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= Domain Decomposition:
= Additive Schwarz Preconditioners
= Computational Kernels
= Flexibility

= Parallelism (Trinity):
= Vectorization
= Threads
= MPI

= Current Efforts:
= Threaded sparse direct solvers
= Parallel constraint elimination
= On the fly re-decomposition
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Two-level Additive Schwarz Preconditioner:
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Multi-level Additive Schwarz Preconditioner:
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= Computational Kernels:

= Sparse matrix-vector multiplication
= Application of operator/coarse interpolations
= Tpetra/Kokkos

= Solution of linear systems

= Threaded/accelerated factorizations and solves
— MKL Pardiso
— Sandia efforts (Trilinos)

= |nexact subdomain solves
— Reduced memory, manycore

= Dense linear algebra

= |terative solution acceleration
—  Subspace recycling (projections)
= Sparse direct solvers (supernodal variants)

= Constraint equations (more later)
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= Flexibility:
= Historically one core/MPI process and one core/subdomain

= Several options

= Threaded linear solves

— Keeps threads busy while not introducing additional subdomains
= Multiple subdomains per core (over-decomposition®)

— To help address load imbalance

— More subdomains, but helps keep cores busy

— Viewed as introducing more subdomains or inexact local solver
= Multiple cores per MPI process

— e.g.one MPI process per Trinity quadrant

— Each MPI process involves multiple subdomains

— Can be viewed as inexact local solver for larger subdomain

= Examples

*Richard Barrett, Mike Glass suggestion
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= Flexibility: Example 1, business as usual

* 64 cores
» 1 core per subdomain
* 1 core per MPI process

view of single node
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= Flexibility: Example 2 (fewer MPI procs than cores)

e 64 cores

» 16 cores per larger
subdomain

e 1 smaller subdomain for
each core

e 16 cores per MPI process

* “local” solves for larger
subdomain can be done
inexactly

* e.g. larger subdomain
associated with quadrant

view of single node
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= Flexibility: Example 3 (over-decomposition)

e 64 cores

« 16 cores per larger
subdomain

e 4 smaller subdomains for
each core

e 16 cores per MPI process

* “local” solves for larger
subdomain can be done
inexactly

e e.g. larger subdomain
associated with quadrant

view of single node
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= Vectorization:
= Dense linear algebra
= Rely onvendor BLAS
= [or sparse linear solves & projections

= Threads:

= Direct solvers
= MKL/Pardiso & Sandia efforts so far

= QOver-decomposition task parallelism

= MPI:

= Multilevel Preconditioner
= Tpetra-based
= Energy-minimizing (algebraic) coarse spaces
= Concurrency possible at all levels for additive variant
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= Threaded Sparse Direct Solvers:

= MKL/Pardiso

= Sandia efforts
= Cholesky, LDLT, LU
= Threaded factorizations & triangular solve
= Different threading approaches
= Future: inexact manycore
= To be accessible via Trilinos

= Can swap in alternatives as become available
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= Parallel Constraint Elimination:
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= Sparse LU for rectangular systems
= Constraint matrix C may be singular
= Need to identify redundant constraints
= Great for certain types of constraint equations
= Connecting dissimilar meshes
= Enforcing rigid constraints
= Constraint-aware decompositions can be important
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= On the fly re-decomposition:
= Good load balance very important
= |gnoring constraints or physics can cause problems
= Poorly shaped subdomains
= Poor load balance (e.g. structural-acoustics)
= Needed for over-decomposition
= Vertex separators well-suited for domain decomposition
= Keep interface of decomposition smaller
=  Follows naturally from element decomposition
= Not so easy if element information lost (e.g. matrix only)
= Algorithm:

= Based on hypergraph model where vertices are non-zero
entries of matrix and hyperedges are rows/columns of matrix

= Implementation based on Zoltan/phg
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= Domain Decomposition Solvers

= Natural fit for future platforms
= Flexibility to optimize performance
= Lots of dense linear algebra

= Can benefit greatly from Trilinos-related efforts
= Sparse triangular factorizations and triangular solves
= Sparse matrix-vector multiplication
= Isolation from hardware specifics
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