SAND2015-0461C

Asynchronous Parallel Evolutionary Algorithms:
Leveraging Heterogeneous Fithess Evaluation Times for
Scalability and Elitist Parsimony Pressure

Matthew A. Martin
Natural Computation

Alex R. Bertels
Natural Computation

Daniel R. Tauritz
Natural Computation

Laboratory Laboratory Laboratory
Department of Computer Department of Computer Department of Computer
Science Science Science

Missouri University of Science
and Technology
Rolla, Missouri, U.S.A.
mam446@mst.edu

ABSTRACT

Many important problem classes lead to large variations in
fitness evaluation times, such as is often the case in Genetic
Programming where the time complexity of executing one
individual may differ greatly from that of another. Asyn-
chronous parallel evolutionary algorithms (APEAs) omit the
generational synchronization step of traditional evolution-
ary algorithms which work in well-defined cycles. They can
provide scalability improvements proportional to the vari-
ation in fitness evaluation times of the evolved individu-
als, and therefore should be considered when faced with
the aforementioned problem classes. This paper provides
an empirical analysis of the scalability improvements ob-
tained by applying APEAs to such problem classes. Fur-
thermore, APEASs often suffer from bias towards individuals
with shorter fitness evaluation times, simply because they
propagate faster. This paper shows how to leverage this
bias in order to provide a unique type of “elitist” parsimony
pressure which rewards more efficient solutions with equal
solution quality.

Categories and Subject Descriptors

1.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search; 1.2.2 [Artificial Intelligence]: Au-
tomatic Programming—program modification, program syn-
thesis

General Terms
Algorithms, Design

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

GECCO’15, July 11-15, 2015, Madrid, Spain.

Copyright 2015 ACM TBA ...$15.00.

Missouri University of Science
and Technology
Rolla, Missouri, U.S.A.
arb9z4@mst.edu

Missouri University of Science
and Technology
Rolla, Missouri, U.S.A.
dtauritz@acm.org

Keywords

Black-Box Search Algorithms, Evolutionary Algorithms, Ge-
netic Programming, Hyper-Heuristics

1. INTRODUCTION

The genotype representation of individuals used in evo-
lutionary algorithms greatly influences the evaluation time.
In various problem classes, the representation may result in
evaluation times that fluctuate with the structure of each
individual. Genetic programs (GPs) often attempt to con-
trol this time by employing limits or penalties. The time
difference is found to be magnified in fields such as hyper-
heuristics when fitness relies on a sample consisting of multi-
ple test cases. While parallelization of the generational evo-
lutionary algorithm provides a significant speed-up, many
cycles in the cores are still wasted waiting for the larger in-
dividuals to be evaluated. The nature of asynchronous par-
allel evolutionary algorithms (APEAs) presents a solution
to this inefficiency.

This research establishes the improvement of APEAs over
synchronous PEAs on global populations. Additionally, this
paper introduces and analyzes the “elitist” parsimony pres-
sure (EPP) that is an effect of employing asynchronous EAs
on heterogeneous populations. The rest of the article is or-
ganized as follows. Section 3.1 illustrates the structure of
the APEA and the mechanics behind it. The design of the
synchronous model and the inherent limitations are laid out
in Section 3.2. This is followed by a comparison between the
two models (Section 4). The comparison explores the rela-
tionship of the number of parallel work nodes to both the
evaluation speed (Section 4.4) as well as the convergence
time (Section 4.5). Section 5 reveals the effects of using
the models on the heterogeneous populations. Lastly, the
findings and future work will be discussed.

2. BACKGROUND

Employing evolutionary algorithms (EAs) in optimizing
solutions to difficult problems is often limited by the size of
the search space and the run time allotted for the search.
The structure of these EAs must consider both scalability
and efficiency when utilizing the machines at hand. This

results in EAs that must distribute individuals and/or pop-
ulations across multiple machines and parallel processes that
must attempt to reduce the number of wasted cycles within
each available core.

Typically, the step in which the fitness, or quality, of each
individual in a population is evaluated can be executed in
parallel. When the fitness of every individual in a population
can be determined in a constant time, the evaluation is said
to be homogeneous across the population. Times that vary
from one evaluation to the next are heterogeneous.

