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Motivation
Reservoir Optimization

v = −Kλ(s)∇p, ∇ · v = q

φ ∂ts +∇ · ( f (s)v ) = q̂

Superconductor Vortex Pinning

Courtesy Argonne National Laboratory

γ(∂t + iµ)ψ = εψ − |ψ|2ψ + (∇− iA)
2
ψ

J = Im(ψ̄(∇− iA)ψ)− (∂tA +∇µ), ∇ · J = 0

Direct Field Acoustic Testing

−∆u− κ2
(1 + σε)

2u = z



Optimization Problem Formulation

Goal: Control uncertainty rather than quantify uncertainty.

Initialize
Physical
Model

Determine
Control
Action

Observe
Physical
System

Inverse
or OED
Problem

Update
Model

Make
Decision

We implement the control prior to observing the state.
Control is deterministic.



Deterministic Optimization of PDEs
Optimal Control: Given α > 0, Ωo ⊆ Ω, Ωc ⊆ Ω, and w ∈ L2(Ωo).

min
z∈Z

J(z) ≡ 1
2

∫
Ωo

((U(z))(x)− w(x))2 dx +
α

2

∫
Ωc

z2(x) dx

where U(z) = u ∈ H1(Ω) solves the weak form of

−∇ · (κ∇u) + N(u) = z in Ω.

u = g, on ∂Ω.

Topology Optimization: Given 0 < V0 < 1 and Ω ⊂ Rd, d = 1, 2, 3.

min
z∈Z

J(z) ≡
∫

Ω

F(x) · (U(z))(x) dx s.t. 0 ≤ z ≤ 1,
∫

Ω

z(x) dx ≤ V0|Ω|

where U(z) = u ∈ H1(Ω)d solves the weak form of

−∇ · (E(z) : ε(u)) = F, in Ω.

ε(u) =
1
2

(∇u +∇u>), in Ω.

u = g, on ∂Ω.



General PDE-Constrained Optimization

Let U and Z be reflexive Banach spaces, C be a Banach space,
f : U × Z → R, and e : U × Z → C. Consider

min
z∈Zad

J(z) = f (U(z), z)

where U(z) = u ∈ U solves the weak form PDE

e(u, z) = 0 and Zad ⊆ Z.

Assumptions:
I For each z ∈ Zad, e(u, z) = 0 is well posed, i.e.,

I ∃! U(z) = u ∈ U such that e(U(z), z) = 0;
I ∃ c > 0 indpendent of z such that ‖U(z)‖U ≤ c(‖z‖Z + 1).

I e is sequentially weakly continuous.
I f is sequentially weakly lower semicontinuous (lsc).
I Zad is convex, closed and bounded – or –
Zad = Z and J is coercive, i.e., lim‖z‖Z→∞ J(z) =∞.

Result: There exists a minimizer to J in Zad.



Differentiability

Assumptions:
I f and e are k-times continuously Fréchet differentiable.
I For each z ∈ Zad, eu(U(z), z) has a bounded inverse.

Result: J is k-times continuously Fréchet differentiable in Zad.

Gradient Evaluation:
I Compute U(z) = u ∈ U , the weak solution of the state equation:

e(u, z) = 0.

I Compute Λ(z) = λ ∈ C∗, the weak solution of the adjoint equation:

eu(U(z), z)−∗λ+ fu(U(z), z) = 0.

I Evaluate gradient: ∇J(z) = fz(U(z), z) + eu(U(z), z)∗Λ(z).



Example
Optimal Control: Given α > 0, Ωo ⊆ Ω, Ωc ⊆ Ω, and w ∈ L2(Ωo).

min
z∈Z

J(z) ≡ 1
2

∫
Ωo

((U(z))(x)− w(x))2 dx +
α

2

∫
Ωc

z2(x) dx

where U(z) = u ∈ H1(Ω) solves the weak form of

−∇ · (κ∇u) + N(u) = z, in Ω.

u = g, on ∂Ω.

Gradient Evaluation:
I Compute U(z) = u ∈ H1(Ω), the weak solution of the state equation:

−∇ · (κ∇u) + N(u) = z, in Ω.

u = g, on ∂Ω.

I Compute Λ(z) = λ ∈ H1(Ω), the weak solution of the adjoint equation:

−∇ · (κ∇λ) + Nu(u)∗λ = − (u− w̄), in Ω.

λ = 0, on ∂Ω.

I Evaluate gradient: ∇J(z) = αz− Λ(z).



