in which regimes, can we

always use the cheapest
preconditioner that will be

effective for a given problem?

How much physics does the
preconditioner need to know to

achieve this?
• Augmented Lagrangian

F
P
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  BF-1. Bt
proximations
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pressure
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ection CFL

• Works well for strong advection
• More difficult solve in the (0,0) block

although simpler Schur complement
can be used

7 Block preconditioners inherit parallel scalability of multilevel subsolves 10



PHYSICS-BASED PHILOSOPHY FOR BLOCK

PRECONDITIONING
• Time-scales dictate preconditioner parameters

• Which Schur complement approximations to use

• Subsolve settings

• Fast physics require more advanced Schur complement
approximations (if off-diagonal) and/or more heavyweight
solvers/smoothers

• Use cheapest settings possible use lower fidelity
approximations and simpler smoothers for slow physics

• Most solver details can be hidden from physics driver and
user
• The preconditioner only needs to know which time-scales are

fast/slow)

• Can be quantified with CFL numbers which can be automatically
computed
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APPLICATION TO NAVIER-STOKES Sandia
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• Slow advection and diffusion (CFLd < tol, CFLa < tol)
• Use SIMPLEC Schur complement approximation

• Use cheap smoother (e.g. 2 sweeps of Gauss-Seidel) for velocity solve

• Slow advection, fast diffusion (CFLa < tol)

• Ignore advection time-dependent Stokes: use simplified version of

PCD

• Fast advection (CFLa > tol)

• Use at least PCD for Schur complement (combine with AL for very fast

advection)

• Use more expensive smoother (e.g. ILU with overlap or Krylov

smoothing) for velocity solve
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COLLISIONLESS, COLD SIMPLIFICATION
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DISCRETE TWO-FLUID SYSTEM

• Fully discrete (cold, collisionless) two-fluid system:

.

•

.

•

Sandia
National
Laboratories

/ Ae Ge
B Qp 000

00 TE Qem \
0

1 peue \

Pe

0 0

00
At Gi
B Qp

QiE
0

Q1E3
0

pill,
lot

0 0 0 0 QB K B

\ Qe 0 QIE 0 Q E 1 \ E /—kt

Block each fluid species, E, and B
separately. Segregates DOFs by

discretization type, and allows faster
species to be treated differently from

slow species.

*

ling and can range over many orders

• Disparate discretizations make it difficult to apply monolithic multigrid solvers
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ANALYZE SPECIES BY SPECIES
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DETAILED ANALYSIS OF SLOW LIGHT WAVE

CFLc Ax E — c  At —  ,u, A Axt < T
• Fully resolved electromagnetic effects

• Although no physical speeds exceed the speed of light, the
numerical time-scale associated with the plasma frequency
can be faster at large length-scales

CFLp,,= At

• Advection should always be slow in this setting
CFL„,,= Iluall g:tx

• Electromagnetic Schur complement dramatically simplifies
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SLOW LIGHT WAVE AND FLUID-EM COUPLING

SE rr QE Sc, rr Da - M - Q73Q761K)W1Q,»:

• Diagonal approximations of mass operators work well
embedded in Schur complements
• Replace QB and QE with diagonal approximations

• Fluid Schur complement simplifies further
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• Mass-like operator should make fluid subsolve easier
• Negligible when plasma frequency is slow
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SLOW LIGHT WAVE PRECONDITIONER
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• Block Gauss-Seidel in 2x2 electromagnetics block

• Cheap smoothers or no AMG at all (Jacobi?) for mass solves

• Mass-like augmentation of fluid block

• Or no augmentation (block Gauss-Seidel) when plasma frequency is slow

• Use block Gauss-Seidel to decouple momentum and density solves since
pressure wave speed must be slow

• Use expensive smoother (ILU) for momentum solve only if
cyclotron frequency is fast (strong off-diagonal contributions)

• Otherwise, Gauss-Seidel or Chebyshev suffice
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SLOW LIGHT WAVE NUMERICAL EXPERIMENT

Variation of left-handed circularly polarized wave 1D two-fluid
problem (slow ions, fast electrons, resolving speed of light)

Time-scale CFL

Light Wave

Advection (e)

Advection (i)

Plasma Freq (e)

1.0e-1

1.0e-1

3.0e-3

3.3e+1

Plasma Freq (i) 4.6e-1

Cyclotron Freq (e)

Cyclotron Freq (i)

1.0e+2

2.0e-2
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Prec Avg its Setup (s) Solve (s)

