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Motivation
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Optimization Problem Formulation

Goal: Control uncertainty rather than quantify uncertainty.

Initialize Determine Observe Mak
Physical Control Physical Deceilsi?)n
Model Action System
' !
: A
Inverse
=
Problem

We implement the control prior to observing the state.
Control is deterministic.
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’ Deterministic Optimization of PDEs

Optimal Control: Given a >0, Q, C Q, Q. C Q, and w € L*(Q,).
min J(z) = 1/ (U(2))(x) — w(x))* dx + 9/ 2% (x) dx
2 Ja, 2 Ja.

zEZ
where U(z) = u € H'(2) solves the weak form of
-V (kVu)+Nu) =z in Q
u=g, on o9.

Topology Optimization: Given 0 < Vo <1land Q c R%, d =1,2,3.

min J(z) = / F(x)- (U(z))(x)dx st 0<z<1, / z(x) dx < Vo|Q|

zEZ

where U(z) = u € H'(Q)? solves the weak form of

—V - (E(z) : €(u)) = F, in Q
e(u) = %(w +vul), in 0
u=g, on o%.
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General PDE-Constrained Optimization

Let &/ and Z be reflexive Banach spaces, C be a Banach space,
f:UxZ—=R,ande: U x Z — C. Consider

min J(z) = f(U(z),2)

2E€ 2y
where U(z) = u € U solves the weak form PDE
e(u,z) =0 and Z,y C Z.

Assumptions:
» Foreachz € Z,, e(u,z) = 0is well posed, i.e.,

» 31U(z) = u € U such that e(U(z),z) = 0;
» Jc¢ > 0indpendent of z such that ||U(z) |l < c(]|z|lz + 1).

» e is sequentially weakly continuous.
> fis sequentially weakly lower semicontinuous (Isc).

» Z.qis convex, closed and bounded — or —
Z,4 = Z and ] is coercive, i.e., im ;) ; oo J(z) = c0.

Result: There exists a minimizer to ] in Z,4.
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Differentiability

Assumptions:
> f and e are k-times continuously Fréchet differentiable.
» Foreachz € Z,q4, e.(U(z), z) has a bounded inverse.

Result: | is k-times continuously Fréchet differentiable in Z,4.

Gradient Evaluation:
» Compute U(z) = u € U, the weak solution of the state equation:

e(u,z) = 0.
» Compute A(z) = X € C*, the weak solution of the adjoint equation:
eu(U(2),2) " A + fu(U(2),2) = 0.

» Evaluate gradient: VJ(z) = £.(U(z),z) + e.(U(z),z)"A(z).
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’ Example

Optimal Control: Given a >0, Q, C Q, Q. C Q, and w € L*(Q,).

5 [ (U@ -0 dr+ § [ 200 ax

wIe=2/, C

where U(z) = u € H'(9) solves the weak form of
-V - (kVu) + N(u) =z, in Q
u=4g, on 99.

Gradient Evaluation:
» Compute U(z) = u € H'(Q), the weak solution of the state equation:

-V - (kVu) + N(u) =z, in Q
u=g, on of.
» Compute A(z) = X € H'(Q), the weak solution of the adjoint equation:
V- (V) + Ny(u)" A = — (u— ), in Q
A=0, on 99.

» Evaluate gradient: VJ(z) = az — A(z).
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+.Optimization of PDEs with Uncertain Inputs
Optimal Control: Given a >0, Q, C Q, Q. C Q, and w € L*(Q,).
min J(z) = %R [/Q ((U(2))(€, %) — w(x))? dx} +%/ Z (o) d

z€Z
where U(z) = u : = — H(Q) solves the weak form of
=V (e(Vu(§)) + N(u(6),§) =z, inQ, as.
u(€) = g(&), on 99, as.

Topology Optimization: Given0 < Vy <land Q c R, d =1,2,3.

min J(z) =R [/Q F(&,x)- (U(2)(&,x)dx| st 0<z<1, /Qz(x) dx < Vy|Q|

ZEZ

where U(z) = u : = — H'(Q)“ solves the weak form of

=V - (E(z) : e(u(§)) = F(¢), in Q, a.s.
e(u(e) = %(Vu(f) +vue)"), inQ, as.
u(&) = g(&), on 5, a.s.
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+General PDE-Optimization under Uncertainty

Let (2, F, P) be a complete probability space with = C RM. Consider

min J(z) = R(f((U(2))(£),2 )

2€Z,4

where U(z) = u € L, (Z;U) solves the weak form PDE
e(u,z,§) =0 and Z,4C Z.