Optimization of PDEs with Uncertain Inputs
Optimal Control: Given α > 0, Ωo ⊆ Ω, Ωc ⊆ Ω, and w ∈ L2(Ωo).

min
z∈Z

J(z) ≡ 1
2
R
[∫

Ωo

((U(z))(ξ, x)− w(x))2 dx
]

+
α

2

∫
Ωc

z2(x) dx

where U(z) = u : Ξ→ H1(Ω) solves the weak form of

−∇ · (ε(ξ)∇u(ξ)) + N(u(ξ), ξ) = z, in Ω, a.s..

u(ξ) = g(ξ), on ∂Ω, a.s.

Topology Optimization: Given 0 < V0 < 1 and Ω ⊂ Rd, d = 1, 2, 3.

min
z∈Z

J(z) ≡ R
[∫

Ω

F(ξ, x) · (U(z))(ξ, x) dx
]

s.t. 0 ≤ z ≤ 1,
∫

Ω

z(x) dx ≤ V0|Ω|

where U(z) = u : Ξ→ H1(Ω)d solves the weak form of

−∇ · (E(z) : ε(u(ξ)) = F(ξ), in Ω, a.s..

ε(u(ξ) =
1
2

(∇u(ξ) +∇u(ξ)>), in Ω, a.s..

u(ξ) = g(ξ), on ∂Ω, a.s.



General PDE-Optimization under Uncertainty

Let (Ξ,F ,P) be a complete probability space with Ξ ⊆ RM. Consider

min
z∈Zad

J(z) = R(f ((U(z))(ξ), z, ξ))

where U(z) = u ∈ Lp
P(Ξ;U) solves the weak form PDE

e(u, z, ξ) = 0 and Zad ⊆ Z.

Assumptions:
I For each z ∈ Zad and γ ∈ Ξ, e(u, z, ξ) = 0 is well posed, i.e.,

I ∃! U(z) = u ∈ Lp
P(Ξ;U) such that e(U(z), z, ξ) = 0;

I ∃ c > 0 indpendent of z and ξ ∈ Ξ such that ‖U(z)‖U ≤ c(‖z‖Z + 1).
I e is a.s. sequentially weakly continuous.
I f is a.s. sequentially weakly lsc and f ((U(z))(ξ), z, ξ) ∈ Lq

P(Ξ).
I Zad is convex, closed and bounded – or –
Zad = Z and z 7→ f ((U(z))(ξ), z, ξ) is a.s. i.e.,
lim‖z‖Z→∞ f ((U(z))(ξ), z, ξ) =∞.



Risk Measures, R

Assumptions:
I R : Lq

P(Ξ)→ R ∪ {+∞}
see, Rockafellar, Uryasev, Shapiro, Dentcheva, Ruszczynski, . . .

I R is convex, lsc and satisfies R(C) = C for all constants C;
I R is monotonic, i.e., if X1 ≥ X2 a.s., then R(X1) ≥ R(X2).

Result: There exists a minimizer to J in Zad.

Risk Neutral v.s. Risk Averse
I Risk Neutral: R = E.

I Optimal solution minimizes on average.
I Risk Averse: R(X) > E[X] ∀ nonconstant X ∈ Lq

P(Ξ).
I More conservative than R = E.
I Can minimize measures of deviation and/or tail events.



Known v.s. Unknown Probability Distribution

Known Probability Distribution:
I Ξ ⊆ RM is known and P has Lebesgue density ρ : Ξ→ [0,∞).
I Enables UQ techniques including gPC and sampling.
I All analysis performed in Lp

ρ(Ξ) instead of Lp
P(Ξ).

Unknown Probability Distribution:
I Must determine optimal solutions that are robust to unknown pdf.
I Use data to estimate pdf (i.e., experimental data or inverted coefficients).
I Reformulate optimization problem into a minimax problem

min
z∈Zad

sup
P∈A

EP[ f ((U(z)(ξ), z, ξ)]

I A is called the ambiguity set and is defined with data, i.e., moment
matching.

I Must discretize the probability measures P ∈ A.
I May also require specialized optimization algorithms.



