



Theory and Algorithms for PDE-Constrained Optimization under Uncertainty

SAND2015-0459PE

Drew Kouri

Optimization and Uncertainty Quantification
Sandia National Laboratories, Albuquerque, New Mexico
dpkouri@sandia.gov

January 26, 2016

Duke University, Durham, NC.

Joint work with T. Surowiec (HUBerlin), M. Heinkenschloss (Rice),
D. Ridzal (SNL), and B. van Bloemen Waanders (SNL).

Funding support: ASC.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Outline

Problem Formulation

Known Probability Distribution

Risk-Neutral Optimization

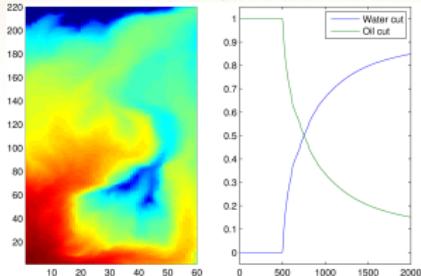
Risk-Averse Optimization

Unknown Probability Distribution

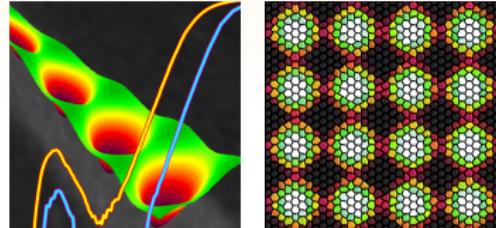
Conclusions

Motivation

Reservoir Optimization



Superconductor Vortex Pinning



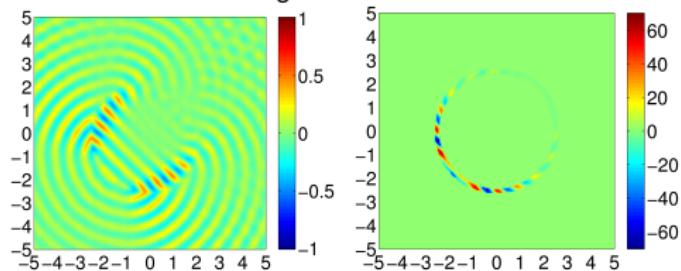
Courtesy Argonne National Laboratory

$$v = -\mathbf{K}\lambda(s)\nabla p, \quad \nabla \cdot v = q$$
$$\phi \partial_t s + \nabla \cdot (f(s)v) = \hat{q}$$

$$\gamma(\partial_t + i\mu)\psi = \epsilon\psi - |\psi|^2\psi + (\nabla - i\mathbf{A})^2\psi$$

$$\mathbf{J} = \text{Im}(\bar{\psi}(\nabla - i\mathbf{A})\psi) - (\partial_t \mathbf{A} + \nabla \mu), \quad \nabla \cdot \mathbf{J} = 0$$

