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Motivation

 CompSim is extensively used throughout industry for a variety 
of purposes
 Design

 Qualification

 Problem solving

 Model use determines confidence requirement
 Drop-in replacement for tests (Highest confidence)

 Relative Comparisons between designs (Medium to low confidence)

 Assessing new design concepts (low confidence)

 Model is rarely useless
 It can always provide insight

 Characterization of model drives confidence/use in results



Definitions

 Verification: The process of determining that a model 
implementation accurately represents the developer’s 
conceptual description of the model and the solution to the 
model.

 Validation: The process of determining the degree to which a 
model is an accurate representation of the real world from 
the perspective of the intended uses of the model



Component Specification Background

 Component level 
environmental and test 
specifications derived from 
system level CompSim or 
test

 Component level tests allow 
testing without building full 
system
 Allows quick turnaround 

assessment of design

 Provides qualification 
evidence at component level
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Background (cont)

 Component Specifications cover separated, expected 
operational environments
 Random vibration

 Shock

 Sine

 Combinations of above

 CompSim fills in holes in the environments that cannot be 
tested.
 Limited hardware

 Environments beyond capability of test equipment

 Limited test instrumentation

 Boundary condition differences

 Model Validation and Characterization can determine how 
the CompSim results should be utilized.



Shock Specification with a 
Validated Model

 Shock represents a “short” 
transient into the system
 Car running over a rock  or a trench

 Pyroshock event

 Ejection

 Drop

 Can be represented by either a 
haversine or a resonant beam 
test
 Dependent on character of 

operational event

 Can also be replicated on a shaker 
if amplitude/frequency is low 
enough 0 0.05 0.1
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Validating the model

 Model and experimental uncertainty accounted for

 In this example, peak g is quantity of interest (QOI) in both a 
resonant plate and haversine test
 Duration/Frequency has been evaluated as acceptably represented

 Metric evaluated at every location of interest
 Model can be better in some regions than in others
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Regions that have been assessed to 
behave linearly

 Lower bound of model validity ( experimental mean-Uz)

 Upper bound of model validity (2*Experimental mean+UE)

 Allows a factor of 2 error in the predicted peak g.
 Based on discussions with customer

 Defining haversine/resonant plate specification
 For valid but under-prediction, 2*(peak g)

 For valid but over prediction, peak g

 For invalid, other sources used to define specification
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Regions that behave non-linearly

 Model must be conservative
 Model should over-predict nonlinearities (slipping, etc.)

 Only experimental uncertainty for lower bound

 Defining haversine/resonant plate specification
 For valid but under-prediction, 2*(peak g)

 For valid but over prediction, peak g

 For invalid, other sources used to define specification
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Random Vibration Specification with an 
Assessed Model

 Random Vibration 
represents a long duration, 
stationary event
 Gaussian typically assumed

 Stationarity sometimes not 
met

 Amplitudes could change 
through time

 Frequency content could vary

 Simulated on a shaker and 
defined by a power spectral 
density (PSD)

 Time duration defined by 
operational environment
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Random Vibration Model Validation
 Test specification derived by using straight line 

approximations for the environment
 Sometimes modified to account for impedance of next level of 

assembly

 Accounts for unit to unit variability

 Validation metrics vary
 Error bounds on natural frequencies (~5%, for example)

 Least favorable response

 Weighted integrals of experimental and CompSim PSD

 Smoothens PSD to provide a clean comparison

 Once the level of confidence of the model has been 
established, model bias is identified and used to define 
specification

 Model is used to define environment for unmeasured 
locations



Localized Bias Correction

 Bias correction requires identifying a frequency dependent 
bias function based off of the peaks of the PSD
 Develop an envelop based off of location that is measured and 

modeled

 Scale nearby responses using the same function

 Provides a plausible model correction for developing test 
specifications from a imperfect model
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Quantifying Margins 
and Uncertainties

 Quantifying the extent of satisfaction of a requirement is 
crucial to establish confidence in component performance

 Margin testing is common

 Margin can also be established through modeling
 Limited to mechanical failures

 Functional failures not yet modeled

 Fidelity of model to establish margin is circular
 A high fidelity model is required if margin is small

 A low fidelity model is required if margin is large



Large Margin 

 Model uncertainty and requirement uncertainty doesn’t 
overlap
 A large margin is identified

 Model uncertainty can be high
 Margin is excessive

 Exact margin definition not necessary
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Small Margin

 Model uncertainty and requirement overlap
 A small or negative margin is identified

 Knowing the exact margin is important to understand if requirement is 
met or not

 High confidence in the model is required to properly identify 
margin.
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Conclusions

 Define end use of the model up front

 Formal definitions of how model results will be combined 
with test data can be made

 Quality of model defines end use
 Model is hardly ever useless if it is verified

 How results are used is determined by model fidelity
 Use results from model for high confidence

 Use modified model results for less confidence

 Use mostly other sources of data for low confidence models


