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Outline 

 Domain Decomposition: 
 Additive Schwarz Preconditioners 
 Computational Kernels 
 Flexibility 

 Parallelism (Trinity): 
 Vectorization 
 Threads 
 MPI 

 Current Efforts: 
 Threaded sparse direct solvers 
 Parallel constraint elimination 
 On the fly re-decomposition 
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Domain Decomposition 

Two-level Additive Schwarz Preconditioner: 



Domain Decomposition 

Multi-level Additive Schwarz Preconditioner: 



Domain Decomposition 

 Computational Kernels: 
 Sparse matrix-vector multiplication 
 Application of operator/coarse interpolations 
 Tpetra/Kokkos 

 Solution of linear systems 
 Threaded/accelerated factorizations and solves 

– MKL Pardiso 
– Sandia efforts (Trilinos) 

 Inexact subdomain solves 
– Reduced memory, manycore 

 Dense linear algebra 
 Iterative solution acceleration 

– Subspace recycling (projections) 
 Sparse direct solvers (supernodal variants) 

 Constraint equations (more later) 
 



Domain Decomposition 

 Flexibility: 
 Historically one core/MPI process and one core/subdomain 

 Several options 
 Threaded linear solves 

– Keeps threads busy while not introducing additional subdomains 
 Multiple subdomains per core (over-decomposition*) 

– To help address load imbalance 
– More subdomains, but helps keep cores busy 
– Viewed as introducing more subdomains or inexact local solver 

 Multiple cores per MPI process 
– e.g. one MPI process per Trinity quadrant 
– Each MPI process involves multiple subdomains 
– Can be viewed as inexact local solver for larger subdomain 

 Examples 
 

*Richard Barrett, Mike Glass suggestion  



Domain Decomposition 

 Flexibility: Example 1, business as usual 

• 64 cores 
• 1 core per subdomain  
• 1 core per MPI process 

view of single node 



Domain Decomposition 

 Flexibility: Example 2 (fewer MPI procs than cores) 

• 64 cores 
• 16 cores per larger 

subdomain 
• 1 smaller subdomain for 

each core 
• 16 cores per MPI process 
• “local” solves for larger 

subdomain can be done 
inexactly 

• e.g. larger subdomain 
associated with quadrant 

view of single node 



Domain Decomposition 

 Flexibility: Example 3 (over-decomposition) 

• 64 cores 
• 16 cores per larger 

subdomain 
• 4 smaller subdomains for 

each core 
• 16 cores per MPI process 
• “local” solves for larger 

subdomain can be done 
inexactly 

• e.g. larger subdomain 
associated with quadrant 

view of single node 



Parallelism (Trinity Focus) 

 Vectorization: 
 Dense linear algebra 
 Rely on vendor BLAS 
 For sparse linear solves & projections 

 Threads: 
 Direct solvers 
 MKL/Pardiso & Sandia efforts so far 

 Over-decomposition task parallelism 

 MPI: 
 Multilevel Preconditioner 
 Tpetra-based 
 Energy-minimizing (algebraic) coarse spaces 
 Concurrency possible at all levels for additive variant 

 
 



Current Efforts 

 Threaded Sparse Direct Solvers: 
 MKL/Pardiso 
 Sandia efforts 
 Cholesky, LDLT, LU 
 Threaded factorizations & triangular solve 
 Different threading approaches 
 Future: inexact manycore 
 To be accessible via Trilinos 

 Can swap in alternatives as become available 



Current Efforts 

 Parallel Constraint Elimination: 
 
 
 
 
 
 

 Sparse LU for rectangular systems 
 Constraint matrix C may be singular 
 Need to identify redundant constraints 

 Great for certain types of constraint equations 
 Connecting dissimilar meshes 
 Enforcing rigid constraints 

 Constraint-aware decompositions can be important 
 



Current Efforts 

 On the fly re-decomposition: 
 Good load balance very important 
 Ignoring constraints or physics can cause problems 
 Poorly shaped subdomains 
 Poor load balance (e.g. structural-acoustics) 

 Needed for over-decomposition 
 Vertex separators well-suited for domain decomposition 
 Keep interface of decomposition smaller 
 Follows naturally from element decomposition 
 Not so easy if element information lost (e.g. matrix only) 

 Algorithm: 
 Based on hypergraph model where vertices are non-zero 

entries of matrix and hyperedges are rows/columns of matrix 
 Implementation based on Zoltan/phg  

 



Closing Remarks 

 Domain Decomposition Solvers 
 Natural fit for future platforms 
 Flexibility to optimize performance 
 Lots of dense linear algebra 

 Can benefit greatly from Trilinos-related efforts 
 Sparse triangular factorizations and triangular solves 
 Sparse matrix-vector multiplication 
 Isolation from hardware specifics 
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