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Abstract

Formulas for incremental or parallel computation of second order central moments have long
been known, and recent extensions of these formulas to univariate and multivariate moments of
aribtrary order have been developed. Such formulas are of key importance in scenarios where
incremental results are required and in parallel and distributed systems where communication
costs are high. We survey these recent results, and recall the first generalizations which we had
obtained in [P0́8]. We then improve these arbitrary-order, numerically stable one-pass formu-
las to arbitrary-variate formulas which we further extend to arbitrary weights and compound
variants. We also develop a generalized correction factor for standard two-pass algorithms
that enables the maintenance of accuracy over nearly the full representable range of the input,
avoiding the need for extended-precision arithmetic.
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1 Introduction

Central moments, including the variance, and derived quantities like skewness and kurtosis, are
some of the most widely used tools in descriptive statistics. However, standard approaches for
computing them, reviewed in Section 2, either require two passes over the data, or are grossly
inaccurate for data that is not contained within a very limited range. This poses a problem in
streaming settings where incremental results are needed after each new value is observed, and for
very large datasets, which may not fit in available memory, and increasingly are distributed over a
number of hosts. The prevalence of large, distributed data sets has lead to the recent development of
new statistical packages to analyze them [WBS08, WTP+08, BGP+09, PTB10, PTBM11, Edd10,
SME+09, Sta10]. In this setting the cost of distributed memory access is so large that two-pass
algorithms become entirely impractical. Even a single machine increasingly performs large parallel
computations on a Graphics Processing Unit (GPU), where memory bandwidth is a significant
bottleneck. Using two passes doubles the execution time, and using double precision arithmetic
doubles it again, almost irrespective of the number of arithmetic operations performed in each pass.

For the second central moment (the variance), accurate, one-pass, incremental approaches have
long been known [Wel62, Nee66, Wes79]. Chan et al. generalized them into a “pairwise algo-
rithm” [CGL79], which computes the variance of a set by partitioning it into two subsets, com-
puting their second order statistics recursively, and then combining them with an updating rule to
obtain the second order statistics of the whole set. Constraining the second set to be a singleton
yields an efficient incremental (on-line) algorithm. Alternatively, using subsets of roughly equal
size yields a highly parallel algorithm. The latter also ensures intermediate terms will be commen-
surate, increasing accuracy by preventing destructive underflow. Incremental formulas for cumu-
lants up to fourth order have been proposed for a zero-mean process [AB95, DF98]. Ensuring a
zero-mean process involves removing a mean estimated from the data [DF98], which traditionally
requires a two-pass algorithm, eliminating the benefit of a recursive update formula.

In [BGP+09] Chan et al.’s variance calculation approach was generalized to moments of arbitrary
order and formulas for incremental and pairwise algorithms were provided. These formulas are
particularly useful as a number of applications of higher order moments require on-line updates or
parallel processing. For instance, many communications applications use both univariate [Men91]
and multivariate [NM93] moments up to fourth order—or cumulants, which are frequently com-
puted from the central moments. These include blind deconvolution [SW90], blind source sepa-
ration [Tug97], direction finding [PF91], and speech detection [NGM01], all of which can benefit
from on-line updates to adapt to changing channel conditions and minimize delay. Image process-
ing also makes frequent use of higher-order moments for modeling non-linear distortions, with
applications in deblurring [XC96, IHMM98, WHS06], noise removal [KLB97], gamma correction
and radial distortion estimation [FP01], and steganalysis [LF02]. Skewness and kurtosis are also
commonly used in financial modeling [Sam70, HS00], where datasets are so large that distributed
processing is required. Although examples are less common, moments up to sixth order can aid
chromatic dispersion compensation in long distance fiber-optic lines [KHSS05], and eighth-order
moments provide a means to identify cell phone modulation schemes [PM08], to name a few. In
this paper we further expand these formulas to a variety of other extensions: weighted moments,

7



forgetting schemes, and compound moments. Compound moments have important applications
for turbulent flow analysis [Jon93] and we demonstrate their application in this setting.