Populations within a parallel EA (PEA) can either be
structured with one or more decentralized populations or as
a single, centralized population [7]. Decentralized popula-
tions are easily scalable as a machine can host one or more
sub-populations and these sub-populations can share indi-
viduals at independently determined time intervals. This
allows for each sub-population to evolve at different paces,
but still receive some genes from other populations. Alba
has focused on the effectiveness of various behaviors, par-
ticularly distributed and cellular reproduction, in decentral-
ized, parallel EAs [3, 1, 2].

Decentralized populations can be limited by size of the
sub-populations and may take many generations to converge
on an optimal solution. A single, global population would
diminish that issue. In most traditional EAs, the popula-
tion must be synchronized after each generation. In that
situation, several slave processes will not be fully utilized
with a heterogeneous population. An APEA would nearly
eliminate the wasted cycles that come with differences in
evaluation times.

Durillo et al. have empirical evidence supporting the
significant improvement in terms of various quality met-
rics when employing APEAs rather than synchronous PEAs
for NSGA-II [5]. The APEA master process creates and
sends individuals to be evaluated as the slave processors be-
come idle. In the generational version, the population is
replaced when enough offspring have been generated. With
the steady-state alternative, the offspring are considered as
each is received. The researchers employed homogeneous
populations as the test cases during experimentation. While
these results still apply to heterogeneous populations, other
quality metrics should be investigated to measure perfor-
mance.

Those that have specifically addressed heterogeneous pop-
ulations note that APEAs are biased toward individuals
with shorter evaluation times [9, 8, 4]. This is a result of
the master process receiving those individuals sooner and
more often, flooding the population. This potentially re-
duces the search space that can be reached within the run
time. Yagoubi and Schoenauer attempt to circumvent this
with a duration-based selection on the received offspring [8].
This supposed defect can be taken advantage of in various
situations, one of which is evolving genetic programs (GPs).
GPs must use a mechanism (e.g., parsimony pressure) or
must minimize a size-related objective value to prevent any
individual from becoming too large. The bias provided by
heterogeneous evaluation times can be used to produce an
implicit time pressure.

3. EVOLUTION MODELS

Both the asynchronous and synchronous evolution models
that are described here are designed to perform well when
being parallelized across multiple computing nodes. Both

Master
Population

Slave Slave Slave

Individual Individual Individual

Figure 1: This diagram illustrates how both the
asynchronous and synchronous models are struc-
tured.

models are designed around a master-slave architecture. In
these models the master node stores the population and han-
dles the population mechanics, such as adding new individ-
uals into the population and survival selection, and genetic
operations, such as mutation and crossover. The slave nodes
solely evaluate the individuals. How the slave nodes acquire
new individuals to be evaluated is described in Sections 3.1
and 3.2 for the asynchronous and synchronous algorithms
respectively. In each of the models the initial population
must be evaluated before the main iteration of the models,
described below, is started. This is done by distributing the
initial population to the nodes and treating them as a single
iteration of the synchronous model.

3.1 Asynchronous Evolution Model

The asynchronous evolution model works by each slave
node requesting an individual to evaluate. When the slave
node is finished evaluating the individual, the individual is
sent back to the master node to be added to the popula-
tion, and the slave node receives a new individual to eval-
uate. This continues until the termination criteria is met.
Each slave node is performing these operations simultane-
ously. Having each slave node act completely independently
of any other slave node inherently provides work balancing
and does not waste time by waiting on other individuals be-
ing evaluated. Thus, the only time wasted is in the time it
takes for the individuals to be sent to and from the slave
nodes which all PEAs would have.

There are many ways to handle population mechanics of
asynchronous evolution models. The method chosen here is
to treat the population like a (u+1) Evolutionary Algorithm
due to its simplicity. When a slave node requests a new in-
dividual the master node does parent selection, crossover,
and mutation operations creating a new individual. This
new individual is sent to the given slave node. When a slave
node finishes the evaluation of an individual it returns it
to the master node and is added to the population. Then
the master node performs a survival selection to reduce the
population size back down to size u. The master node then
creates a new solution and the cycle continues until conver-
gence. Each slave node causes an update to the population
independently which allows it to bypass certain limitations
that the synchronous evolution model has. These limitations
will be described in more depth in Section 3.2.