Sample-based Approximation
Monte Carlo

I Handles general Ξ and ρ;
I Error is independent of dim.;
I Error is probabilistic with rate

E[error] = O(Q−
1
2 );

I Use QMC and variance reduction;
I Weights are positive (ωk = Q−1).

y
1
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Quadrature

I Often requires TP Ξ and ρ;
I Error is dependent on dim.;
I Sparse grids lessen affect of dim.;
I Regularity accelerates conv., e.g.,

error = O(Q−r log(Q)(M−1)(r+1));

I SG weights are pos. and neg.
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Risk-Neutral Optimization Problem

min
z∈Zad

J(z) ≡ E[f (U(z), z, ·)] =

∫
Ξ
ρ(ξ)f ((U(z))(ξ), z, ξ) dξ

I There exists minimizers of J in z ∈ Zad.
I J is k-times continuously Fréchet differentiable if f and e are for all ξ ∈ Ξ.

Since pdf is known, we replace E with a quadrature approximation:

J(z) ≈ JQ(z) ≡
Q∑

k=1

ωkf ((U(z))(ξk), z, ξk)

I There exists minimizers of JQ in z ∈ Zad if Zad is bounded.
I JQ is k-times continuously Fréchet differentiable if f and e are for all ξ ∈ Ξ.

Require (U(z))(ξk) = uk ∈ U , k = 1, . . . ,Q, that solve the weak form PDEs,

e(uk, z, ξk) = 0, k = 1, . . . ,Q.

I Decoupled system of PDEs can be solved concurrently.
I Use favorite numerical PDE technique to solve deterministic PDEs.
I Convergence depends on quad. rule and regularity of state and adjoint w.r.t. ξ.



Numerical Optimization for Risk-Neutral Problems

I Efficient Numerical Method
I Gradient computation requires two PDE solves per quad. point;
I High accuracy or large dim(Ξ) =⇒ large Q;
I In optimization, accuracy not required far from a solution.

I Accurate Characterization of the Random Field
I Use adaptive sparse grids to exploit anisotropy in random fields

(Gerstner and Griebel 1998, Ma and Zabaras 2009, Agarwal and
Aluru 2009, Webster et al.);

I Use adaptive finite elements to accurately resolve PDE solution
(Carstensen 2005, Becker et al. 2007).

I Trust Regions
I Globally convergent opt. algorithm (Powell 1975, Sorensen 1982);
I Allows for inexact gradients and objective functions (Carter 1989,

Heinkenschloss and Vicente 2001, Ziems and Ulbrich 2011);
I Natural framework for model management (Alexandrov et al. 1998,

Dennis and Torczon 1996).



Trust-Region Algorithm

Given: z0, m0(s) ≈ J(z0 + s), J0 ≈ J, δ0 > 0, and gtol > 0.
While ‖∇mk(s)‖Z > gtol

1. Model Update: Choose a new mk(s) ≈ J(zk + s).

2. Step Computation: Approximate a solution, sk, to the subproblem

min
s∈Z

mk(s) subject to ‖s‖Z ≤ δk.

3. Objective Update: Choose a new Jk(z) ≈ J(z).

4. Step Acceptance: Compute

%k =
Jk(zk)− Jk(zk + sk)

mk(0)−mk(sk)
.

If %k ≥ η ∈ (0, 1), then zk+1 = zk + sk else zk+1 = zk.

5. Trust Region Update: Choose a new trust-region radius, δk+1.

EndWhile



Trust-Region Algorithm

Given: z0, m0(s) ≈ J(z0 + s), J0 ≈ J, δ0 > 0, and gtol > 0.
While ‖∇mk(s)‖Z > gtol

1. Model Update: Choose a new mk(s) ≈ J(zk + s). ← ADAPTIVITY

2. Step Computation: Approximate a solution, sk, to the subproblem

min
s∈Z

mk(s) subject to ‖s‖Z ≤ δk.

3. Objective Update: Choose a new Jk(z) ≈ J(z). ← ADAPTIVITY

4. Step Acceptance: Compute

%k =
Jk(zk)− Jk(zk + sk)

mk(0)−mk(sk)
.

If %k ≥ η ∈ (0, 1), then zk+1 = zk + sk else zk+1 = zk.

5. Trust Region Update: Choose a new trust-region radius, δk+1.

EndWhile



Inexact Gradients and Objective Functions
Kouri, Heinkenschloss, Ridzal, and van Bloemen Waanders

Inexact Gradients
There exists c > 0 independent of k such that

‖∇mk(0)−∇J(zk)‖Z ≤ c min{‖∇mk(0)‖Z , δk}

(Carter 1989, Heinkenschloss and Vicente 2001).

Inexact Objective Functions
There exists K > 0, ω ∈ (0, 1), and θ(z, s)→ 0 as r→ 0 such that

|(J(zk)− J(zk + sk))− (Jk(zk)− Jk(zk + sk))| ≤ Kθ(zk, sk)

θ(zk, sk)
ω ≤ ηmin {(mk(0)−mk(sk)), rk} .