Assumptions:

» Foreachz € Z,gand vy € E, e(u,z,&) =0 is well posed, i.e.,

» 3U(z) = u € LL(Z;U) such that e(U(z),z, &) = 0;

» Jc > 0indpendent of z and £ € = such that || U(2)||u < ¢(||z]|z + 1)-
> eis a.s. sequentially weakly continuous.
» fis a.s. sequentially weakly Isc and f((U(z))(€),z, &) € LL(Z).

» Z.4 is convex, closed and bounded — or —
Za=Zandz— f((U(z))(&),z,¢) is as. ie.,
limz ;oo f((U(2))(E),2,€) = oo
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Risk Measures, R

Assumptions:
» R:LL(ZE) - RU {+oo}
see, Rockafellar, Uryasev, Shapiro, Dentcheva, Ruszczynski, . ..
» R is convex, Isc and satisfies R(C) = C for all constants C;
» R is monotonic, i.e., if X; > X5 a.s., then R(X;) > R(Xa).

Result: There exists a minimizer to | in Z,4.

Risk Neutral v.s. Risk Averse
» Risk Neutral: R = E.
» Optimal solution minimizes on average.
» Risk Averse: R(X) > E[X] V nonconstant X € L}(Z).

» More conservative than R = E.
» Can minimize measures of deviation and/or tail events.
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+.Known v.s. Unknown Probability Distribution

Known Probability Distribution:
» = C RMis known and P has Lebesgue density p : = — [0, c0).
» Enables UQ techniques including gPC and sampling.
» All analysis performed in L, (Z) instead of L},(Z).

Unknown Probability Distribution:

» Must determine optimal solutions that are robust to unknown pdf.
» Use data to estimate pdf (i.e., experimental data or inverted coefficients).
» Reformulate optimization problem into a minimax problem
min sup Ep[f((U(2)(S),z,¢)]
ZEZ,4 PeA
» A is called the ambiguity set and is defined with data, i.e., moment
matching.
» Must discretize the probability measures P € A.
» May also require specialized optimization algorithms.
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Sample-based Approximation

Monte Carlo

Handles general = and p;
Error is independent of dim.;
Error is probabilistic with rate

1

Elerror] = O(Q™ 2);

Use QMC and variance reduction;
Weights are positive (w; = Q7 1).

vV VvyVvVvyy

Quadrature

Often requires TP Z and p;
Error is dependent on dim.;
Sparse grids lessen affect of dim.;
Regularity accelerates conv., e.g.,

error = O(Q " log(Q)M- D +1)y;

> SG weights are pos. and neg.
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Outline

Known Probability Distribution
Risk-Neutral Optimization
Risk-Averse Optimization
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Outline

Known Probability Distribution
Risk-Neutral Optimization
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e
Risk-Neutral Optimization Problem

min J(z) = E[f(U(2),2,-)] = /:p(f)f((u(z))(ﬁ)%&) d¢

2€2,4

> There exists minimizers of [ inz € Z4.
> Jis k-times continuously Fréchet differentiable if f and e are for all £ € =.
Since pdf is known, we replace E with a quadrature approximation:

Q
J(2) = Jo(z) = Y wif (U(2)) (&), 2, &)
k=1
» There exists minimizers of Jg in z € Z,q4 if Z,4 is bounded.
> Jo is k-times continuously Fréchet differentiable if f and e are for all ¢ € =.

Require (U(2))(&) = ux € U,k =1,...,Q, that solve the weak form PDEs,
e(uk,Z,fk):O, kzl,,Q

» Decoupled system of PDEs can be solved concurrently.
» Use favorite numerical PDE technique to solve deterministic PDEs.
» Convergence depends on quad. rule and regularity of state and adjoint w.r.t. £.
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Numerical Optimization for Risk-Neutral Problems

» Efficient Numerical Method

» Gradient computation requires two PDE solves per quad. point;
» High accuracy or large dim(Z) — large Q;
> In optimization, accuracy not required far from a solution.