3.2 Synchronous Evolution Model

The synchronous evolution model works by creating batches
of individuals and distributing them to slave nodes for eval-
uation. If A is larger than the number of slave nodes and
a slave node finishes evaluating an individual, that node re-
quests another individual from the master node. This bal-
ances the work between all of the slave nodes as evenly as
possible without knowing the evaluation time a priori. How-
ever, when) is smaller than the number of work nodes, the A
new individuals are sent to A slave nodes and are evaluated.
The remaining slave nodes simply sit idle. Once all individ-
uals are evaluated they are all added to the population, and
the master node performs the survival selection and creates
the next generation of individuals for distribution.

This model is not very scalable. The reason this model
is not scalable is that it is based on batch evaluation. In
each generation this model creates A new individuals to be
evaluated. If the number of slave nodes is greater than A
there will always be certain slave nodes that are not being
used at all. Thus, this model cannot scale passed A slave
nodes. The only way around this limitation is to increase
A, but in doing the other parameters will also need to be
increased (e.g.,). If the number of slave nodes is less than
A not all of the slave nodes are evaluating individuals at all
times. Once) individuals have been sent to be evaluated,
and a slave node finishes its evaluation, it has to wait until
the last slave node is done being evaluated until it gets a new
individual. If the evaluation time is homogeneous across
the population then parameters can be chosen in such a
way that no time is wasted, though if the evaluation time is
heterogeneous this cannot be guaranteed.

4. COMPARISON

In this section, the two described models will be analyzed
to see how the performance of the algorithms are affected
by increasing the number of slave nodes they have access to.
A heterogeneous evaluation time will be used in the experi-
ments, meaning that the evaluation time is not the same for
each individual. The primary metric for determining how
well these algorithms scale will be the amount of time it
takes for the model to converge on the solution. Instead
of using a benchmark that inherently has a heterogeneous
evaluation time, a standard benchmark problem will be se-
lected and an artificial heterogeneous evaluation time will
be added to the evaluation of the individual.

4.1 Discrete Event Simulated Evolution

A problem with running experiments on PEAs is that they
require a large amount of resources to demonstrate how they
scale. In addition to needing these resources, the algorithms
can take a long time to complete when examining the algo-
rithms run with a small number of slave nodes. In considera-
tion of these two limitations, a simulator was developed such
that the resource and time requirements could be bypassed.
A Discrete Event Simulator was developed that would sim-
ulate the two algorithms in an environment that could be
scaled very easily. This also removes the uncertainty in the
runtime of these algorithms caused by other processes on
the computer and network traffic. This means the only vari-
ation in convergence time is due to the stochastic nature of
the algorithms.

To check the accuracy of the simulator, fully functional
versions of the synchronous and asynchronous models were
created. They were both tested by running the simulation

and the fully functional models for a set number of evalua-
tions and comparing the runtimes. The models were tested
using 1 to 50 work nodes. The runtimes that the simulation
predicted and the runtimes of the fully functional models
were consistent. This verification gave evidence that the de-
veloped simulations are accurate and the results they give
are meaningful.

4.2 Royal Road Function

The Royal Road function defines a simple fitness land-
scape designed to test the performance of an evolutionary
algorithm [6]. This function is dependent upon a set of
schemas. Schemas are patterns that consist of a set number
of the following symbols: {0,1,*}. A bit string matches a
schema of the same length if the locations of the Os and 1s
in the schema match those in the bit string. A * can be met
with either a 0 or a 1. The order of a schema is the number
of Os and 1s it contains.

The Royal Road schema set is structured such that same-
ordered schemas are combined to construct the higher order
schemas. An example is shown in Figure 2. Mitchell et al.
define the Royal Road function as follows [6]:

F(x) = Z cs0s(x); where cs = order(s)
seS

1 if z is an instance of s
0 otherwise

and o, (z) = {

s1 = 11************** c1 = 2
Sg = CREpPRRRRHRRR o 9
S3 = ****11********** c3 = 2
sq = CRERRRR ROl o
S5 = ********11****** s = 2
S = CRRRERRRRRR]pRERR o0
S7 = Fokokokokokokkokokokk | ko cr =2
S8 = **************11 cg = 2
Sg = 1111Feeesnee o0 g
S10 = ****1111******** clo = 4
§1p = Rkl okl o0
S12 = ************1111 Ccla = 4
§13 = 111111 THHHHFFR c13 =8
S14 = ********11111111 Clqa = 8
s15 = 1111111111111111 ¢15 = 16

Figure 2: Example of schema set for Royal Road
function [6]

The optimal solution for this example would be a bit string
of 16 1s. This would have a fitness of (8 x 2) + (4 x4) + (2
8) + (1% 16) = 64.