Here, η > 0 is tied to algorithmic parameters and limk→∞ rk = 0.
(Carter 1989, Ziems and Ulbrich 2013).

I Cannot compute J(zk) and ∇J(zk);
I Control a posteriori errors using adaptive sparse grids.



Sparse Grids and Adaptivity
Gerstner and Griebel 2003

I 1D Operators: For k = 1, . . . ,M, E0
k ≡ 0 and

∆i
k ≡ Ei

k − Ei−1
k where Ei

k(g)
i→∞−−−→

∫
Ξk

ρk(ξ)g(ξ)dξ

I Sparse-Grid Operator: For an index set I ⊂ NM,

EI ≡
∑
i∈I

(∆
i1
1 ⊗ · · · ⊗∆

iM
M )

I Admissibility: i ∈ I and i ≥ j =⇒ j ∈ I
I Error: Given the index set I ⊂ NM, the error is

E− EI =
∑
i6∈I

(∆
i1
1 ⊗ · · · ⊗∆

iM
M )

I Adaptivity: Pick i 6∈ I s.t. I ∪ {i} admissible and ∆
i1
1 ⊗ · · · ⊗∆

iM
M “large”



Direct Field Acoustic Testing (DFAT)
Larkin and Whalen

I Physical Domain: Ω = (−5, 5)2

I Parameter Space: Ξ = [−
√

3,
√

3]M

I Probability Measure:

ρ(ξ)dξ =
(

2
√

3
)−M

dξ

I Stochastic Material: ε(ξ, x)
KL expansion of Matérn covariance

I Desired State: θ = π
4 , k = 10

w̄(x) = exp (i ((k cos θ)x1 + (k sin θ)x2))

D

DC

R

50−5

0

5

−5

Let α > 0 and τ = 0.1. Consider the optimal control problem

min
z∈L2(D;C)

1
2
σ

[∫
DR

(u(z; ξ, x)− w̄(x))(u(z; ξ, x)− w̄(x)) dx

]
+
α

2

∫
DC

z(x)z(x) dx

where u = u(z) ∈ L2
ρ(Ξ; H1(Ω;C)) solves

−∆u(ξ, x)− k2(1 + τε(ξ, x))2u(ξ, x) = z(x) ∀ (ξ, x) ∈ Ξ× Ω

∂u
∂n

(ξ, x) = iku(ξ, x) ∀ (ξ, x) ∈ Ξ× ∂Ω.



Results: Risk Neutral

α = 10−4

dim Algorithm PDE Solves CPgrad CPobj

20 Grad. Adapt. TR 1,136,784 1,405 120,401
Obj. Adapt. TR 122,331 1,509 2,933

40 Grad. Adapt. TR 16,327,120 1,445 1,804,001
Obj. Adapt. TR 128,051 1,549 2,973

Table : Computational cost of the classical trust-region algorithm applied to
the Helmholtz example with M ∈ {20, 40} and α = 10−4.
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Motivation - Control Uncertainty

Optimal control should be “risk averse.” For example:

I Reduce variance or deviation

E[(X − E[X])2] or E[(X − E[X])
q
+]

1
q

e.g. reduce uncertainty and variability in controlled system.

I Control rare events, tail probabilities, or quantiles

Pr[X ≤ t] or VaRβ [X] = inf { t ∈ R : Pr[X ≤ t] ≥ β }

e.g. reduce failure regions and certify reliability.

I Minimize over quantiles

CVaRβ [X] =
1

1− β

∫
X≥VaRβ [X]

X(ξ)ρ(ξ) dξ = E[X |X ≥ VaRβ [X]]

e.g. minimize over undesirable events.



Risk Measures

RISK NEUTRAL:
R(X) = E[X]

ξ

ρ(ξ)

ξ

X(ξ)

CONDITIONAL

VALUE-AT-RISK:
R(X) = CVaRβ [X]

ξ

ρ(ξ) Pr[X ≤ t] = β

ξ

X(ξ) t = VaRβ [X]



Risk Measures
Shapiro, Dentcheva, Ruszczynski, Rockafellar, Uryasev, . . .