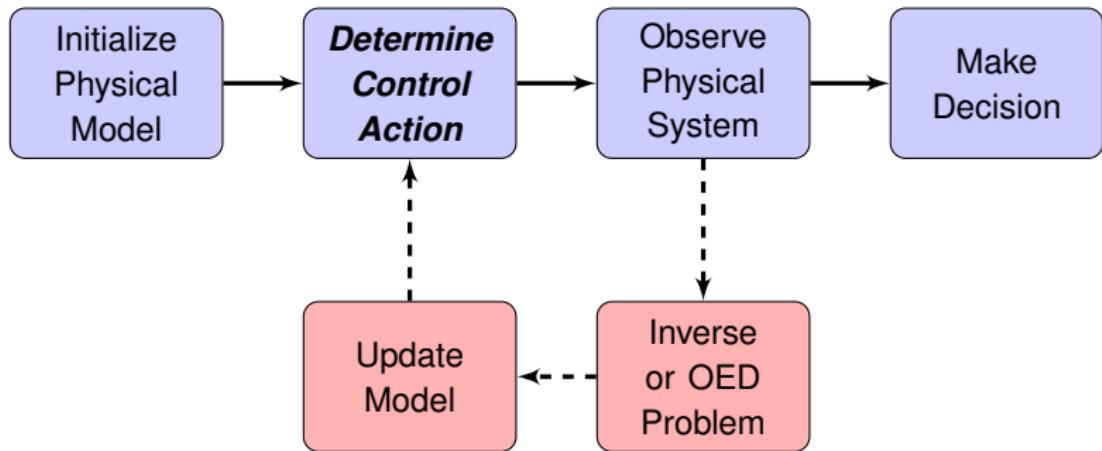
Direct Field Acoustic Testing



$$-\Delta u - \kappa^2(1 + \sigma\epsilon)^2 u = z$$

Optimization Problem Formulation

Goal: Control uncertainty rather than quantify uncertainty.



**We implement the control prior to observing the state.
Control is deterministic.**

Deterministic Optimization of PDEs

Optimal Control: Given $\alpha > 0$, $\Omega_o \subseteq \Omega$, $\Omega_c \subseteq \Omega$, and $w \in L^2(\Omega_o)$.

$$\min_{z \in \mathcal{Z}} J(z) \equiv \frac{1}{2} \int_{\Omega_o} ((U(z))(x) - w(x))^2 \, dx + \frac{\alpha}{2} \int_{\Omega_c} z^2(x) \, dx$$

where $U(z) = u \in H^1(\Omega)$ solves the **weak form** of

$$\begin{aligned} -\nabla \cdot (\kappa \nabla u) + N(u) &= z && \text{in } \Omega \\ u &= g, && \text{on } \partial\Omega. \end{aligned}$$

Topology Optimization: Given $0 < V_0 < 1$ and $\Omega \subset \mathbb{R}^d$, $d = 1, 2, 3$.

$$\min_{z \in \mathcal{Z}} J(z) \equiv \int_{\Omega} F(x) \cdot (U(z))(x) \, dx \quad \text{s.t.} \quad 0 \leq z \leq 1, \quad \int_{\Omega} z(x) \, dx \leq V_0 |\Omega|$$

where $U(z) = u \in H^1(\Omega)^d$ solves the **weak form** of

$$\begin{aligned} -\nabla \cdot (\mathbf{E}(z) : \boldsymbol{\epsilon}(u)) &= F, && \text{in } \Omega \\ \boldsymbol{\epsilon}(u) &= \frac{1}{2}(\nabla u + \nabla u^\top), && \text{in } \Omega \\ u &= g, && \text{on } \partial\Omega. \end{aligned}$$

General PDE-Constrained Optimization

Let \mathcal{U} and \mathcal{Z} be reflexive Banach spaces, \mathcal{C} be a Banach space, $f : \mathcal{U} \times \mathcal{Z} \rightarrow \mathbb{R}$, and $e : \mathcal{U} \times \mathcal{Z} \rightarrow \mathcal{C}$. Consider

$$\min_{z \in \mathcal{Z}_{\text{ad}}} J(z) = f(U(z), z)$$

where $U(z) = u \in \mathcal{U}$ solves the **weak form** PDE

$$e(u, z) = 0 \quad \text{and} \quad \mathcal{Z}_{\text{ad}} \subseteq \mathcal{Z}.$$

Assumptions:

- ▶ For each $z \in \mathcal{Z}_{\text{ad}}$, $e(u, z) = 0$ is well posed, i.e.,
 - ▶ $\exists! U(z) = u \in \mathcal{U}$ such that $e(U(z), z) = 0$;
 - ▶ $\exists c > 0$ independent of z such that $\|U(z)\|_{\mathcal{U}} \leq c(\|z\|_{\mathcal{Z}} + 1)$.
- ▶ e is sequentially weakly continuous.
- ▶ f is sequentially weakly lower semicontinuous (lsc).
- ▶ \mathcal{Z}_{ad} is convex, closed and bounded – or –
 $\mathcal{Z}_{\text{ad}} = \mathcal{Z}$ and J is coercive, i.e., $\lim_{\|z\|_{\mathcal{Z}} \rightarrow \infty} J(z) = \infty$.