4.3 Experimental Setup

To ensure that the comparison between the two models
is fair, the parameters and operations used in each of the
algorithms is the same. The population size is 100 individ-
uals, and the number of children created each generation
is 50 for the synchronous algorithm. The parent selection
operation used was k-tournament with replacement. Uni-
form crossover and bit-flip mutation were used as the vari-
ation operators. Survival selection was k-tournament with-
out replacement which selected the individuals that would

Table 1:

Parameter Value
o 100
A 50
Mutation Rate 0.007813
Parent Selection k 15
Survivor Selection k 50

be discarded. The parameters were chosen by hand. While
there may exist a set of parameters that perform better than
the ones selected, this paper is exploring the general perfor-
mance of the asynchronous model and the comparison to the
synchronous model under identical conditions. A summary
of the parameters used can be found in Table ?7.

The initial experiment is to compare the performance of
the asynchronous and synchronous evolution models. To
do this, the Royal Road function was used as a benchmark
function. The bitstring used in the Royal Road function was
of length 128. The schemas used were of the form shown in
Figure 2 thought the smallest schema consisted of strings of
ones of length 4. The models were tested using the discrete
event simulation that is described in Section 4.1. The models
were run 30 times using 1 through 1000 slave nodes. In
this initial experiment the artificial heterogeneous evaluation
time was incorporated by adding a delay to the evaluation
time in the discrete event simulator. The added delay was
selected from a uniform distribution from 0 to 50 seconds.

4.4 Evaluation Speed-Up vs Slave Nodes

The first characteristic of interest comparing these two
models is how quickly these two models can evaluate solu-
tions as the number of slave nodes is increased. Figure 3
shows the time it takes to evaluate 10,000 individuals. At
50 slave nodes, the synchronous model levels off and sees
no more improvement. This is consistent with the predicted
limitations of scaling the synchronous model. The asyn-
chronous model, however, continues to speed up when scal-
ing the number of slave nodes. Figure 4 shows how much
speedup is acheived given a certain number of slave nodes.
This graph is generated by comparing the time it took to
run with a single slave node and the time it took to run
with a given number of slave nodes. This graph shows that
as the number of slave nodes is increased that the improve-
ment isn’t one to one in the asynchronous model. This is
due to the evaluation of the initial population. When the
number of slave nodes is more than A in the asynchronous
model the evaluation of the initial population take nearly 50
seconds. If this time is adjusted by removing the evaluation
of the initial population and replacing it with regular eval-
uations, the asynchronous algorithm does achieve a one to
one increase in efficiency.

4.5 Convergence Time vs Slave Nodes

It has been determined that the evaluation on individ-
uals scales well in the asynchronous model and extremely
poorly in synchronous models. However, does not mean that
the asynchronous model will converge on the solution more
quickly than the synchronous model which is a better way
to determine which model is superior. Figure 5 shows the
time necessary to converge witha given number of nodes. As
with the previous results, the synchronous model levels off

— Asynchronous
- - Synchronous

0 200 400 600 800 1000
Slave Nodes

Figure 3: Plot of evaluation time vs number of slave
nodes

1000

Asynchronous

- = Synchronous

soofL— 11

600
=3
3
-
@
@
o
wy

400

200

) e S S S —— - -
0 200 0 800 1000

Slave Nodes

Figure 4: Plot of speed-up of evaluation time vs
number of slave nodes

— Asynchronous
- - Synchronous

10°

\
ey

Time

S A T ST H MR A L8 P

0 200 400 600 800 1000
Slave Nodes

Figure 5: Plot of time until convergence vs number
of slave nodes

1000
Asynchronous
- = Synchronous

soofL— 11

600 -
=3
3
-
@
@
o
wy

400 .