» Accurate Characterization of the Random Field

» Use adaptive sparse grids to exploit anisotropy in random fields
(Gerstner and Griebel 1998, Ma and Zabaras 2009, Agarwal and
Aluru 2009, Webster et al.);

» Use adaptive finite elements to accurately resolve PDE solution
(Carstensen 2005, Becker et al. 2007).

» Trust Regions

» Globally convergent opt. algorithm (Powell 1975, Sorensen 1982);

» Allows for inexact gradients and objective functions (Carter 1989,
Heinkenschloss and Vicente 2001, Ziems and Ulbrich 2011);

» Natural framework for model management (Alexandrov et al. 1998,
Dennis and Torczon 1996).
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ol Trust-Region Algorithm

Given: 20, mo(s) ~ ](Zo 4 S), ]0 ~ ], do > 0, and gtOl > 0.
While ||V (s)||z > gtol

1. Model Update: Choose a new m(s) ~ J(zx + s).

2. Step Computation: Approximate a solution, s, to the subproblem

min m(s) subjectto ||s||z < d.
s€Z

3. Obijective Update: Choose a new Ji(z) ~ J(z).
4. Step Acceptance: Compute

o = Je(zx) — Ji(zk + sx)
m(0) — mi(se)
Ifor>ne (0, 1), then zy11 = z¢ + s¢ else z 1 = zk.
5. Trust Region Update: Choose a new trust-region radius, 1.

EndWhile
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' Trust-Region Algorithm

Given: 20, 7110(5) ~ ](Zo 4 S), ]0 ~ ], do > 0, and gtOl > 0.
While ||V (s)||z > gtol

1. Model Update: Choose a new m(s) = J(zx +s). <— ADAPTIVITY

2. Step Computation: Approximate a solution, s, to the subproblem

min m(s) subjectto ||s||z < d.
s€Z

3. Objective Update: Choose a new Ji(z) = J(z). < ADAPTIVITY

4. Step Acceptance: Compute

o = Je(zx) — Ji(zk + sx)
m(0) — mi(se)
Ifor>ne (0, 1), then zy11 = z¢ + s¢ else z 1 = zk.
5. Trust Region Update: Choose a new trust-region radius, 1.

EndWhile
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+./Inexact Gradients and Objective Functions

Kouri, Heinkenschloss, Ridzal, and van Bloemen Waanders

Inexact Gradients
There exists ¢ > 0 independent of k such that

[Vmi(0) = V](zi)l|z < cmin[|Vm(0)]|z, 6k}

(Carter 1989, Heinkenschloss and Vicente 2001).

Inexact Objective Functions
There exists K > 0, w € (0,1), and 6(z,s) — 0 as r — 0 such that

|J(zx) = J(zx +s¢)) — Ur(zk) — Jx(ze + 86))| < KO(zx, 5K)
6(zx, 5x)° < mmin {(mx(0) — mi(se)), e} -
Here, n > 0 is tied to algorithmic parameters and limy_, ., 7y = 0.
(Carter 1989, Ziems and Ulbrich 2013).

» Cannot compute [(zx) and V] (zx);
» Control a posteriori errors using adaptive sparse grids.
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Sparse Grids and Adaptivity

Gerstner and Griebel 2003

Vi

1D Operators: Fork=1,...,M, E) =0and
A =F—E" where Ei(g) == | p(€)g(6)de
=k
> Sparse-Grid Operator: For an index set Z ¢ N,
Ez=) (A ®@--- @A)
ieZ

Admissibility: i€Z and i>j] = jeZ
Error: Given the index set Z ¢ NM, the error is

E—Er=) (A} @ ®A})

igT ‘

Adaptivity: Picki ¢ Z s.t. ZU {i} admissible and A} ® - -- @ AM “large”

v

v

v

ooooooooooooooo
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Direct Field Acoustic Testing (DFAT)

Larkin and Whalen
5

» Physical Domain: = (-5, 5)?
> Parameter Space: = = [—/3,/3M o
> Probability Measure:

p(©)de = (2v3) " de
> Stochastic Material: ¢(¢, x)

