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Outline

Background/Experimental
• Materials for sCO2 power cycles
• Exposure conditions
• Techniques overview

Results
• Surface imaging (white light, SEM)
• Cross-sectional TEM
• X-ray photoelectron spectroscopy (XPS)

Conclusions and future work
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Supercritical CO2 power cycles

Indirect sCO2 Cycle
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Cycle Type Component
Inlet Outlet

Fluid components
T (°C) P (MPa) T (°C) P (MPa)

Indirect

Heater 450-535 1-10 650-750 1-10

High purity CO2Turbine 650-750 20-30 550-650 8-10

HX 550-650 8-10 100-200 8-10

Direct

Combustor 750 20-30 1150 20-30 CO2 containing H2O, 
O2, and other 
impurities

Turbine 1150 20-30 800 3-8

HX 800 3-8 100 3-8
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Typical stages of alloy oxidation
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Breakaway oxidation
• Surface depletion
• Spallation
• Carburization (metal dusting)

Most research efforts

This 
work
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Background:  Cross-sectional TEM

• Site-selective analysis 
using focused ion beam 
(FIB) lift-out method

• The cross-section is 
mounted to a support grid 
and thinned to <100 nm 
to allow electron 
transmission

• This allows cross-
sectional analysis of an 
oxidized surface at 
atomic resolution

http://science.duel.life/

10 um

Mill trenches

10 um

Lift out

20 um

Mount to grid (side view)

5 um

Mount to grid (top view)

5 um

Thin sample (top view)

Sample is ready for 
inspection by TEM
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T = 700 °C, P = 1 bar

High-temperature confocal 
scanning laser microscope 
(CSLM)

• Reaction gas 1 = 99.999% CO2
• Reaction gas 2 = 99.999% Ar
containing ≤ 1 ppb O2
• Exposure time = 5 min

Tube furnace
• Reaction gas = 99.999% CO2
• Exposure time = 2 - 500 hours

Exposure conditions

CSLM apparatus
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In situ imaging of 5 min CO2 exposure
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Surface imaging of 5 min CO2 and Ar exposures

Uniform surface Dark spots < 100 nm located 
preferentially along micro-scratches, grain 
boundaries, and carbide/matrix interfaces
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Evolution of surface morphology during 
exposure to CO2

Some orientations are 
preferentially oxidized

t = 5 min

5 μm

t = 2 hours

5 μm

t = 10 hours

5 μm

t = 500 hours

5 μm

Dark contrast 
spots grow over 
time.

More detailed 
characterization 
to follow

More detailed 
characterization 
to follow
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Voids precipitate at the oxide/metal 
interface via condensation of Cr 
vacancies formed during oxidation.

Early stages governed by selective 
oxidation processes
Cross-sectional TEM of 5 min CO2 exposure

ΔG:  Al2O3 < SiO2 < Cr2O3 < NiO

Thermodynamic stability

Ni
pO2 = 10-17 bar

In high purity CO2 at 1 bar and 700 °C, 
expected pO2 ≈ 10-6 - 10-5 bar. Yet, no 
Ni-oxides are formed.
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The role of oxygen impurities
Cross-sectional TEM of 5 min CO2 and Ar exposures

CO2 exposure (1-10 ppm O2) Ar exposure (≤1 pbb O2)

After 5 min at 700 °C, the surface oxides formed by exposure to CO2
are nearly identical to those formed by exposure to a low pO2
environment
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Composition profiles over larger areas
XPS depth profiling of 5 min CO2 and Ar exposures

• Good agreement with cross-
sectional TEM results (trends 
hold true over large areas)

• Ni 2p spectrum suggests little or 
no NiO (Ni metal only)

• Little or no carbon is present in 
or below the oxide layer
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Analysis of longer term exposure
Cross-sectional TEM of 500 hour CO2 exposure

50 μm

10 μm

2 μm

BSE surface image (low mag)

BSE surface image (high mag)

Cross-sectional 
TEM image

Grain boundary

Oxide

Voids
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Composition of longer term exposure
Cross-sectional TEM / EDS mapping of 500 hour CO2 exposure

Cr-rich oxide 
surface layer

“Internal 
oxidation” of 
Al in 
association 
with void 
formation

Possibly 
carbon in 
oxide layer, 
requires 
confirmation
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Summary/Conclusions

• Investigated oxidation behavior of Alloy 617 in 1 bar CO2 at 700 °C for 
times ranging from 5 min – 500 h.

• Selective oxidation occurred (Cr-rich oxide), even for very short exposure 
times (5 min).

• Similarities between CO2 and Ar exposures suggest O2 impurities in the 
CO2 gas may dominate early stages of oxidation.

• Little-to-no carburization observed thus far.

• In general, the alloy is a promising candidate for sCO2 power cycle 
applications.

• Voids formed during high temperature oxidation warrant further 
investigation.
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Thank you for listening.

Questions?
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Extra slides - Alloy 617 unexposed sample

• Cr-rich carbides identified as 
M23C6

• Thin native oxide layer ≈2 
nm thick prior to exposures
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