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Outline

« Solve time-dependent incompressible Navier-Stokes equations
» Resolve near blade surface boundary layer and wake vortices

» Compare the two fundamental algebraic-multigrid (AMG) approaches :

» Smoothed Aggregation AMG (SA-AMG), as implemented in MueLu
(with linear solve in Tpetra Belos ICGS-GMRES);

> Classical Ruge-Stiiben AMG (C-AMG), as implemented in Hypre
(with linear solve in Hypre’'s MGS-GMRES);

» Examine ExaWind baseline problem:
> Vestas V27 wind turbine with sliding mesh interface

+ Determine V-cycle complexity C and stencil widths Sayg

» Compare GMRES iterations, solver time, set-up time.
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Exascale Computational Challenge

Simulation of wake turbulence difficult problem:
* Vestas V27 with 27m turbine diameter. 225 KW

+ Matrices are re-initialized every time-step
+ Large dynamic scale range and high aspect-ratios

+ Sliding mesh adds skew-symmetric terms to
non-symmetric matrices

lll-conditioned pressure-Poisson problem

+ C=50, At=1e—4s, 0(10000) time steps per
revolution. 400 hours on Cori 24K cores

+ Peta-scale single to exascale multiple turbines




Incompressible Navier-Stokes Equations

Control Volume Finite Element Method results in block-matrix: saddle-point, indefinite

A G ul| | f
D 0 p| | b
A=1I/At+plL+ N, Laplacian L, viscosity u and nonlinear convection N.

Consider the block LU factorization of the matrix
A G] [A 0 I A'G
D 0| | D -DA'G 0 !

Inversion of A~1 to form the Schur complement matrix S = —DA~' G would be costly.

Matrix splittings (Chorin-Teman, Yosida) employ 7 = diag(A)~',
/L1¢ av = /r1v¢ -dA, /L2¢ av = /1:2V¢-dA

B; = —L; is the finite-volume Laplacian for the pressure-Poisson linear system
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Incompressible Navier-Stokes Equations

These matrices are introduced into an approximate LU block factorization as follows
A 0 1[I BG u"+1+IOIG o] [f
D B 0 / Ap™t! DB, Bj 0o |/ Pl | b

where Bz = %2 /, 53 = 71_2 and B4 = f4 /, %,‘ = T,'/p.

The equations solved at each outer nonlinear iteration of the time-step are given by

AAT = f-Gp"—AU" (1)
—LiAp™! = D(U+%Gp")+Lp"+b F)
U™t = -1 GAp™! 3)

where Al = i —u", Ap™t1 = p*t1 —pn.

Solve for pressure increment (2) with restarted GMRES(m) and AMG preconditioner.
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Sliding Mesh: Nonsymmetric Matrices

« Sliding mesh based on discontinuous-Galerkin (DG) interior penalty (IP) term

« Adjacent Q4 and Qg contribute non-symmetric terms in pressure-Poisson matrix

« Skew-Symmetric flux terms C(A, B) = —C(B, A) at interface 54
/r\rABpunde—&—/ C(AB)dT = 0
(/r\rBApun]dl'—k/ E(B,A)dr = 0

C(a.B) = (m nf —mb nf )+ 18P (p% - pP), Agﬁzg(lJrl)
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Algebraic Multigrid
Smoothed aggregation (SA-AMG) is based on strongly connected neighborhoods:

Ni(e)={J: |ajl > 6 /@i 3 }
Define C; as the set of nodes in aggregate / and P,-/- =1, i€ C;, and 0 otherwise.

Prolongator, P = (I— oD AF) P where D = diag(A), AF is the filtered matrix,

The classical Ruge-Stiben AMG (C-AMG) algorithm works in two passes:

» The first pass will make a selection of coarse nodes based on the number of strong connections that each
node has

» The second pass is a refinement pass. It checks to make sure there are enough coarse nodes that
information is not lost

Given a threshold value 0 < 6 < 1, the node v; is strongly connected to u; if

aji| > 6 max|a;
| Ij‘ = ki | Ik|

The prolongation matrix P is constructed row wise.
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Set-up for C-AMG

Hypre—BoomerAMG : V-cycle

.

.

.

parallel modified independent set (PMIS) coarsening of de Sterck (2004)
strength of connection threshold 6 = 0.25

extended-+i coarse—fine interpolation. pmax = 2 elements interpolation stencil
aggressive coarsening on first 3 levels with multi-pass interpolation pmax = 2
hybrid Gauss-Seidel smoother with 2 sweeps per level

interpolation truncation T = 0.25

retain transpose in Galerkin triple-product

Sparsification on first 3 levels: drop tolerances y=[0.0,0.01, 0.01].
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Set-up for SA-AMG

Trilinos-Muelu : V-cycle

.

.

symmetric SA coarsening

unsmoothed prolongation @ =0

aggregate size min 3, max 8

strength of connection threshold 6 = 0.03 and distance Laplacian dropping
implicit operator-stencil

Ly Gauss-Seidel smoothers. 2 sweeps

re-balancing coarse matrices to improve parallel performance

SuperLU coarse solver
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Complexity and Stencil Width

Operator complexity C is defined as

C= i nnz(Ay)/nnz(A).
1=0

Directly correlated to the solver execution time
Average stencil size s(A/) is the average number of non-zero elements per row of A,

Maximum average stencil size,
Savg = max s(A
avg = 0% (A)

Directly correlated to the solver set-up time

=
\\ exmscALE
(CP =
\ PROJECT
\—=



Vestas V27 Flow Field

+ Turbulent air-flow modeling with wake vortex formation
» Rotational speed 43 RPM with a cross wind of 7.6 m/s

Figure: V27 41a 166M element mesh (45M pressure DOF).

Figure: Pressure at 0.75sec. Isosurface of v =10 m/s.
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Pressure Solve and Set-up Times

Model sw C Say 0 Iterations  Solver (s) Set-up (s) Wall-clock (s)
Nalu+Hypre 2 1149 214 0.25 17.7 58.0 24.5 355
Nalu+MuelLu 2 1.150 196 0.03 25.8 54.9 24 392

Table: V27 41 R1 500M elem, 229M Pressure DOF, 27K DOF/core: 8192 cores Cori, 10 steps.

SA-AMG with Chebyshev smoother led to non-convergence

+ 2 sweeps reduce flops and communication

* Momentum solve now dominant (non set-up) computational cost

» High wall-clock due to sparse matrix initialization (local/global graphs, memory)
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Strong Scaling on NERSC-Cori

Total simulation times for 10 time steps of the V27 41 R1 500M elements
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Pressure-Poisson Solver

Observations:
+ GMRES(50) for Belos/MuelLu, and GMRES(10) for Hypre—BoomerAMG. tol = 1e—5

* Hypre: aggressive coarsening significantly lowers C and Sayg; iterations increase
» Non-Galerkin sparsification further reduces solve and set-up times

* MueLu: unsmoothed prolongation reduce C and Sayq

Conclusions:
* Hypre and MueLu coarsening result in similar complexities C and solve times

 Hypre: higher computational cost per GMRES iteration
» Hypre: set-up costs increasing at higher core counts
» MueLu: higher GMRES iteration count that increases with core count

» MuelLu: lower solve time with 2 smoother sweeps reduces communication
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Thank you! Questions?
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