R : Lq → R ∪ {∞} is a monetary risk measure if for X, X1, X2 ∈ Lq
ρ(Ξ)

I Monotonicity: X1 ≥ X2 a.e. =⇒ R(X1) ≥ R(X2)

I Translation Equivariance: R(X + t) = R(X) + t, ∀t ∈ R
R is a convex risk measure if

I R is a monetary risk measure
I Convexity: R(tX1 + (1− t)X2) ≤ tR(X1) + (1− t)R(X2), ∀t ∈ [0, 1]

R is a coherent risk measure if
I R is a convex risk measure
I Positive Homogeneity: R(tX) = tR(X), ∀t > 0.

Examples of coherent risk measures with X ∈= Lq
ρ(Ξ):

I Risk Neutral: R(X) = E[X]

I Mean Plus Semideviation: R(X) = E[X] + cE[(X − E[X])+], c ∈ (0, 1)

I Conditional Value-at-Risk: R(X) = inf { t + cE[(X− t)+] : t ∈ R }, c > 1



Duality Theory of Risk Measures

By the Fenchel-Moreau Theorem, if R is a convex risk measure, then

R(X) = sup
ϑ∈dom(R∗)

{E[ϑX]−R∗(ϑ)}

where R∗ is conjugate to R, i.e., R∗(ϑ) = supX∈dom(R){E[ϑX]−R(X)}.

Moreover, if R is a coherent risk measure, then

R(X) = sup
ϑ∈dom(R∗)

E[ϑX].

dom(R∗) is the risk envelope =⇒ related to the ambiguity set for unknown pdf.

Example (Conditional Value-at-Risk):

R(X) = CVaRβ [X] = inf
t

{
t + (1− β)−1E[(X − t)+]

}
= sup
ϑ∈dom(R∗)

E[ϑX]

where dom(R∗) =
{
ϑ ∈ (Lq

ρ(Ξ))∗ : ϑ(ξ) ∈
[

0, 1
1−β

]
ρ-a.e.,

∫
Ξ ϑ(ξ)ρ(ξ) dξ = 1

}
.



The Risk Quadrangle

Optimization
Risk R: Measures overall
“hazard”

R(X) = E[X] +D(X)

= min
t
{t + V(X − t)}.

Regret V: Measures ones
“displeasure”

V(X) = E[X] + E(X).

R D

S

V E

Estimation
Deviation D: Measures
“non-constantancy”

D(X) = R(X)− E[X]

= min
t
{E(X − t)}.

Error E: Measures proxim-
ity to zero

E(X) = V(X)− E[X].

Statistic: S(X) = arg min
t
{t + V(X − t)} = arg min

t
{E(X − t)}.

Example: Given η > 0,

E(X) = η‖X‖L2
ρ(Ξ) =⇒ V(X) = E[X] + η‖X‖L2

ρ(Ξ) and S(X) = E[X]

=⇒ D(X) = η‖X − E[X]‖L2
ρ(Ξ) = ησ(X)

=⇒ R(X) = E[X] + η‖X − E[X]‖L2
ρ(Ξ) = E[X] + ησ(X).



The Expectation Quadrangle
Let the scalar regret function, v : R→ R ∪ {∞}, be convex, lsc, and satisfy

v(0) = 0, but v(x) > x ∀x 6= 0.

We define the scalar error function as e(x) = v(x)− x.
I e is convex and lsc;
I e(0) = 0, but e(x) > 0 for all x 6= 0.

The corresponding regret and error measures are

V(X) = E[v(X)] and E(X) = E[e(X)], respectively.

Example (Quantile-based Quadrangle): Given 0 < β < 1, define

v(x) =
1

1− β
(x)+ =⇒ e(x) =

β

1− β
(x)+ + (−x)+

This gives rise to the quadrangle

R(X) = min
t

{
t +

1
1− β

E[(X − t)+]

}
= CVaRβ [X]

D(X) = CVaRβ [X − E[X]] = β-CVaR deviation of X

E(X) = normalized Koenker-Bassett error

S(X) = VaRβ [X] = β-quantile of X.



Complications with Risk Measures

I V (or v) are lsc =⇒ R may not be differentiable.
I Derivative-based optimization algorithms may not apply.
I If v is not differentiable, quad. approx. may not converge.

Our Approach

I Smooth V or E to improve differentiability of objective function;
I Smoothing may help ensure convergence of quad. approx.;
I Use Newton-type algorithms to solve smoothed problem;
I Must quantify error committed by smoothing;
I Must perform continuation on smoothing parameter.