KL expansion of Matérn covariance

> Desired State: 0 = 7, k=10
w(x) = exp (i (kcos 0)x; + (ksin6)xy)) =
-5 0 5

o

Let @ > 0 and 7 = 0.1. Consider the optimal control problem

min 2o [ / (0 63) @0 ) A0 dx| + 5 / =20
where u = u(z) € L2(Z; H'(2; C)) solves
—Au(,x) — K1+ 7e(€, x)2u(é, x) = z(x) V(,x) EEXN

ou . =
%(&x) =iku(§,x) VY (§x) € E x 0.
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Results: Risk Neutral

dim | Algorithm PDE Solves  CPyrag CPopi

20 Grad. Adapt. TR 1,136,784 1,405 120,401

a=10"4 Obj. Adapt. TR 122,331 1,509 2,933
40 Grad. Adapt. TR 16,327,120 1,445 1,804,001

Obj. Adapt. TR 128,051 1,549 2,973

Table : Computational cost of the classical trust-region algorithm applied to
the Helmholtz example with M € {20,40} and o = 107*.
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Outline

Known Probability Distribution

Risk-Averse Optimization
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Motivation - Control Uncertainty

Optimal control should be “risk averse.” For example:
» Reduce variance or deviation
E[(X-EX])? or  E[(X-EX),)
e.g. reduce uncertainty and variability in controlled system.
» Control rare events, tail probabilities, or quantiles
Pr[X <] or VaRg[X]=inf{teR :PriX<t>p}
e.g. reduce failure regions and certify reliability.

» Minimize over quantiles

1

CVaRs[X] = ——
aRs[X] 1= 8 Jx>vars[x]

X(&)p(€) dE = E[X[X > VaRg[X]]

e.g. minimize over undesirable events.

Sandia
National
Laboratories




Risk Measures

p(§)
RISk NEUTRAL: i
R(X) =E[X] X (&)
§
p(&)  PrX<t =8
CONDITIONAL ‘ - | - ¢
VALUE-AT-RISK:
R(X) = CVaRg[X] X&) t=VaRs[X]
3 w4 i
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—— !
Risk Measures

Shapiro, Dentcheva, Ruszczynski, Rockafellar, Uryasey, . . .

R : L7 — RU {cco} is a monetary risk measure if for X, X, X, € L},(Z)

» Monotonicity: X; > X; ae. = R(X1) > R(X2)

» Translation Equivariance: R(X+1t) =R(X)+t, VteR
‘R is a convex risk measure if

> TR is a monetary risk measure

> Convexity: R(tX:+ (1 —1)Xz) <tR(X1) + (1 -HR(X2), Vte0,1]
R is a coherent risk measure if

> R is a convex risk measure

> Positive Homogeneity: R(tX) = tR(X), Vt>D0.

Examples of coherent risk measures with X €= L},(=Z):
» Risk Neutral: R(X) = E[X]
» Mean Plus Semideviation: R(X) = E[X] + cE[(X — E[X])+], c € (0,1)
» Conditional Value-at-Risk: R(X) =inf {t+cE[(X —t)+] : t e R}, ¢ >1
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Duality Theory of Risk Measures

By the Fenchel-Moreau Theorem, if R is a convex risk measure, then

R(X)= sup {E[0X]—R*(¥9)}
Yedom(R*)

where R* is conjugate to R, i.e., R*(¢¥) = SUPY cdom(R) {E[¥X] — R(X)}.

Moreover, if R is a coherent risk measure, then

R(X)= sup E[WX].
Yedom(R*)

dom(R*) is the risk envelope — related to the ambiguity set for unknown pdf.
Example (Conditional Value-at-Risk):

R(X) = CVaRg[X] = ir}f{ t+(1—B)E[(X - t)+]} = ol )E[z‘}X]
€dom *

where dom(R*) = {19 € (LYE)* : 9(E) € [o, ﬁ] pae., [o9()p(€)de = 1}.
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The Risk Quadrangle

Optimization Estimation
Risk R: Measures overall R p  Deviation D: Measures
“hazard” “non-constantancy”
R(X) =E[X] + D(X) D(X) = R(X) — E[X]

= min{t + V(X - 1)} S = min{&(X — )}.
Regret V: Measures ones Error £: Measures proxim-
“displeasure” Y < ity to zero

V(X) = E[X] + €(X). E(X) =V(X) — E[X].