As the order of the moment increases, even the venerable two-pass algorithm may be inaccurate,
as the numerical error for evaluating polynomials around the mean grows exponentially with the
degree. When communication costs are the bottleneck, doubling the working precision doubles
the computation time. Alternatives, such as compensation algorithms for summation [ORO05]
and polynomial evaluation [LL07], require twice as much storage for intermediate values. This
is not an issue when computations are performed locally, but for distributed computations this is
just as costly as doubling the working precision. A well-known correction factor, attributed to Åke
Björk [CGL83] though also proposed by Neely [Nee66], greatly improves the accuracy of the two-
pass algorithm when computing the variance. In this paper we generalize this correction factor to
moments of arbitrary order. Our scheme transmits only one additional value in the second pass, but
can correct for the error in moments of all orders, providing increased accuracy for higher order
moments at a fraction of the cost of generic compensation schemes.
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2 Background: Computing Statistical Moments

We begin with a brief notational preamble, after which we directly formulate the main difficulties
which arise when computing statistical moments using floating point representations.

2.1 Statement of the Problem

For p a non-negative integer and using E [·] to denote the expectation, the p-th central moment of
a (univariate, real) random variable X is defined as

µp , E [(X−E[X ])p] , (2.1)

when the expectations exist1. For a finite population of n equiprobable values in a multiset S =
{xi}n

i=1, this reduces to

µp =
1
n

n

∑
i=1

(xi− x̄)p (2.2)

where

x̄ ,
1
n

n

∑
i=1

xi (2.3)

is the mean. The first central moment is exactly zero, and the second central moment is the vari-
ance, σ2 , µ2. For this paper, we only consider the statistics of finite populations taken in their
entirety, i.e., not sampled, to avoid issues of estimation bias. If S is instead just a finite sample of
an infinite population, one may obtain unbiased estimates of the moments of the whole popula-
tion [Hal46]2. However, unbiased estimates of the moments do not, in general, lead to unbiased
estimates of the derived quantities, such as standard deviation, skweness, and kurtosis.

The standard two-pass algorithm explicitly computes µp using (2.3) followed by (2.2). The two-
pass algorithm is numerically stable even when x̄ is large and µp is small. Its stability for p = 2
can be further improved by applying a well-known correction factor [Nee66, CGL83]:

µ2 =
1
n

n

∑
i=1

(xi− x̄)2−µ1
2 (2.4)

=
1
n

n

∑
i=1

(xi− x̄)2−
(1

n

n

∑
i=1

xi− x̄
)2

. (2.5)

1Some random variables, such as those with a Cauchy distribution, do not have an expectation.
2For p = 2 and p = 3, the unbiased estimators are n

n−1 µ2 and n2

(n−1)(n−2)µ3, respectively, with µp computed over
the sample as in (2.2). However, for p = 4 the unbiased estimator is [DR99]

(n−1)(n2−3n+3)
n3 µ4 +

3(2n−3)(n−1)
n3 µ2

2 .

Samples drawn (without replacement) from a finite population require additional corrections.

9



By definition, µ1 = 0 when evaluated with exact arithmetic, but Chan et al. [CL78] show that when
computing both µ1 and µ2 with inexact arithmetic using the two-pass algorithm, the rounding error
introduced into µ1 cancels much of the rounding error introduced into µ2. The corrected two-pass
algorithm still only requires two passes, since µ1 and µ2 can be computed simultaneously.

However, the two-pass approach is inadequate for large or distributed data sets, where making two
complete passes through the data is extremely expensive. It is also unsuitable when one needs
a new estimate of µp each time a new x value is obtained. The obvious method of obtaining a
one-pass calculation, what Chan et al. call the textbook algorithm [CGL83] for the variance, is to
expand the product (x− x̄)p into explicit powers of x and x̄. Using the binomial theorem, this is
easy to generalize to arbitrary order:

µp =
p

∑
k=0

(
p
k

)(1
n

n

∑
i=1

xp−k
i

)(
−x̄
)k

. (2.6)

The inner sums, including that for x̄, can be updated incrementally or computed in parallel, and
the outer sum requires negligible additional work, since p is typically small. However, even for
p = 2, this expression quickly becomes grossly inaccurate. The alternating signs on each term
cause destructive cancellation, and few, if any, significant digits are retained. The results may
even be negative when p is even, which is clearly nonsensical for it violates the Cauchy-Schwarz
inequality.
Example 2.1. Consider the values x1 = 1 and x2 = x3 = x4 = 1+10−13. Their respective double-
precision (64 bits) IEEE-754 floating point hexadecimal representations [iee85] are

r(x1) = 3ff0000000000000

and
r(x2) = r(x3) = r(x4) = 3ff00000000001c2 .