Example: Smoothed CVaR

Given ε > 0, we consider approximations of (·)+ given by

(x)+
ε =

∫ x

−∞
Gε(τ) dτ where Gε(x) =

∫ x

−∞

1
ε
δ
(τ
ε

)
dτ

and δ : R→ R satisfies
1. δ ∈ C(R) and let 0 < K <∞ s.t. supx |δ(x)| ≤ K;
2. δ(x) ≥ 0 ∀ x and

∫∞
−∞ δ(x) dx = 1;

3. Either
∫∞
−∞ δ(x)x dx ≤ 0 or

∫ 0
−∞ δ(x)|x|dx = 0;

4. supp(δ) is connected.

Results:
I x 7→ (x)+

ε is nondecreasing and convex;
I x 7→ (x)+

ε is at least twice continuously differentiable;
I −ε∆2 ≤ (x)+

ε − (x)+ ≤ ε∆1 where

∆1 =

∫ 0

−∞
δ(x)|x|dx and ∆2 = max

{
0,
∫ ∞
−∞

δ(x)x dx
}



Smoothed Plus Function

Examples:

(x)+
ε,1 = x+ε log

(
1 + exp

(
−x
ε

))

(x)+
ε,2 =


0 if x ≤ 0(

x3

ε2 − x4

2ε3

)
if x ∈ (0, ε)

x− ε
2 if x ≥ ε

(x)+
ε,3 =

(
x +

ε

2

)+

ε,2



Smoothed CVaR
Fβε (t,X) = t + 1

1−βE[(X − t)+
ε ] and Rβε [X] = inf

{
Fβε (t,X) : t ∈ R

}
Results:

I There exists c > 0 s.t.
∣∣∣Rβε [X]− CVaRβ [X]

∣∣∣ ≤ c
1−β ε for all X ∈ L1

ρ(Ξ).

I Smoothed CVaR, Rβε , is a convex risk measure.
I X 7→ Fβε (t,X) : L1

ρ(Ξ)→ R is Hadamard differentiable.

I X 7→ Fβε (t,X) : L2
ρ(Ξ)→ R is twice continuously Fréchet differentiable.

I t 7→ Fβε (t,X) : R→ R is twice continuously differentiable.

PDE-Optimization Problem
Jε(t, z) ≡ t + 1

1−βE
[
(f (U(z), z), ·))+

ε

]
Results:

I Differentiability: Jε(t, z) is Hadamard differentiable w.r.t. z and continuously
differentiable w.r.t. t.

I Differentiability: If u = u(z) ∈ Lp
ρ(Ξ;U) with p ≥ 4 then Jε(t, z) is twice

continuously Fréchet differentiable.
I Convergence Rate: Suppose (tε, zε) is a minimizer of Jε(t, z) and (t∗, z∗) is a

minimizer of J(t, z). Then, (|t∗ − tε|2 + ‖z∗ − zε‖2
Z)

1
2 ≤ Cε

1
2 .



Optimal Control of 1D Elliptic Equation

Let α = 10, Ωo = Ωc = Ω = (−1, 1), and ū ≡ 1 and consider

minimize
z∈L2(−1,1)

J(z) =
1
2

CVaRβ

[∫ 1

−1
(u(·, x; z)− 1)2 dx

]
+
α

2

∫ 1

−1
z(x)2 dx

where u = u(z) ∈ L2
ρ(Ξ; H1

0(0, 1)) solves the weak form of

−∂x (ε(ξ, x)∂xu(ξ, x)) = f (ξ, x) + z(x) (ξ, x) ∈ Ξ× Ω,

u(ξ,−1) = 0, u(ξ, 1) = 0 ξ ∈ Ξ.

Ξ = [−0.1, 0.1]× [−0.5, 0.5] is endowed with the uniform density
ρ(ξ) ≡ 5, and the random field coefficients are

ε(ξ, x) = 0.1χ(−1,ξ1) + 10χ(ξ1,1), and f (ξ, x) = exp(−(x− ξ2)2).