Result: There exists a minimizer to J in \mathcal{Z}_{ad} .

Differentiability

Assumptions:

- ▶ f and e are k -times continuously Fréchet differentiable.
- ▶ For each $z \in \mathcal{Z}_{\text{ad}}$, $e_u(U(z), z)$ has a bounded inverse.

Result: J is k -times continuously Fréchet differentiable in \mathcal{Z}_{ad} .

Gradient Evaluation:

- ▶ Compute $U(z) = u \in \mathcal{U}$, the weak solution of the **state** equation:

$$e(u, z) = 0.$$

- ▶ Compute $\Lambda(z) = \lambda \in \mathcal{C}^*$, the weak solution of the **adjoint** equation:

$$e_u(U(z), z)^{-*} \lambda + f_u(U(z), z) = 0.$$

- ▶ Evaluate **gradient**: $\nabla J(z) = f_z(U(z), z) + e_u(U(z), z)^* \Lambda(z)$.

Example

Optimal Control: Given $\alpha > 0$, $\Omega_o \subseteq \Omega$, $\Omega_c \subseteq \Omega$, and $w \in L^2(\Omega_o)$.

$$\min_{z \in \mathcal{Z}} J(z) \equiv \frac{1}{2} \int_{\Omega_o} ((U(z))(x) - w(x))^2 \, dx + \frac{\alpha}{2} \int_{\Omega_c} z^2(x) \, dx$$

where $U(z) = u \in H^1(\Omega)$ solves the **weak form** of

$$\begin{aligned} -\nabla \cdot (\kappa \nabla u) + N(u) &= z, & \text{in } \Omega \\ u &= g, & \text{on } \partial\Omega. \end{aligned}$$

Gradient Evaluation:

- ▶ Compute $U(z) = u \in H^1(\Omega)$, the weak solution of the **state** equation:

$$\begin{aligned} -\nabla \cdot (\kappa \nabla u) + N(u) &= z, & \text{in } \Omega \\ u &= g, & \text{on } \partial\Omega. \end{aligned}$$

- ▶ Compute $\Lambda(z) = \lambda \in H^1(\Omega)$, the weak solution of the **adjoint** equation:

$$\begin{aligned} -\nabla \cdot (\kappa \nabla \lambda) + N_u(u)^* \lambda &= -(u - \bar{w}), & \text{in } \Omega \\ \lambda &= 0, & \text{on } \partial\Omega. \end{aligned}$$

- ▶ Evaluate **gradient**: $\nabla J(z) = \alpha z - \Lambda(z)$.

Optimization of PDEs with Uncertain Inputs

Optimal Control: Given $\alpha > 0$, $\Omega_o \subseteq \Omega$, $\Omega_c \subseteq \Omega$, and $w \in L^2(\Omega_o)$.

$$\min_{z \in \mathcal{Z}} J(z) \equiv \frac{1}{2} \mathcal{R} \left[\int_{\Omega_o} ((U(z))(\xi, x) - w(x))^2 dx \right] + \frac{\alpha}{2} \int_{\Omega_c} z^2(x) dx$$

where $U(z) = u : \Xi \rightarrow H^1(\Omega)$ solves the **weak form** of

$$\begin{aligned} -\nabla \cdot (\epsilon(\xi) \nabla u(\xi)) + N(u(\xi), \xi) &= z, & \text{in } \Omega, \text{ a.s.} \\ u(\xi) &= g(\xi), & \text{on } \partial\Omega, \text{ a.s.} \end{aligned}$$

Topology Optimization: Given $0 < V_0 < 1$ and $\Omega \subset \mathbb{R}^d$, $d = 1, 2, 3$.