Subsequently, one obtains the following representations for the mean:

r(µ) = r
(

1
4

)( 4

∑
i=1

r(xi)

)
= 3ff0000000000152 ,

and the mean of the squares:

r
(

1
4

)( 4

∑
i=1

r(xi)
2
)
= 3ff00000000002a3 .

Thus the textbook algorithm yields the following value for the variance:

r
(

1
4

)( 4

∑
i=1

r(xi)
2
)
− r(µ)2 = bcb0000000000000 ,

which represents a negative number:

r(−2.220446049250313×10−16) = bcb0000000000000

thus establishing that the textbook algorithm can yield negative variances even with small data sets.
This problem is therefore not limited to large statistical calculations, but it becomes potentially
worse as the size of the sample set increases.
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2.2 Numerically stable one-pass algorithms

Much better one-pass algorithms for computing the variance have long been known [Wel62, Nee66,
Wes79, CGL79]. Chan et al. summarize them using a generic set of recurrence formulas [CGL79].
Partition S into multisets A and B of size nA and nB and define µp,A , µp,B, x̄A , and x̄B to be
the corresponding statistic computed over each partition. Then let

δB,A , x̄B− x̄A , (2.7)

Mp , nµp , (2.8)

and again give MA
p and MB

p an equivalent definition restricted to each partition. We will find it
more convenient to work with these Mp quantities, rather than µp, though either may be readily
obtained from the other. Now

x̄ = x̄A +
nB

n
δB,A , (2.9)

M2 = MA
2 +MB

2 +
nA nB

n
δ

2
B,A . (2.10)

A number of algorithms can be derived from these simple recurrences. Letting nB = 1 so that
B = {y} a singleton yields the incremental update formulas of [Wes79]:

x̄ = x̄A +
y− x̄A

n
, (2.11)

M2 = MA
2 +

n−1
n

(y− x̄A )2 . (2.12)

On the other hand, letting nA = nB = n/2 (assuming n is even) gives a recursive pairwise algo-
rithm:

x̄ = x̄A +
1
2

δB,A , (2.13)

M2 = MA
2 +MB

2 +
n
4

δ
2
B,A . (2.14)

While easily parallelizable, the pairwise algorithm can also reduce destructive underflow on a
uniprocessor, since it ensures that the terms in the update formulas are approximately commensu-
rate when the data is i.i.d. By contrast, when n is large, the terms corresponding to the B partition
in (2.11) and (2.12) are very small, affecting only a few of the least significant digits of x̄ and
M2. Both algorithms perform the same number of updates, but the pairwise algorithm requires
O(logn) additional storage. The same pairwise strategy can be applied with similar benefits to all
summation formulas, including (2.2), (2.3), and (2.6).
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3 Arbitrary-Order Update Formulas

3.1 Univariate Formulas

We begin by generalizing all pairwise and update formulas to arbitrary order and arbitrary set
decomposition.

Proposition 3.1. For any integer p≥ 2,

Mp = MA
p +MB

p +nA

(−nB

n
δB,A

)p
+nB

(nA

n
δB,A

)p

+
p−2

∑
k=1

(
p
k

)
δ

k
B,A

[
MA

p−k

(−nB

n

)k
+MB

p−k

(nA

n

)k
]
.

(3.1)

Proof. By the definition of Mp, and because {A ,B} is a partition of S, one has

Mp =
n

∑
i=1

(xi− x̄)p (3.2)

=
nA

∑
i=1

(xi− x̄)p +
n

∑
i=nA +1

(xi− x̄)p (3.3)

=
nA

∑
i=1

(
xi−

nA x̄A +nB x̄B

n

)p

+
n

∑
i=nA +1

(
xi−

nA x̄A +nB x̄B

n

)p (3.4)

=
nA

∑
i=1

(
xi− x̄A −

nB

n
δB,A

)p

+
n

∑
i=nA +1

(
xi− x̄B +

nA

n
δB,A

)p
(3.5)