Primal Results

Sample Approximation: Level 8 Gauss-Patterson sparse grids.
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Optimization Algorithm: Trust region with truncated CG.

log(ε)
0 -1 -2 -3 -4 -5 -6

β
0.05 12(11) 18(5) 15(4) 6(11) 4(16) 24(3) 22(2)
0.5 11(9) 4(22) 4(21) 6(13) 16(4) 5(8) 5(8)
0.95 14(12) 14(11) 5(17) 5(19) 3(9) 4(7) 4(5)

Continuation: # TR iterations (average # CG iterations)



Dual Results
Sample Approximation: Monte Carlo with 10,000 samples.
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Direct Field Acoustic Testing (DFAT)

I Physical Domain: D = (−5, 5)2

I Parameter Space: Ξ = [−
√

3,
√

3]M

I Probability Measure:

ρ(ξ)dξ =
(

2
√

3
)−M

dξ

I Stochastic Material: ε(ξ, x)
KL expansion of Matérn covariance

I Desired State: θ = π
4 , k = 10

w̄(x) = exp (i ((k cos θ)x1 + (k sin θ)x2))

D

DC

R

50−5

0

5

−5

Let α > 0 and ϑ = 0.1. Consider the optimal control problem

min
z∈L2(D;C)

1
2
σ

[∫
DR

(u(z; ξ, x)− w̄(x))(u(z; ξ, x)− w̄(x)) dx

]
+
α

2

∫
Dc

z(x)z(x) dx

where u = u(z) ∈ L2
ρ(Ξ; H1(D;C)) solves

−∆u(ξ, x)− k2(1 + ϑε(ξ, x))2u(ξ, x) = z(x) ∀ (ξ, x) ∈ Ξ× D
∂u
∂n

(ξ, x) = iku(ξ, x) ∀ (ξ, x) ∈ Ξ× ∂D.



Results: M = 6, γ = 5, and α = 10−4

J (ξ, z) =

∫
DR

(u(z; ξ, x)− w̄(x))(u(z; ξ, x)− w̄(x)) dx.
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� Mean value: ξ ← E[ξ] � Mean plus CVaR: σ[X] = 1
2E[X] + 1

2 CVaR0.1[X]

� Risk neutral: σ[X] = E[X] � CVaR: σ[X] = CVaR0.1[X]

Mean plus CVaR Value-at-Risk: t = 6.59073
CVaR Value-at-Risk: t = 6.90629



Results: The Effect of Smoothing - CVaR

Smoothed Plus Function

x
−2 −1 0 1 2

1

2 ℘(x, γ)

VaR Approximation

log2(γ)
0 1 2 3 4

t

6
6.5

7 6.9

γ ‖z‖Z Abs. Err. Rate t Abs. Err. Rate
1 37.8369 - - 5.9792 - -
2 37.0495 1.2177 - 6.7004 0.7212 -
4 36.7416 0.7111 0.7760 6.8258 0.1254 2.5239
8 36.6653 0.4396 0.6939 6.9066 0.0808 0.6341

Theoretical convergence rate is 1
2 (Kouri and Surowiec).
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Distributionally Robust PDE-Optimization

Recall: (Ξ,F) is a measurable space and prob. measure is unknown.
I M denotes the Banach space of regular Borel measures on F .
I M+ ⊂M is the set of positive measures, i.e.,

µ ∈M+ =⇒ µ(V) ≥ 0 ∀V ∈ F .

I Ambiguity Set: A ⊂M defined by data. For example:
I Moment Matching: Given generalized moment data m1, . . . ,mN,

A =

{
P ∈M+ : P(Ξ) = 1,

∫
Ξ

ψi(ξ) dP(ξ) = mi, i = 1, . . . ,N
}
.

I Φ-Divergence (e.g., Kullback-Leibler): Given an estimated prob.
measure P0 and ε > 0,

A =
{

P ∈M+ : P(Ξ) = 1, DΦ(P,P0) ≤ ε
}
.

I Distributionally-robust (a.k.a. data-driven) optimization problem:

min
z∈Zad

sup
P∈A

∫
Ξ

f ((U(z))(ξ), z, ξ) dP(ξ).



Measure Discretization
General Approach:

1. Let {ϕi}n
i=1 be a partition of unity and µ ∈M be any measure.

2. Define the “localized” measures

µi(V) =

∫
V
ϕi(ξ) dµ(ξ).

3. Note µ(Ξ) = µ1(Ξ) + . . .+ µn(Ξ).

4. Define the projection operators Πn : C(Ξ)→ span{ϕ1, . . . , ϕn} as

Πny =

n∑
i=1

µi(Ξ)−1
∫

Ξ

y(ξ) dµi(ξ) ϕi ∀ y ∈ C(Ξ) (3)

and Λn :M→ span{µ1, . . . , µn} as

Λnν =
n∑

i=1

µi(Ξ)−1
∫

Ξ

ϕi(ξ) dν(ξ) µi ∀ ν ∈ N , (4)

5. Lemma: Πn is the adjoint of Λn.

6. Lemma: Λn is invariant on the space of prob. measures.



Measure Discretization
Piecewise Constants:

1. Let {Vi}n
i=1 be a tesselation of Ξ and define ϕi = χVi .

2. The “localized” measures are

µi(V) = µ(V ∩ Vi).

