

Domain Decomposition Solver Strategies

for Future Platforms

Clark Dohrmann
Computational Solid Mechanics &
Structural Dynamics Department

ACS Meeting
Sandia National Laboratories

February 2-5, 2015

1

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

SAND2015-0537C

Outline

 Domain Decomposition:
 Additive Schwarz Preconditioners
 Computational Kernels
 Flexibility

 Parallelism (Trinity):
 Vectorization
 Threads
 MPI

 Current Efforts:
 Threaded sparse direct solvers
 Parallel constraint elimination
 On the fly re-decomposition

2

Domain Decomposition

Two-level Additive Schwarz Preconditioner:

Domain Decomposition

Multi-level Additive Schwarz Preconditioner:

Domain Decomposition

 Computational Kernels:
 Sparse matrix-vector multiplication
 Application of operator/coarse interpolations
 Tpetra/Kokkos

 Solution of linear systems
 Threaded/accelerated factorizations and solves

– MKL Pardiso
– Sandia efforts (Trilinos)

 Inexact subdomain solves
– Reduced memory, manycore

 Dense linear algebra
 Iterative solution acceleration

– Subspace recycling (projections)
 Sparse direct solvers (supernodal variants)

 Constraint equations (more later)

Domain Decomposition

 Flexibility:
 Historically one core/MPI process and one core/subdomain

 Several options
 Threaded linear solves

– Keeps threads busy while not introducing additional subdomains
 Multiple subdomains per core (over-decomposition*)

– To help address load imbalance
– More subdomains, but helps keep cores busy
– Viewed as introducing more subdomains or inexact local solver

 Multiple cores per MPI process
– e.g. one MPI process per Trinity quadrant
– Each MPI process involves multiple subdomains
– Can be viewed as inexact local solver for larger subdomain

 Examples

*Richard Barrett, Mike Glass suggestion

Domain Decomposition

 Flexibility: Example 1, business as usual

• 64 cores
• 1 core per subdomain
• 1 core per MPI process

view of single node

Domain Decomposition

 Flexibility: Example 2 (fewer MPI procs than cores)

• 64 cores
• 16 cores per larger

subdomain
• 1 smaller subdomain for

each core
• 16 cores per MPI process
• “local” solves for larger

subdomain can be done
inexactly

• e.g. larger subdomain
associated with quadrant

view of single node

Domain Decomposition

 Flexibility: Example 3 (over-decomposition)

• 64 cores
• 16 cores per larger

subdomain
• 4 smaller subdomains for

each core
• 16 cores per MPI process
• “local” solves for larger

subdomain can be done
inexactly

• e.g. larger subdomain
associated with quadrant

view of single node

Parallelism (Trinity Focus)

 Vectorization:
 Dense linear algebra
 Rely on vendor BLAS
 For sparse linear solves & projections

 Threads:
 Direct solvers
 MKL/Pardiso & Sandia efforts so far

 Over-decomposition task parallelism

 MPI:
 Multilevel Preconditioner
 Tpetra-based
 Energy-minimizing (algebraic) coarse spaces
 Concurrency possible at all levels for additive variant

Current Efforts

 Threaded Sparse Direct Solvers:
 MKL/Pardiso
 Sandia efforts
 Cholesky, LDLT, LU
 Threaded factorizations & triangular solve
 Different threading approaches
 Future: inexact manycore
 To be accessible via Trilinos

 Can swap in alternatives as become available

Current Efforts

 Parallel Constraint Elimination:

 Sparse LU for rectangular systems
 Constraint matrix C may be singular
 Need to identify redundant constraints

 Great for certain types of constraint equations
 Connecting dissimilar meshes
 Enforcing rigid constraints

 Constraint-aware decompositions can be important

Current Efforts

 On the fly re-decomposition:
 Good load balance very important
 Ignoring constraints or physics can cause problems
 Poorly shaped subdomains
 Poor load balance (e.g. structural-acoustics)

 Needed for over-decomposition
 Vertex separators well-suited for domain decomposition
 Keep interface of decomposition smaller
 Follows naturally from element decomposition
 Not so easy if element information lost (e.g. matrix only)

 Algorithm:
 Based on hypergraph model where vertices are non-zero

entries of matrix and hyperedges are rows/columns of matrix
 Implementation based on Zoltan/phg

Closing Remarks

 Domain Decomposition Solvers
 Natural fit for future platforms
 Flexibility to optimize performance
 Lots of dense linear algebra

 Can benefit greatly from Trilinos-related efforts
 Sparse triangular factorizations and triangular solves
 Sparse matrix-vector multiplication
 Isolation from hardware specifics

	Slide Number 1
	Outline
	Domain Decomposition
	Domain Decomposition
	Domain Decomposition
	Domain Decomposition
	Domain Decomposition
	Domain Decomposition
	Domain Decomposition
	Parallelism (Trinity Focus)
	Current Efforts
	Current Efforts
	Current Efforts
	Closing Remarks