Statistic: S(X) = argmin{t + V(X — t)} = argmin{&E(X —t)}.
t t

Example: Given n > 0,
EX) =nlXlizz = V) =EX+nlXlz= and S(X)=E[X]
= D) =nlX-EX]ll;z (=) = no(X)
= R(X) = EIX] + 1l|X — E[X]|2 =) = EIX] + n0(X).
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' The Expectation Quadrangle
Let the scalar regret function, v : R — R U {oo}, be convex, Isc, and satisfy
v(0) =0, but ov(x)>x Vx=#0.

We define the scalar error function as e(x) = v(x) — x.
> eis convex and Isc;
> ¢(0) =0, bute(x) > 0forall x # 0.

The corresponding regret and error measures are

V(X) =E[v(X)] and &(X)=E[e(X)], respectively.

Example (Quantile-based Quadrangle): Given 0 < 8 < 1, define

u(x) =

1 _ B
W = =155
This gives rise to the quadrangle

R6) = min {1+ 1B~ 1)4]} = CVaRs[x]

)+ + (=2)+

D(X) = CVaRg[X — E[X]] = B-CVaR deviation of X
E(X) = normalized Koenker-Bassett error
S(X) = VaRg[X] = p-quantile of X.
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Complications with Risk Measures
» V (orov) are Isc = R may not be differentiable.
» Derivative-based optimization algorithms may not apply.
» If v is not differentiable, quad. approx. may not converge.

Our Approach
» Smooth V or £ to improve differentiability of objective function;
» Smoothing may help ensure convergence of quad. approx.;
» Use Newton-type algorithms to solve smoothed problem;
» Must quantify error committed by smoothing;
» Must perform continuation on smoothing parameter.
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; Example: Smoothed CVaR

Given e > 0, we consider approximations of (-)* given by

:/ G.(r)dr where Ga(x):/ %5(2) e

and ¢ : R — R satisfies
1. § e C(R )andlet0<I<<oost sup, [0(x)| < K;
2. (5()>0anndf x)dx =1;

3. Either [*_46(x)xdx < 0 or f x)|x|dx =
4. supp(9) is connected

Results:
» x +— (x)I is nondecreasing and convex;
» x+— (x)I is at least twice continuously differentiable;
> —eAp < (x)F — (x)* <eA; where

0 oo
Alz/ d(x)|x|dx and Az—max{O,/ 5(x)xdx}

—0o0 — 00
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Smoothed Plus Function

Examples:

(x)1;, = x+elog (1 + exp (%))
0 ifx <0

W=1 (5-4) ifxe (o)
xX—5 ifx>e




e
Smoothed CVaR
F8(X) =t + E[(X - H)}] and RE[X] =inf {F5(t,X) : t € R}

Results:

> There exists ¢ > 0 s.t. )RE [X] — CVaRg [X}‘ < 25¢ forall X € LL(E).
Smoothed CVaR, R? is a convex risk measure.
X~ FE(t,X) : LL(E) — R is Hadamard differentiable.

X~ F2(t,X) L2(2) — R is twice continuously Fréchet differentiable.

vV v VvYy

t— Ff(n X) : R — R is twice continuously differentiable.

PDE-Optimization Problem
Jo(t,2) = t+ 7B [ (f(U(2),2), )]

Results:

> Differentiability: J. (¢, z) is Hadamard differentiable w.r.t. z and continuously
differentiable w.r.t. t.

> Differentiability: If u = u(z) € L} (Z;U) with p > 4 then ] (t,2) is twice
continuously Fréchet differentiable.

» Convergence Rate: Suppose (tc,zc) is a minimizer of J.(¢,z) and (+*,z*) is a
minimizer of J(t, z). Then, ([t* — tc|> + ||z* — zEHZZ)% < Cet.
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Optimal Control of 1D Elliptic Equation

Leta=10,9, = Q. =Q = (-1,1), and u = 1 and consider

1
+ g/ z(x)* dx
2/

where u = u(z) € L3(Z; Hj(0, 1)) solves the weak form of

1
minimize J(z) = %CVaRﬁ / (u(-,x;2) — 1)* dx
-1

zel?(—1,1)

— 0y (e(&, X)0xu(&, x)) = f(&, %) +2(x) (&x) €ExQ,
u(ga 71) = 0’ u(ga 1) =0 f € =.

= =[-0.1,0.1] x [-0.5,0.5] is endowed with the uniform density
p(€) =5, and the random field coefficients are

6(5,9() = 0.1X(,1’51) + 10}((51’1), and f(f,X) = exp(—(x — 52)2).
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’ Primal Results

Sample Approximation: Level 8 Gauss-Patterson sparse grids.