3. The projection operator Πn : C(Ξ)→ span{ϕ1, . . . , ϕn} is

Πny =

n∑
i=1

µ(Vi)
−1
∫

Vi

y(ξ) dµ(ξ) χVi ∀ y ∈ C(Ξ) (5)

and Λn :M→ span{µ1, . . . , µn} is

Λnν =

n∑
i=1

µ(Vi)
−1ν(Vi)µi ∀ ν ∈ N , (6)

4. Theorem: Suppose Vi are convex, bounded, and Lipschitz, and µ ∈M.
Then ∃c > 0 only depending on M such that

‖ν − Λnν‖W1,∞(Ξ)∗ ≤ c
n∑

i=1

(
1 +
|µ|(Vi)

|µ(Vi)|

)
|ν|(Vi) diam(Vi).



Example

Suppose Ξ = [0, 1] and P has pdf

pdf(ξ) =
β

1− e−β
e−βξ for β > 0.

Approx. P using piecewise constant projection and µ set to the uniform prob. measure:

approx-pdf(ξ) =
n∑

i=1

(e−βai−1 − e−βai )

(1− e−β)(ai − ai−1)
χ[ai−1,ai]

(ξ).

β n Error Sum W. Diam. Max. Diam. Max. W. Diam.

1

10 3.592× 10−2 1.438× 10−1 2.518× 10−1 5.899× 10−2

100 3.740× 10−3 1.496× 10−2 4.269× 10−2 1.471× 10−3

1000 3.751× 10−4 1.501× 10−3 6.089× 10−3 2.733× 10−5

10000 3.750× 10−5 1.500× 10−4 7.955× 10−4 4.404× 10−7

10

10 2.282× 10−1 1.304× 10−1 7.572× 10−1 1.010× 10−1

100 3.053× 10−2 1.451× 10−2 5.328× 10−1 8.191× 10−3

1000 3.551× 10−3 1.502× 10−3 3.133× 10−1 5.424× 10−4

10000 3.763× 10−4 1.517× 10−4 1.300× 10−1 2.710× 10−5

100

10 3.076× 10−1 1.226× 10−1 9.758× 10−1 1.194× 10−1

100 4.128× 10−2 1.327× 10−2 9.531× 10−1 1.261× 10−2

1000 5.022× 10−3 1.348× 10−3 9.301× 10−1 1.247× 10−3

10000 5.899× 10−4 1.360× 10−4 9.072× 10−1 1.224× 10−4



Optimization Algorithms

J(z) = sup
P∈A

∫
Ξ

f ((U(z))(ξ), z, ξ) dP(ξ) may not be differentiable!

I Z Hilbert + ∇2f (U(z), z, ·) bounded =⇒ J(z) is proximally subdiff.
I Analytic Definition: ζ ∈ Z∗ is a proximal subgradient if ∃σ and η

such that ∀ y ∈ Z with ‖z− y‖Z ≤ η,

J(y) ≥ J(z) + 〈ζ, y− z〉Z∗,Z − σ‖y− z‖2
Z .

I Geometric Definition: J is locally supported by a quadratic.
I Example: −|x| is not proximally subdifferentiable at x = 0.
I Optimality: If z ∈ Z minimize J then 0 is a proximal subgradient.

I Cannot use derivative-based optimization algorithms.
I Subgradient descent and bundle methods converge sublinearly.
I Expensive PDEs =⇒ Need rapid optimization algorithms.
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Conclusions:
I Risk Neutral:

I Can efficiently solve using adaptive sparse grids and trust regions.
I Risk Averse:

I Risk measures often not differentiable;
I Define smooth risk measures using the risk quadrangle;
I Can use Newton’s method/quad. and can prove error bounds.

I Unknown Distribution:
I Incorporate data into distributionally-robust opt. formulation;
I Objective func. not differentiable;
I Nonsmooth optimization algorithms converge slowly.

Future Work:
I Risk measures: Develop error indicators and use locally adaptive

sparse grids with trust-region algorithm.
I Unknown distribution: Develop opt. algorithm that exploits structures

inherent to PDE-constrained problems.
I Incorporate (buffered) probabilistic objectives and constraints to

control tail-probabilities and rare events
(Rockafellar, Uryasev, Royset, Shapiro, Henrion, Kibzun, ...)
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