: § o
R
R Lo
L R o
200 NA.:Q-:'.‘.*"-\»
o
oo
e
D R S R
% 200 400 600 800 1000

Slave Nodes

Figure 6: Plot of speed-up of convergence time vs
number of slave nodes

once it has exceeded 50 nodes which is expected. Figure 6
better shows the performance of the asynchronous model.
As seen in this figure, the effieciency of the asynchronous
model is not as good as Figure 4 showed that it could theo-
retically be. The reason that the asynchronous model is not
as efficient is the increase in evaluations needed to converge
on the solution as the number of slave nodes increases as
demonstrated in Figure 7. While the number of evaluations
needed to converge on the solution is much larger for the
asynchronous model than the synchronous model, the asyn-
chronous model converges faster on wall time, which is more
important for real world applications.

S. GENE-BASED HETEROGENEOUS EVAL-

UATION TIME

While the initial experiments described above demonstrates
how the asynchronous and synchronous evolutionary models
compare to each other under artificial conditions, there are
properties of the asynchronous model that are not shown.
It was predicted that the asynchronous model would have
an implicit parsimony pressure that pressured the evalua-

70000

— Asynchronous

- - Synchronous

60000

50000

40000

Evaluations

30000

20000

M»»wawﬁ

'
!
h
0 200 400 600 800 1000
Slave Nodes

10000

Figure 7: Plot of number of evaluations until con-
vergence vs number of slave nodes

tion time of the individuals. In the previous experiment this
could not be observed because the evaluation time was not
dependent upon the individual being evaluated. This sec-
ondary experiment will show the presence of the implicit par-
simony pressure by manually encoding the evaluation time
into the gene of the individual. By encoding the evalua-
tion time into the gene it allows the Royal Road function
to simulate other problems in which the evaluation time is
implicitly encoded into the individual.

To encode the evaluation time into the individual, a sep-
arate gene was inserted into the individual to represent the
evaluation time. This floating point number would be ran-
domly assigned in the initial population and then would be
passed to the children individuals similarly to how the stan-
dard gene is. The crossover operation for this new gene
would be a uniform crossover where the child individual ran-
domly gets one of the parents’ evaluation time. The muta-
tion operation is a gaussian mutation with a mean of 0 and
a standard deviation of 0.2. If the mutation causes the eval-
uation time to leave the bounds of the random initialization
bounds it is set to the bound it offended.

5.1 Elitist Parsimony Pressure

It is predicted that this change in the way the heteroge-
neous evaluation time is determined for a given individual
will not change how the synchronous model performs on
average. However it should affect the performance of the
asynchronous model. It should cause an elitist parsimony
pressure. This parsimony pressure will cause the average
evaluation time to be pressured to decrease. The pressure
will increase as the number of slave nodes increases. Because
this parsimony pressure is elitist, this means that both mod-
els still do selection strictly on fitness of the solution. This
means the best individualss will always survive in the pop-
ulation unlike most other parsimony pressures which can
cause high-quality individuals to be discarded if they are
slow running.

5.2 Evaluation Speed-Up vs Work Nodes

To see how the affect the gene-based heterogeneous eval-
uation times had on the two models, the time necessary to
evaluate 10,000 individuals is examined for each of the mod-

— Asynchronous
- = Synchronous

10t %]
A RN Wi e VI A YA M fosro

Time

0 200 400 600 800 1000
Slave Nodes

Figure 8: Plot of evaluation time vs number of
slave nodes with gene-based heterogeneous evalua-
tion time

1800

Asynchronous B
16001| == Synchronous st Bl 55
— 11 1:'#‘*5

L ! : el
1400) AL .':';-".‘
1200

1000

Speed-up

800 |-

600 [

400

Shaga sve o VasItet

0 200 400 600 800 1000
Slave Nodes

Figure 9: Plot of speed-up of evaluation time vs
number of slave nodes with gene-based heteroge-
neous evaluation time

— Asynchronous
- - Synchronous

N
£ 10t | It L T A

0 200 400 600 800 1000
Slave Nodes

Figure 10: Plot of convergence time vs number of
slave nodes with gene-based heterogeneous evalua-
tion time

3500

Asynchronous
- = Synchronous

3000+ : :
—_ 11 H L

2500

2000

Speed-up

1500

1000

500

Slave Nodes

Figure 11: Plot of speed-up of convergence time
vs number of slave nodes with gene-based hetero-
geneous evaluation time

els. Figure 8 shows the results of this experiment. Figure 9
shows the speed-up as the number of slave nodes is scaled.
These results are computed by comparing the runtime of a
given model using one node and a given number of slave
nodes. As can be seen in the graph, with the gene-based
heterogeneous evaluation times, the speed-up of the evalua-
tion time is well over the one to one line. Thus, using ten
slave nodes will give you more than a ten times speed-up
when strictly comparing the evaluation time.