$$\min_{z \in \mathcal{Z}} J(z) \equiv \mathcal{R} \left[\int_{\Omega} F(\xi, x) \cdot (U(z))(\xi, x) dx \right] \quad \text{s.t.} \quad 0 \leq z \leq 1, \quad \int_{\Omega} z(x) dx \leq V_0 |\Omega|$$

where $U(z) = u : \Xi \rightarrow H^1(\Omega)^d$ solves the **weak form** of

$$\begin{aligned} -\nabla \cdot (\mathbf{E}(z) : \epsilon(u(\xi))) &= F(\xi), & \text{in } \Omega, \text{ a.s.} \\ \epsilon(u(\xi)) &= \frac{1}{2} (\nabla u(\xi) + \nabla u(\xi)^\top), & \text{in } \Omega, \text{ a.s.} \\ u(\xi) &= g(\xi), & \text{on } \partial\Omega, \text{ a.s.} \end{aligned}$$

General PDE-Optimization under Uncertainty

Let (Ξ, \mathcal{F}, P) be a complete probability space with $\Xi \subseteq \mathbb{R}^M$. Consider

$$\min_{z \in \mathcal{Z}_{\text{ad}}} J(z) = \mathcal{R}(f((U(z))(\xi), z, \xi))$$

where $U(z) = u \in L_p^p(\Xi; \mathcal{U})$ solves the **weak form** PDE

$$e(u, z, \xi) = 0 \quad \text{and} \quad \mathcal{Z}_{\text{ad}} \subseteq \mathcal{Z}.$$

Assumptions:

- ▶ For each $z \in \mathcal{Z}_{\text{ad}}$ and $\gamma \in \Xi$, $e(u, z, \xi) = 0$ is well posed, i.e.,
 - ▶ $\exists! U(z) = u \in L_p^p(\Xi; \mathcal{U})$ such that $e(U(z), z, \xi) = 0$;
 - ▶ $\exists c > 0$ independent of z and $\xi \in \Xi$ such that $\|U(z)\|_{\mathcal{U}} \leq c(\|z\|z + 1)$.
- ▶ e is a.s. sequentially weakly continuous.
- ▶ f is a.s. sequentially weakly lsc and $f((U(z))(\xi), z, \xi) \in L_p^q(\Xi)$.
- ▶ \mathcal{Z}_{ad} is convex, closed and bounded – or –
 $\mathcal{Z}_{\text{ad}} = \mathcal{Z}$ and $z \mapsto f((U(z))(\xi), z, \xi)$ is a.s. i.e.,
 $\lim_{\|z\|_{\mathcal{Z}} \rightarrow \infty} f((U(z))(\xi), z, \xi) = \infty$.

Assumptions:

- ▶ $\mathcal{R} : L_p^q(\Xi) \rightarrow \mathbb{R} \cup \{+\infty\}$
see, Rockafellar, Uryasev, Shapiro, Dentcheva, Ruszczynski, ...
- ▶ \mathcal{R} is convex, lsc and satisfies $\mathcal{R}(C) = C$ for all constants C ;
- ▶ \mathcal{R} is monotonic, i.e., if $X_1 \geq X_2$ a.s., then $\mathcal{R}(X_1) \geq \mathcal{R}(X_2)$.

Result: There exists a minimizer to J in \mathcal{Z}_{ad} .

Risk Neutral v.s. Risk Averse

- ▶ **Risk Neutral:** $\mathcal{R} = \mathbb{E}$.
 - ▶ Optimal solution minimizes on average.
- ▶ **Risk Averse:** $\mathcal{R}(X) > \mathbb{E}[X] \quad \forall \text{ nonconstant } X \in L_p^q(\Xi)$.
 - ▶ More conservative than $\mathcal{R} = \mathbb{E}$.
 - ▶ Can minimize measures of deviation and/or tail events.

Known v.s. Unknown Probability Distribution

Known Probability Distribution:

- ▶ $\Xi \subseteq \mathbb{R}^M$ is known and P has Lebesgue density $\rho : \Xi \rightarrow [0, \infty)$.
- ▶ Enables UQ techniques including gPC and sampling.
- ▶ All analysis performed in $L_\rho^p(\Xi)$ instead of $L_P^p(\Xi)$.