=
p

∑
k=0

(
p
k

)(
δB,A

n

)k[
(−1)kMA

p−knk
B +MB

p−knk
A

]
, (3.6)

thanks to the commutativity of summation over finite sets, which allows us to swap ∑
p
k=0 with ∑

nA
i=1

and ∑
n
i=nA +1. Now, a few simplifications are in order: first, the k = 0 term of the above summation

is simply MA
p +MB

p ; second, by definition, both MA
1 and MB

1 are zero, eliminating the k = p−1
term; last, MA

0 = nA and MB
0 = nB, eliminating the need to compute these values separately for

use in the k = p term. Applying these three simplifications to (3.5) yields (3.1).

The final result Mp requires MA
q and MB

q for each q ∈ {2 . . . p}, instead of just for q = p. Thus
the update formula performs O(p2) arithmetic operations per element, compared to the O(1) op-
erations the two-pass algorithm required if only Mp is actually needed. A small improvement in
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accuracy may be obtained by evaluating (3.1) as the sum of two polynomials in −nB
n δB,A and

nA
n δB,A using Horner’s rule. When local computations are cheap, one could even use the com-

pensated Horner scheme, which often provides exactly rounded results [LL07], but this does not
prevent the accumulation of rounding errors in recursive applications of (3.1).

Corollary 3.2. In the case where B is reduced to a singleton {y}, Proposition 3.1 reduces to the
incremental update formula for S = A ∪{y} as follows

Mp = MA
p +

[
n−1
(−n)p +

(n−1
n

)p
]

δ
p
B,A

+
p−2

∑
k=1

(
p
k

)
MA

p−k

(
−δB,A

n

)k

.

(3.7)

Proof. Corollary 3.2 is an immediate specialization of Proposition 3.1 obtained when nA = n−1
and nB = 1. In this case, each MB

p vanishes since x̄B = y, and thus (3.1) immediately simplifies
to (3.7).

Remark 3.1. By noticing that

n−1
(−n)2 +

(n−1
n

)2
=

n2−n
n2 =

n−1
n

(3.8)

and taking p = 2, one directly retrieves (2.12) from Corollary 3.2.

We provide implementations of univariate incremental and pairwise update formulas in the open-
source Visualization Tool Kit (VTK), respectively in the Learn() and Aggregate() methods of
the dexcriptive statistics class vtkDescriptiveStatistics.

3.2 Multivariate Formulas

We continue by generalizing the univariate results to arbitrary multivariate moments (co-moments).
These are of interest, in particular, for Pearson correlation analysis, which we wish to conduct on
large-scale, distributed data sets. Higher order co-moments such as co-skewness and co-kurtosis
also have financial modeling applications [HSX04].

Extending the notation of previous sections, let S = {xi}n
i=1 ⊂ Rd , where xi = (xi,1, . . . ,xi,d) ∈ Rd

is a d-dimensional vector. Now let α = (α1, . . . ,αd) and β = (β1, . . . ,βd) be multi-indices of
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non-negative integers so that

α ≤ β ⇐⇒ α j ≤ β j ∀ j ∈ {1 . . .d} , (3.9)

|α|,
d

∑
j=1

α j , (3.10)

(
α

β

)
,

d

∏
j=1

(
α j

β j

)
, (3.11)

xα
i ,

d

∏
j=1

xα j
i, j , (3.12)

and define the central co-moment of order α of a finite population S = {xi} to be

µα ,
1
n

n

∑
i=1

(xi− x̄)α . (3.13)

Under this definition the usual covariance is obtained with α = (1,1). All the terms x̄, x̄A , x̄B,
δB,A , µα,A , µα,B, Mα , MA

α , MB
α are defined exactly as in the univariate case, with α replacing

the univariate order p. Similarly, we define

Mα ,
n

∑
i=1

(xi− x̄)α (3.14)

for the multi-index α .

Proposition 3.3. The recursive update formula for Mα is:

Mα = ∑
β≤α

(
α

β

)
δ

β

B,A

[(
−nB

n

)|β |
MA

α−β
+
(nA

n

)|β |
MB

α−β

]
. (3.15)

Proof. Following the proof of Proposition 3.1,

Mα =
nA

∑
i=1

(
xi− x̄A −

nB

n
δB,A

)α

+
n

∑
i=nA +1

(
xi− x̄B +

nA

n
δB,A

)α

.