V= -0.945"2)
X R V=-085-"\

VaR[5 Error
>
z Error
Total Error

2 4 2 4 2
—log(e) -log(e) -log(e)

Optimization Algorithm: Trust region with truncated CG.

log(e)
-1 -2 3 -4 5 6
0.05 ( 1) 18(5) 15(4) 6(11) 4(16) 24(3) 22(9)
B 05 11(9)  4(22) 4(21) 6(13) 16(4) 5(8)  5(8)
0.95 | 14(12) 14(11) 5(17) 5(19)  3(9) 4(7)  4(5)

Continuation: # TR iterations (average # CG iterations)
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' Dual Results

Sample Approximation: Monte Carlo with 10,000 samples.
B =0.05 =05




Direct Field Acoustic Testing (DFAT)

5

> Physical Domain: D = (-5, 5)?
> Parameter Space: = = [—/3, V3™ Vs
»> Probability Measure:

p(©)de = (2v3) " de
> Stochastic Material: ¢(¢, x)

KL expansion of Matérn covariance

> Desired State: 0 = T,k =10
w(x) = exp (i ((kcos 0)x1 + (ksinB)x7)) 5
-5 0 5

o

Let « > 0 and ¥ = 0.1. Consider the optimal control problem

min 2o [ / {0z, %) — BC)EE D) 000 dx| + 5 / 209209 d
where u = u(z) € L3(Z; H'(D; C)) solves
—Au(é,x) — kz(l + 196(&,x))2u(£,x) = z(x) vV (&,x) €ExD

ou . =
So(6x) = iku(€,v) ¥ (6,%) € x OD.
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Res#tS: M =6,v=5,and a =10

J(&2) = /D (u(z; €, %) — w(x)) (u(z &, x) — w(x)) dx.

R

0.3] !
0.8
0.2]
w 0.6
5 s
(8]
0.1 o
0.2
Yo 0 10 20 30 0% 5 10 15 20
T(6,2) J(&2)
B Mean value: ¢ + E[¢] B Mean plus CVaR: o[X] = 1E[X] + CVaRo1[X]

® Risk neutral: o[X] = E[X] M CVaR: o[X] = CVaRo.[X]

Mean plus CVaR Value-at-Risk: ¢ = 6.59073
CVaR Value-at-Risk: t = 6.90629
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Results: The Effect of Smoothing - CVaR

Smoothed Plus Function VaR Approximation
29 plx7)

loga ()

[
N

I
—_
O«
—_
N

| llzllz  Abs.Err. Rate | ¢ Abs. Err.  Rate

-
1 | 37.8369 - - 5.9792 - -
2 | 37.0495 1.2177 6.7004 0.7212
4
8

36.7416  0.7111  0.7760 | 6.8258 0.1254  2.5239
36.6653 0.4396 0.6939 | 6.9066 0.0808 0.6341

Theoretical convergence rate is % (Kouri and Surowiec).
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Unknown Probability Distribution
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Distributionally Robust PDE-Optimization

Recall: (Z, F) is a measurable space and prob. measure is unknown.

» M denotes the Banach space of regular Borel measures on F.
» MT C Mis the set of positive measures, i.e.,

peEMt =  u(V)>0 VVeF
» Ambiguity Set: A C M defined by data. For example:

» Moment Matching: Given generalized moment data m, . .., my,

A:{P6M+ :P(E):l,/Ewi(é)dp(g):mi,i:l,...,N}.

» ®-Divergence (e.g., Kullback-Leibler): Given an estimated prob.
measure Py and € > 0,

A={Pe M’ : P(E)=1,Ds(P,Py) <€}.

» Distributionally-robust (a.k.a. data-driven) optimization problem:

min sup | f((U(2))(£),2,€) dP(S).

2€Zud pea =

Sandia
National
Laboratories



e

Measure Discretization

General Approach:
1. Let {yi}i—; be a partition of unity and x € M be any measure.

2. Define the “localized” measures

(V) = / i) du(c).