5.3 Convergence Time vs Work Nodes

The previous experiment showed that the more realistic
gene-based heterogeneous evaluation times created a parsi-
mony pressure on the population which allowed the asyn-
chronous model to evaluate individuals much faster than
with the prior heterogeneous evaluation time method. This
experiment was extended to see how the gene-based hetero-
geneous evaluation time would similarly affect the popula-
tion when the models were run until convergence instead of

30

25

N
=]

— Asynchronous
— Synchronous

Average Evaluation Time
= =
o wu

0 200 400 600 800 1000
Slave Nodes

Figure 12: Plot of the average evaluation time in
the final population as the number of slave nodes is
increased

a constant number of evaluations. Figure 10 shows the con-
verge time of the two models as the number of slave nodes
is scaled. Figure 11 shows the speed-up of the convergence
time as the number of slave nodes is increased. This fig-
ure shows that even while running until convergence, the
asynchronous model still exeeds the one to one line.

5.4 Analysis of Elitist Parsimony Pressure

The gene-based hetereogeneous evaluation time proposed
in the previous set of experiments allows the simulation to
act more like a problem where the evaluation time is im-
plicitly part of the gene. The results when compared to the
experiments where the evaluation times were not encoded in
the genes show that there is a parsimony-like pressure acting
on the population. This parsimony pressure is unlike stan-
dard parsimony pressure as it does not affect the fitness of
the individual. This means the parsimony pressure is elitist
as the ordering of the solutions does not changed based on
the evaluation speed of the individual.

To gain more insight into the elitist parsimony pressure,
analysis was done of the average evaluation times of the
population as the number of slave nodes is scaled. First
the evaluation time of the final populations are analyzed to
determine how scaling te number of slave nodes affects the
elitist parsimony pressure. The second analysis is to see how
the elitist parsimony pressure acts on the population during
a run.

The first analysis done was to see what the average evalua-
tion time of the final population of the models as the number
of slave nodes is increased. This will demonstrate how the
parsimony pressure affects the population as the number of
slave nodes is scaled. Figure 12 shows the average evalua-
tion time of the individuals in the final population for each
given run. These results are averaged over 100 runs for each
number of slave nodes tested. As can be seen, there is a
general trend down to roughly 1.5 seconds. From this graph
it appears as though the parsimony pressure is increased as
the number of slave nodes is increased.

The second analysis done was to see how the parsimony
pressure affected the evaluation time of a population during
the run. This was done by calculating the average evalu-

50

— 1 Slave Node
— 5 Slave Nodes
— 20 Slave Nodes
—— 100 Slave Nodes
— 500 Slave Nodes
1000 Slave Nodes

401

301

20

Average Evaluation Time

0 10 20 30 40 50 60 70
Generations

Figure 13: Plot of the average evaluation time of the
population during the run in the synchronous model

50

— 1 Slave Node
— 5 Slave Nodes
— 20 Slave Nodes
— 100 Slave Nodes
— 500 Slave Nodes
1000 Slave Nodes

40

301

Average Evaluation Time

0 20 40 60 80 100
Generations

Figure 14: Plot of the average evaluation time of
the population during the run in the asynchronous
model

ation time of the population sporadically through the run.
For accurate results, 100 runs were averaged to generate
the following figures. Figure 13 shows a plot of the aver-
age evaluation time of the population during the run of the
synchronous model. As can be seen in this graph, the aver-
age evaluation time stays near 25 seconds regardless of the
number of slave nodes used. Figure 14 shows a plot of the
average evaluation time of the population during the run of
the asynchronous model. This plot shows that at the be-
ginning of the run starts at 25 seconds, then is pressured
down until it converges. The time at which these runs con-
verge decreases as the number of nodes in increased which
corresponds to Figure 12.