(3.16)

Expanding out the multi-index products and applying the binomial theorem yields

Mα =
nA

∑
i=1

d

∏
j=1

α j

∑
k=0

(
α j

k

)(
xi, j− x̄ j,A

)α j−k
(
−nB

n
δB,A j

)k

+
n

∑
i=nA +1

d

∏
j=1

α j

∑
k=0

(
α j

k

)(
xi, j− x̄ j,B

)α j−k
(nA

n
δB,A j

)k
.

(3.17)
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Distributing the inner sums over the products, this simplifies to

Mα =
nA

∑
i=1

∑
β≤α

(
α

β

)(
xi− x̄A

)α−β
(
−nB

n
δB,A

)β

+
n

∑
i=nA +1

∑
β≤α

(
α

β

)(
xi− x̄B

)α−β
(nA

n
δB,A

)β

.

(3.18)

Once again, the commutativity of summation over finite sets allows us to swap ∑β≤α with ∑
nA
i=1

and ∑
n
i=nA +1, and rearranging terms produces (3.15).

A quick check verifies that (3.15) reduces to (3.5) when d = 1 and α = (p). The same simplifica-
tions made in the univariate case still apply when actually computing the full (3.15), though they
do not simplify the notation. That is, the β = 0 term is simply MA

α +MB
α , and every term where

∃ j ∈ {1 . . .d} 3 α j−β j = 1 vanishes. Similarly, when β = α , MA
0 = nA and MB

0 = nB. Applying
these simplifications to (3.15) with α = (1,1) produces

M(1,1) = MA
(1,1)+MB

(1,1)

+

[
nA

(
−nB

n

)2
+nB

(nA

n

)2
]

δ
(1,1)
B,A

, (3.19)

= MA
(1,1)+MB

(1,1)

+
nA nB

n
(x̄1,B− x̄1,A )(x̄2,B− x̄2,A ) .

(3.20)

When B is reduced to a singleton {(y1,y2)}, this is equivalent to the incremental covariance update
formula derived by Neely [Nee66]:

M(1,1) = MA
(1,1)+MB

(1,1)+
n−1

n
(y1− x̄1,A )(y2− x̄2,A ) . (3.21)

We provide implementations of bivariate incremental and pairwise update formulas in the open-
source Visualization Tool Kit (VTK), respectively in the Learn() and Aggregate() methods of
the correlative statistics vtkCorrelativeStatistics class.

3.3 Weighted Formulas

Consider a quantity x̃W defined as a weighted arithmetic mean with respect to a given set of weights
W . Replacing the set sizes n, nA , and nB with sums of non-negative weights {wi}1≤i≤N ,

W ,
n

∑
i=1

wi , WA ,
nA

∑
i=1

wi , WB ,
n

∑
i=nA +1

wi , (3.22)
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and the other sums with weighted sums,

x̃W ,
1

W

n

∑
i=1

wixi , (3.23)

Mp ,
n

∑
i=1

wi(xi− x̃W )p , (3.24)

leads directly to weighted versions of our main results:

x̃W = x̃W,A +
WB

W
δB,A , (3.25)

Mp = MA
p +MB

p +WA

(−WB

W
δB,A

)p
+WB

(WA

W
δB,A

)p

+
p−2

∑
k=1

(
p
k

)
δ

k
B,A

[
MA

p−k

(−WB

W

)k
+MB

p−k

(WA

W

)k
]
,

(3.26)

Mα = ∑
β≤α

(
α

β

)
δ

β

B,A

[
MA

α−β

(
−WB

W

)|β |
+MB

α−β

(WA

W

)|β |]
. (3.27)

These formulas may be used to derive adaptive estimators for non-stationary signals by setting
WB = 1

η
WA , where 1

η
with η > 0 is a forgetting factor, similar to that proposed by Demélé and

Favier [DF98]. This holds the relative importance of the most recent sample constant, while that
of past samples decays exponentially. Other adaptive schemes are possible.