3. Note p(Z) = 1 (E) + ... + p(2).
4. Define the projection operators II,, : C(Z) — span{p1,...,¢u} as
Ly =Y @™ [ O du(© v vyecE )
i=1 =

. Lemma: II, is the adjoint of A.
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and A, : M — span{u,...,u.} as

nV—ZuIE’/: ©dv(e) s Vv eN, (@)

Lemma: A, is invariant on the space of prob. measures.
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Measure Discretization

Piecewise Constants:
1. Let {Vi}._, be a tesselation of Z and define ¢; = xv,.

2.

3.

The “localized” measures are
pi(V) = (VN vi).
The projection operator I, : C(Z) — span{¢1,...,n}is
My =3 uv)™ [ @ an(e v, vyecE) 5)
i=1 i
and A, : M — span{ui, ..., un} IS

AV_ZMVI Vi Vv EN, (6)

4. Theorem: Suppose V; are convex, bounded, and Lipschitz, and . € M.
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Then 3¢ > 0 only depending on M such that

[ — Avflwi.co (2 < cZ (1 + :ZL(TV))I) v|(V3) diam (V7).
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Example
Suppose = = [0,1] and P has pdf
__ B s
pdf(¢) = P € for B>0.

Approx. P using piecewise constant projection and y set to the uniform prob. measure:

n —Baj_1 _ ,—PBa;
approx-pdf(§) = Z (1(6_ e*ﬁ)(a-e— 11‘7)1) X

i=1

a;_1,a;] (g)

B n Error Sum W. Diam. Max. Diam. Max. W. Diam.
10 | 3592 x 1072  1.438x 10~T 2518 x 10! 5.899 x 102
1 100 | 3.740 x 1073 1.496 x 1072 4.269 x 1072 1.471 x 1073
1000 | 3.751 x 107* 1501 x 107%  6.089 x 107> 2.733 x 10~°
10000 | 3.750 x 107> 1.500 x 10~*  7.955 x 10~*  4.404 x 1077

10 | 2282 x 1077 1.304 x 10°T 7572 x 10! 1.010 x 1071
10 100 | 3.053 x 1072 1451 x 1072 5328 x 107! 8.191 x 1073
1000 | 3.551 x 1072 1.502 x 1073 3.133 x 107! 5.424 x 1074
10000 | 3.763 x 10~% 1517 x 10~*  1.300 x 107! 2.710 x 107°

10 | 3.076 x 1077 1.226 x 10°7  9.758 x 10! 1.194 x 1077
100 100 | 4128 x 1072 1.327 x 1072 9.531 x 10~! 1.261 x 1072
1000 | 5.022 x 107°  1.348 x 10~%  9.301 x 10" 1.247 x 1072
10000 | 5.899 x 10™*  1.360 x 10™*  9.072 x 10" 1.224 x 10~*
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Optimization Algorithms

J(z) =sup | f((U(z))(€),z,&)dP() may not be differentiable!

v

v

v

v

Laboratories

PeAJE

Z Hilbert + V2f(U(z),z, -) bounded = J(z) is proximally subdiff.

» Analytic Definition: ¢ € Z* is a proximal subgradientif 3o and 7
such thatVy € Z with ||z —y||z <,

J) 2@ +(Cy —2)ze.z —oly — 2.

» Geometric Definition: | is locally supported by a quadratic.
» Example: —|x| is not proximally subdifferentiable at x = 0.
» Optimality: If z € Z minimize | then 0 is a proximal subgradient.

Cannot use derivative-based optimization algorithms.
Subgradient descent and bundle methods converge sublinearly.
Expensive PDEs —- Need rapid optimization algorithms.
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Conclusions
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e
Conclusions:

» Risk Neutral:

» Can efficiently solve using adaptive sparse grids and trust regions.
> Risk Averse:

» Risk measures often not differentiable;

» Define smooth risk measures using the risk quadrangle;

» Can use Newton’s method/quad. and can prove error bounds.
» Unknown Distribution:

» Incorporate data into distributionally-robust opt. formulation;
» Objective func. not differentiable;
» Nonsmooth optimization algorithms converge slowly.

Future Work:
» Risk measures: Develop error indicators and use locally adaptive
sparse grids with trust-region algorithm.
» Unknown distribution: Develop opt. algorithm that exploits structures
inherent to PDE-constrained problems.
» Incorporate (buffered) probabilistic objectives and constraints to
control tail-probabilities and rare events
@ o (Rockafellar, Uryasev, Royset, Shapiro, Henrion, Kibzun, ...)
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