Unknown Probability Distribution:

- ▶ Must determine optimal solutions that are robust to unknown pdf.
- ▶ Use data to estimate pdf (i.e., experimental data or inverted coefficients).
- ▶ Reformulate optimization problem into a minimax problem

$$\min_{z \in \mathcal{Z}_{\text{ad}}} \sup_{P \in \mathcal{A}} \mathbb{E}_P[f((U(z)(\xi), z, \xi)]$$

- ▶ \mathcal{A} is called the *ambiguity* set and is defined with data, i.e., moment matching.
- ▶ Must discretize the probability measures $P \in \mathcal{A}$.
- ▶ May also require specialized optimization algorithms.

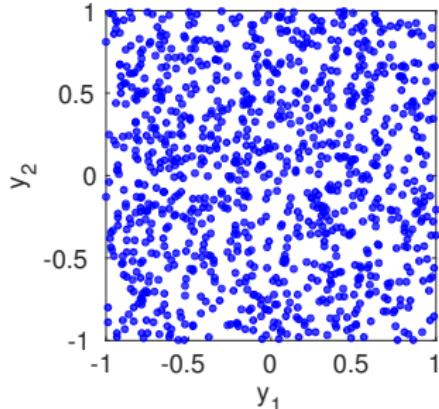
Sample-based Approximation

Monte Carlo

- ▶ Handles general Ξ and ρ ;
- ▶ Error is independent of dim.;
- ▶ Error is probabilistic with rate

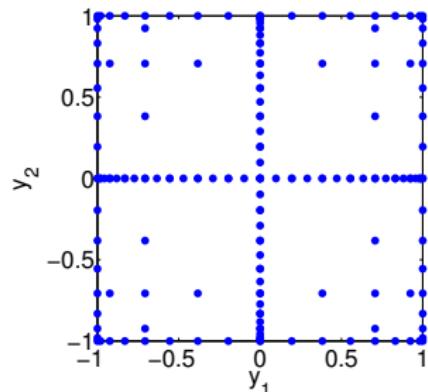
$$\mathbb{E}[\text{error}] = \mathcal{O}(Q^{-\frac{1}{2}});$$

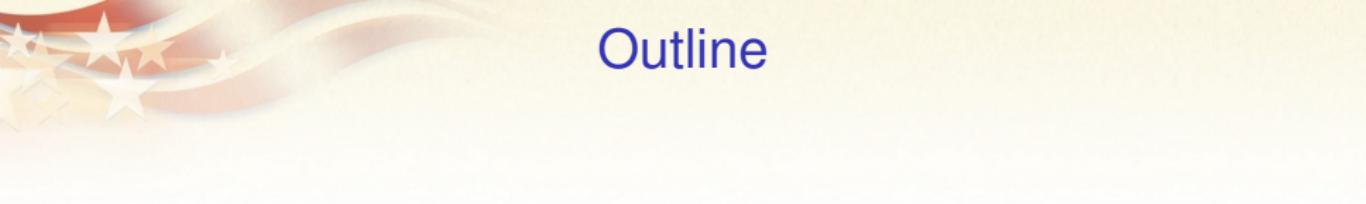
- ▶ Use QMC and variance reduction;
- ▶ Weights are positive ($\omega_k = Q^{-1}$).



Quadrature

- ▶ Often requires TP Ξ and ρ ;
- ▶ Error is dependent on dim.;
- ▶ Sparse grids lessen affect of dim.;
- ▶ Regularity accelerates conv., e.g.,
$$\text{error} = \mathcal{O}(Q^{-r} \log(Q)^{(M-1)(r+1)});$$
- ▶ SG weights are pos. and neg.