Remark 3.2. In addition, the proofs of Propositions 3.1 and 3.3 remain equally valid if the sums
over S are replaced with integrals, since the other sums are finite. Thus, one can use (3.26)
and (3.27) to compute moments of mixture distributions given the moments of each independent
mixture element. Such moments can indicate goodness of fit or even be used to estimate the mix-
ture parameters themselves via the method of moments [Pea94].

3.4 Formulas for Compound Moments

A special case is that of compound moments of the type

µp =
1
n

n

∑
i=1

(xi− x̃W )p , (3.28)

where x̃W is the weighted mean defined by (3.23). Such compound moments are often used in
moment-closure modelling methods of turbulent flows [Jon93]. Correspondingly, we define the
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quantity M̃p by replacing x̄ with x̃W in (3.2) and, when (3.25) is applied, it expands to

M̃p =
nA

∑
i=1

(xi− x̃W )p +
n

∑
i=nA +1

(xi− x̃W )p (3.29)

=
nA

∑
i=1

(
xi− x̃W,A −

WB

W
δB,A

)p

+
n

∑
i=nA +1

(
xi− x̃W,B +

WA

W
δB,A

)p
(3.30)

=
p

∑
k=0

(
p
k

)
δ

k
B,A

[
M̃A

p−k

(−WB

W

)k
+ M̃B

p−k

(WA

W

)k
]

(3.31)

where δ̃B,A is the compound counterpart of δB,A , defined as

δ̃B,A , x̃W,B− x̃W,A . (3.32)

The k = 0 term simplifies to M̃A
p +M̃B

p , while the k = p term assumes the slightly different form of

nA

(
−WB

W
δ̃B,A

)p
+nB

(WA

W
δ̃B,A

)p
, (3.33)

since M̃A
0 = nA and M̃B

0 = nB. However, the k = p−1 term is non-zero and expands to

pM̃A
1

(
−WB

W
δ̃B,A

)p−1
+ pM̃B

1

(WA

W
δ̃B,A

)p−1
, (3.34)

where

M̃A
1 = nA

(
x̄A − x̃W,A

)
(3.35)

and

M̃B
1 = nB

(
x̄B− x̃W,B

)
. (3.36)

The resulting expansion is thus

M̃p = M̃A
p + M̃B

p

+ pM̃A
1

(−WB

W
δ̃B,A

)p−1
+ pM̃B

1

(WA

W
δ̃B,A

)p−1

+nA

(−WB

W
δ̃B,A

)p
+nB

(WA

W
δ̃B,A

)p

+
p−2

∑
k=1

(
p
k

)
δ̃

k
B,A

[
M̃A

p−k

(−WB

W

)k
+M̃B

p−k

(WA

W

)k
] (3.37)
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which can be slightly simplified as follows

M̃p = M̃A
p + M̃B

p

+
(

pM̃A
1 −nA

WB

W
δ̃B,A

)(−WB

W
δ̃B,A

)p−1

+
(

pM̃B
1 +nB

WA

W
δ̃B,A

)(−WA

W
δ̃B,A

)p−1

+
p−2

∑
k=1

(
p
k

)
δ̃

k
B,A

[
M̃A

p−k

(−WB

W

)k
+M̃B

p−k

(WA

W

)k
]
.

(3.38)

3.5 Two-pass Correction

Chan et al. note that the correction factor for p = 2 in (2.5) is equivalent to computing a trial mean
with (2.3), shifting the data by this value, and then applying the textbook algorithm [CGL83].

Applying the same strategy to the arbitrary-order formula (2.6) yields

µp =
p

∑
k=0

(
p
k

)( n

∑
i=1

(xi− x̄)p−k
)(
−1

n

n

∑
i=1

xi− x̄
)k

. (3.39)

Since central moments are defined relative to the mean, subtracting a constant from the data does
not affect the result, but when that constant is the mean (or a close approximation), it can have
a large effect on accuracy. Like the p = 2 case, there is no destructive cancellation since the
correction terms are much smaller than the k = 0 term.

Again, this is a two-pass algorithm. The first pass computes x̄, and the second pass computes all
of the inner sums in parallel. Compared to using extended-precision arithmetic, it is inexpensive
computationally, requiring only two additions per value plus a small, constant amount of work at
the end. However, its real advantage over typical compensation schemes is that it can correct for
the error in the moments of all orders while only transmitting a single correction term.
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