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Outline

• Solve time-dependent incompressible Navier-Stokes equations

Resolve near blade surface boundary layer and wake vortices

• Compare the two fundamental algebraic-multigrid (AMG) approaches :

0- Smoothed Aggregation AMG (SA-AMG), as implemented in MueLu
(with linear solve in Tpetra Belos ICGS-GMRES);

I- Classical Ruge-Stüben AMG (C-AMG), as implemented in Hypre
(with linear solve in Hypre's MGS-GMRES);

Examine ExaWind baseline problem:

► Vestas V27 wind turbine with sliding mesh interface

Determine V-cycle complexity C and stencil widths Savg

Compare GMRES iterations, solver time, set-up time.
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Exascale Computational Challenge

Simulation of wake turbulence difficult problem:

Vestas V27 with 27m turbine diameter. 225 KW

• Matrices are re-initialized every time-step

• Large dynamic scale range and high aspect-ratios

• Sliding mesh adds skew-symmetric terms to
non-symmetric matrices

• lll-conditioned pressure-Poisson problem

C = 50, At = 1 e— 4s, 0(10000) time steps per
revolution. 400 hours on Cori 24K cores

Peta-scale single to exascale multiple turbines
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Incompressible Navier-Stokes Equations

Control Volume Finite Element Method results in block-matrix: saddle-point, indefinite

[ AD GO 
]
[ pu [ p ]

A= I/ + tiL+ N, Laplacian L, viscosity µ and nonlinear convection N.

Consider the block LU factorization of the matrix

AD GO AD 0 [ AG[ 
-DA-1 G [0 /

Inversion of A-1 to form the Schur complement matrix S = -DA-1 G would be costly.

Matrix splittings (Chorin-Teman, Yosida) employ 2 = diag(A)-1,

fLi c11/ = f Ti v0 f L20 dt/ = I r2v .dA

61 = -L1 is the finite-volume Laplacian for the pressure-Poisson linear system
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Incompressible Navier-Stokes Equations

These matrices are introduced into an approximate LU block factorization as follows

[ B2G [ un+1 [ I 0 [ / G [ 0
[ D [ 0 / [ [ DB4 B3 [ 0 / [ pn

where B2 — ti2 /, — —L2 and /34 — /, rfj — 'Ldp.

1 f
b

The equations solved at each outer nonlinear iteration of the time-step are given by

f — Gpn — Aun (1)

APn+1 
D(b-h 1i2Gpn)+L2Pn+b (2)

Un+1 = u GApn+1 
(3)

where AU= — un Apn+1 = pn+1 pn.

Solve for pressure increment (2) with restarted GMRES(m) and AMG preconditioner.
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Sliding Mesh: Nonsymmetric Matrices

• Sliding mesh based on discontinuous-Galerkin (DG) interior penalty (IP) term

• Adjacent C2A and C28 contribute non-symmetric terms in pressure-Poisson matrix

• Skew-Symmetric flux terms b(A, B) = — b(B. A) at interface FBA

11_\FAB p d +~AB b(A, B) d = 0

rBA b(B, A) d = o

a
b(a,f3)=

1 a 
ni mi3 rif.3 )+ A,C13 (Pa — ), 

C ai3= 2 (1La+j LP
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Algebraic Multigrid

Smoothed aggregation (SA-AMG) is based on strongly connected neighborhoods:

N;(0) = {j :la;j1> 0 \/ ajj

Define C, as the set of nodes in aggregate i and Pi = 1, i e Ci, and 0 otherwise.

Prolongator, P = (I - w 13-1 AF P where D = diag(A), AF is the filtered matrix,

The classical Ruge-Stüben AMG (C-AMG) algorithm works in two passes:

• The first pass will make a selection of coarse nodes based on the number of strong connections that each
node has

• The second pass is a refinement pass. It checks to make sure there are enough coarse nodes that
information is not lost

Given a threshold value 0 < 0 < 1, the node 1.11 is strongly connected to ui if

la; j> maxlaik l

The prolongation matrix P is constructed row wise.



Set-up for C-AMG

Hypre—BoomerAMG : V-cycle

• parallel modified independent set (PMIS) coarsening of de Sterck (2004)

• strength of connection threshold 0 = 0.25

extended+i coarse—fine interpolation. pmax = 2 elements interpolation stencil

aggressive coarsening on first 3 levels with multi-pass interpolation pmax = 2

• hybrid Gauss-Seidel smoother with 2 sweeps per level

• interpolation truncation 2 = 0.25

• retain transpose in Galerkin triple-product

• Sparsification on first 3 levels: drop tolerances y = [0.0, 0.01, 0.01].
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Set-up for SA-AMG

Trilinos-MueLu : V-cycle

symmetric SA coarsening

• unsmoothed prolongation co = 0

aggregate size min 3, max 8

strength of connection threshold e = 0.03 and distance Laplacian dropping

• implicit operator-stencil

• L1 Gauss-Seidel smoothers. 2 sweeps

• re-balancing coarse matrices to improve parallel performance

SuperLU coarse solver
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Complexity and Stencil Width

Operator complexity C is defined as

C = E nnz(A1)/nnz(A).
i=o

Directly correlated to the solver execution time

Average stencil size s(A1) is the average number of non-zero elements per row of A1

Maximum average stencil size,
Savg = max s(A1)

1<i<tn

Directly correlated to the solver set-up time
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Vestas V27 Flow Field

• Turbulent air-flow modeling with wake vortex formation

• Rotational speed 43 RPM with a cross wind of 7.6 m/s

Figure: V27 41a 166M element mesh (45M pressure DOF).

Figure: Pressure at 0.75sec. lsosurface of v = 10 m/s.
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Pressure Solve and Set-up Times

Model sw C Savg 0 Iterations Solver (s) Set-up (s) Wall-clock (s)
Nalu+Hypre 2 1.149 21.4 0.25 17.7 58.0 24.5 355
Nalu+MueLu 2 1.150 19.6 0.03 25.8 54.9 24 392

Table: V27 41 R1 500M elem, 229M Pressure DOF, 27K DOF/core: 8192 cores Cori, 10 steps.

• SA-AMG with Chebyshev smoother led to non-convergence

• 2 sweeps reduce flops and communication

• Momentum solve now dominant (non set-up) computational cost

• High wall-clock due to sparse matrix initialization (local/global graphs, memory)
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Strong Scaling on NERSC-Cori

Total simulation times for 10 time steps of the V27 41 R1 500M elements
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Pressure-Poisson Solver

Observations:

• GMRES(50) for Belos/MueLu, and GMRES(10) for Hypre—BoomerAMG. tol = 1 e — 5

• Hypre: aggressive coarsening significantly lowers C and Savg; iterations increase

• Non-Galerkin sparsification further reduces solve and set-up times

• MueLu: unsmoothed prolongation reduce C and Savg

Conclusions:

• Hypre and MueLu coarsening result in similar complexities C and solve times

• Hypre: higher computational cost per GMRES iteration

• Hypre: set-up costs increasing at higher core counts

• MueLu: higher GMRES iteration count that increases with core count

• MueLu: lower solve time with 2 smoother sweeps reduces communication
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Thank you! Questions?
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