It has been established that the asynchronous model causes
a elitist parsimony pressure as the number of slave nodes.
This elitist parsimony pressure pressures the individuals in
the population to become faster. While these previous ex-
periments have show that this pressure exists, the scale at
which this pressure can act is not necessarily as strong as
shown in these experiments. In real problems, the heteroge-

neous evaluation time exists implicitly in the gene instead
of explicitly in the gene as we have done in these experi-
ments. It is predicted that the elitist parsimony pressure
introduced by the asynchronous model would be similar to
standard parsimony pressure in effectiveness, though there is
uncertainty in how the variability in the parsimony pressure
would act on real problems.

6. CONCLUSIONS

This paper has shown that APEAs, by removing the gen-
erational synchronization step, can be scaled much more ef-
ficiently than synchronous PEAs. Also, by continually cre-
ating individuals instead of in batches, this effiecient scaling
can be continued well beyond the limits of batched creation.
These features do however cause the necessary number of
evaluations to be increased, this penalty is outweighed by the
speed at which these evaluations can be completed. Meaning
that when time is the driving constraint, that using APEAs
is more efficient use of resources than synchronous PEAs.

This paper also demonstrated that the predicted "elitist”
parsimony pressure is induced by using the asynchronous
model mentioned in this paper. This ”elitist” parsimony
pressure attempts to minimize the evaluation time of the
individuals in the population without affecting the fitness of
the individual as with many standard parsimony pressures.
This allows the selection operators to act based on the true
fitness of the individual.

7. FUTURE WORK

While this paper has demonstrated the advantages of us-
ing the asynchronous model versus the synchronous model
when attempting to parallelize and scale these models, there
are still many other variations of the asynchronous model.
Many modifications can be made to the population mechan-
ics that may help or hinder the asynchronous model. A
study into the various ways to handle population mechanics
would greatly help the field of asynchronous evolution.

Another aspect of the asynchronous model that should
be studied further is the elitist parsimony pressure. The
elitist parsimony pressure has been shown to exist when the
heterogeneous evaluation time is explicitly placed into the
gene, though a study should be done to ensure that when
when the heterogeneous evaluation time is implicitly in the
gene. If the elitist parsimony pressure affects evolution when
the heterogeneous evaluation time is implicitly in the gene,
a study should be done to see the extent that the parsimony
pressure has on a population.

8. REFERENCES

[1] E. Alba. Parallel evolutionary algorithms can achieve
super-linear performance. Information Processing
Letters, 82(1):7-13, 2002.

E. Alba and M. Tomassini. Parallelism and

evolutionary algorithms. Evolutionary Computation,

IEEE Transactions on, 6(5):443-462, 2002.

[3] E. Alba and J. M. Troya. Analyzing synchronous and
asynchronous parallel distributed genetic algorithms.
Future Generation Computer Systems, 17(4):451-465,
2001.

[4] A. W. Churchill, P. Husbands, and A. Philippides. Tool
sequence optimization using synchronous and
asynchronous parallel multi-objective evolutionary

[2

(5]

(7]

(9]

algorithms with heterogeneous evaluations. In
Evolutionary Computation (CEC), 2013 IEEE
Congress on, pages 2924-2931. IEEE, 2013.

J. J. Durillo, A. J. Nebro, F. Luna, and E. Alba. A
study of master-slave approaches to parallelize nsga-ii.
In Parallel and Distributed Processing, 2008. IPDPS
2008. IEEE International Symposium on, pages 1-8.
IEEE, 2008.

M. Mitchell, S. Forrest, and J. H. Holland. The royal
road for genetic algorithms: Fitness landscapes and ga
performance. In Proceedings of the first european
conference on artificial life, pages 245-254. Cambridge:
The MIT Press, 1992.

M. Oussaidene, B. Chopard, O. V. Pictet, and

M. Tomassini. Parallel genetic programming and its
application to trading model induction. Parallel
Computing, 23(8):1183-1198, 1997.

M. Yagoubi and M. Schoenauer. Asynchronous
master/slave moeas and heterogeneous evaluation costs.
In Proceedings of the fourteenth international
conference on Genetic and evolutionary computation
conference, pages 1007-1014. ACM, 2012.

M. Yagoubi, L. Thobois, and M. Schoenauer.
Asynchronous evolutionary multi-objective algorithms
with heterogeneous evaluation costs. In Evolutionary
Computation (CEC), 2011 IEEE Congress on, pages
21-28. IEEE, 2011.