Slow light,
slow i, fast e

15.61

Slow light,
slow i + p,i,
fast e

15.61

0.1397

0.1747

0.2753

0.2793

Slow light,
fast i, fast e

15.47 0.2130 0.2952

Fast light, 13.24 0.5116 0.5117
fast i, fast e

No convergence with slow smoother
settings applied to electron fluid solve
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FAST LIGHT WAVE CASES
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• Electromagnetic Schur complement is a transient curl-curl
diffusion operator

SE = QE + KtQB-1K ,:t I + 'Lt'V x V xit

• Close to singular when CFLC is large (all gradients in null-space
of curl-curl operator)

• Use a solver designed for curl-curl operator at long time-scales
• Specialized multigrid (auxiliary space, refMaxwell, etc)

• Augmentation-based with traditional multigrid
SE— 1 R:ii TV ZE Q E— 1

TE = SE + GW:Gt
ZE = QE + GQ,V-Gt

• Special cases for fluid-electromagnetics coupling
• Slow plasma frequency (use block Gauss-Seidel)
• Slow advection and cyclotron frequencies

Da R- Qa SE,ce rr SE — QccEQ(Ac
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MULTIFLUID PLASMA PRECONDITIONER

ALGORITHM
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• Take as input list of which time-scales are slow and fast

• Slow light wave -> special case (discussed above)

• Loop through fluid species
• Slow plasma frequency -> no contribution to Schur complements
• Slow advection and cyclotron frequencies -> add plasma frequency

operator to SE

• Otherwise, add species to leftover list

• Compute S,for each leftover species, using a diagonal
approximation for augmented SE operator in embedded
inverses

• Setup subsolves using expensive smoothers if the time-scales
dictate

• Setup outer block structure
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FULL PRECONDITIONER 1D RESULTS

Time-scale CFL

Light Wave 1.0e+3

Advection (e) 1.7e0

Advection (i) 3.4e-1

Plasma Freq (e) 3.3e+1

Plasma Freq (i) 3.3e0

Cyclotron Freq (e) 3.1e-1

Cyclotron Freq (i) 3.1e-3

Prec

Fast light,
slow i, fast e

Fast light,
slow i, slow e

Fast light,
slow plasma
freqs

Fast light,
fast i, fast e

Sandia
National
Laboratories

Avg its Setup (s) Solve (s)

49.35

48.31

65.36

65.52

0.3729

0.2145

0.1917

0.5064

1.542

1.473

2.067

2.243

No convergence without fast light approximation
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A MORE REALISTIC TEST PROBLEM

■ 2D electron/ion plasma driven by an external current pulse
with background magnetic field and density gradient

■ Simulation resolves current source

Time-scale CFL max

Light Wave 2.0e+1

Advection (e) 1.3e-2

Advection (i) 1.3e-5

Plasma Freq (e) 2.6e+1

Plasma Freq (i) 8.1e-1

Cyclotron Freq (e) 1.3e+1

Cyclotron Freq (i) 1.3e-2
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Procs DOFS Avg its Setup (s) Solve (s)

1 2.6e4 16.26 0.5122 0.7833

4 1.0e5 16.45 0.8571 1.031

16 4.0e5 17.95 1.064 2.141

64 1.3e6 27.74 1.213 3.923

256 6.3e6 32.68 1.344 5.078
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N EXT STEPS

■ Subsolve settings
• Fluid subsolves can be improved — currently using SIMPLEC for fast

sound speed

• Not aware of much research on block preconditioners for

compressible flow, especially including Lorentz force term

■ Structural changes when physics are added
• Collisional terms — need to analyze interactions between fluids

• Diffusive terms — all diagonal, but can make embedded inverses
harder to approximate. Can also ameliorate issues with strong
advection

• Energy equation for warm plasmas — introduces sound speed physics

■ Reuse for efficiency

• Take advantage of linear parts of the system (e.g. Maxwell) where

operators do not change throughout nonlinear iteration

• Can also assume that slow physics are essentially unchanging on a

time-step
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CONCLUSION
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■ Time-scales dictate what operators are stiff in a linear system

■ Time-scales can inform a preconditioner's choice of Schur
complement approximations and subsolvers

■ Motivated a physics-based block preconditioner for multifluid

plasma sYstems

■ Using cheaper approximations and solves for slow physics
results in more efficient preconditioners although iteration
counts may be slightly higher

■ Showed preliminary parallel performance for a difficult
plasma application
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