Outline

Problem Formulation

Known Probability Distribution

Risk-Neutral Optimization

Risk-Averse Optimization

Unknown Probability Distribution

Conclusions

Outline

Problem Formulation

Known Probability Distribution

Risk-Neutral Optimization

Risk-Averse Optimization

Unknown Probability Distribution

Conclusions

Risk-Neutral Optimization Problem

$$\min_{z \in \mathcal{Z}_{\text{ad}}} J(z) \equiv \mathbb{E}[f(U(z), z, \cdot)] = \int_{\Xi} \rho(\xi) f((U(z))(\xi), z, \xi) d\xi$$

- ▶ There exists minimizers of J in $z \in \mathcal{Z}_{\text{ad}}$.
- ▶ J is k -times continuously Fréchet differentiable if f and e are for all $\xi \in \Xi$.

Since pdf is known, we replace \mathbb{E} with a quadrature approximation:

$$J(z) \approx J_Q(z) \equiv \sum_{k=1}^Q \omega_k f((U(z))(\xi_k), z, \xi_k)$$

- ▶ There exists minimizers of J_Q in $z \in \mathcal{Z}_{\text{ad}}$ if \mathcal{Z}_{ad} is bounded.
- ▶ J_Q is k -times continuously Fréchet differentiable if f and e are for all $\xi \in \Xi$.

Require $(U(z))(\xi_k) = u_k \in \mathcal{U}$, $k = 1, \dots, Q$, that solve the **weak form** PDEs,

$$e(u_k, z, \xi_k) = 0, \quad k = 1, \dots, Q.$$

- ▶ Decoupled system of PDEs can be solved concurrently.
- ▶ Use favorite numerical PDE technique to solve deterministic PDEs.
- ▶ Convergence depends on quad. rule and regularity of state and adjoint w.r.t. ξ .

Numerical Optimization for Risk-Neutral Problems

- ▶ Efficient Numerical Method
 - ▶ Gradient computation requires two PDE solves per quad. point;
 - ▶ High accuracy or large $\text{dim}(\Xi) \implies$ large Q ;
 - ▶ In optimization, accuracy **not** required far from a solution.
- ▶ Accurate Characterization of the Random Field
 - ▶ Use adaptive sparse grids to exploit anisotropy in random fields (Gerstner and Griebel 1998, Ma and Zabaras 2009, Agarwal and Aluru 2009, Webster et al.);
 - ▶ Use adaptive finite elements to accurately resolve PDE solution (Carstensen 2005, Becker et al. 2007).
- ▶ Trust Regions
 - ▶ Globally convergent opt. algorithm (Powell 1975, Sorensen 1982);
 - ▶ Allows for inexact gradients and objective functions (Carter 1989, Heinkenschloss and Vicente 2001, Ziems and Ulbrich 2011);
 - ▶ Natural framework for model management (Alexandrov et al. 1998, Dennis and Torczon 1996).

Trust-Region Algorithm

Given: z_0 , $m_0(s) \approx J(z_0 + s)$, $J_0 \approx J$, $\delta_0 > 0$, and $\text{gtol} > 0$.

While $\|\nabla m_k(s)\|_{\mathcal{Z}} > \text{gtol}$

- 1. Model Update:** Choose a new $m_k(s) \approx J(z_k + s)$.
- 2. Step Computation:** Approximate a solution, s_k , to the subproblem

$$\min_{s \in \mathcal{Z}} m_k(s) \quad \text{subject to} \quad \|s\|_{\mathcal{Z}} \leq \delta_k.$$

- 3. Objective Update:** Choose a new $J_k(z) \approx J(z)$.
- 4. Step Acceptance:** Compute

$$\varrho_k = \frac{J_k(z_k) - J_k(z_k + s_k)}{m_k(0) - m_k(s_k)}.$$

If $\varrho_k \geq \eta \in (0, 1)$, then $z_{k+1} = z_k + s_k$ else $z_{k+1} = z_k$.

- 5. Trust Region Update:** Choose a new trust-region radius, δ_{k+1} .

EndWhile

Sandia
National
Labs

Trust-Region Algorithm

Given: z_0 , $m_0(s) \approx J(z_0 + s)$, $J_0 \approx J$, $\delta_0 > 0$, and $\text{gtol} > 0$.

While $\|\nabla m_k(s)\|_{\mathcal{Z}} > \text{gtol}$

- Model Update:** Choose a new $m_k(s) \approx J(z_k + s)$. $\leftarrow \text{ADAPTIVITY}$
- Step Computation:** Approximate a solution, s_k , to the subproblem

$$\min_{s \in \mathcal{Z}} m_k(s) \quad \text{subject to} \quad \|s\|_{\mathcal{Z}} \leq \delta_k.$$

- Objective Update:** Choose a new $J_k(z) \approx J(z)$. $\leftarrow \text{ADAPTIVITY}$
- Step Acceptance:** Compute

$$\varrho_k = \frac{J_k(z_k) - J_k(z_k + s_k)}{m_k(0) - m_k(s_k)}.$$

If $\varrho_k \geq \eta \in (0, 1)$, then $z_{k+1} = z_k + s_k$ else $z_{k+1} = z_k$.

- Trust Region Update:** Choose a new trust-region radius, δ_{k+1} .

EndWhile

Inexact Gradients and Objective Functions

Kouri, Heinkenschloss, Ridzal, and van Bloemen Waanders

Inexact Gradients

There exists $c > 0$ independent of k such that

$$\|\nabla m_k(0) - \nabla J(z_k)\|_{\mathcal{Z}} \leq c \min\{\|\nabla m_k(0)\|_{\mathcal{Z}}, \delta_k\}$$

(Carter 1989, Heinkenschloss and Vicente 2001).

Inexact Objective Functions

There exists $K > 0$, $\omega \in (0, 1)$, and $\theta(z, s) \rightarrow 0$ as $r \rightarrow 0$ such that

$$\begin{aligned} |(J(z_k) - J(z_k + s_k)) - (J_k(z_k) - J_k(z_k + s_k))| &\leq K\theta(z_k, s_k) \\ \theta(z_k, s_k)^{\omega} &\leq \eta \min \{(m_k(0) - m_k(s_k)), r_k\}. \end{aligned}$$

Here, $\eta > 0$ is tied to algorithmic parameters and $\lim_{k \rightarrow \infty} r_k = 0$.
(Carter 1989, Ziems and Ulbrich 2013).

- ▶ **Cannot** compute $J(z_k)$ and $\nabla J(z_k)$;
- ▶ Control *a posteriori* errors using **adaptive sparse grids**.

Sparse Grids and Adaptivity

Gerstner and Griebel 2003

- ▶ **1D Operators:** For $k = 1, \dots, M$, $\mathbb{E}_k^0 \equiv 0$ and

$$\Delta_k^i \equiv \mathbb{E}_k^i - \mathbb{E}_k^{i-1} \quad \text{where} \quad \mathbb{E}_k^i(g) \xrightarrow{i \rightarrow \infty} \int_{\Xi_k} \rho_k(\xi) g(\xi) d\xi$$

- ▶ **Sparse-Grid Operator:** For an index set $\mathcal{I} \subset \mathbb{N}^M$,

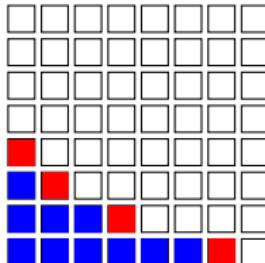
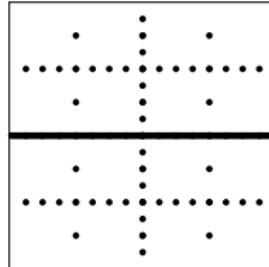
$$\mathbb{E}_{\mathcal{I}} \equiv \sum_{\mathbf{i} \in \mathcal{I}} (\Delta_1^{i_1} \otimes \dots \otimes \Delta_M^{i_M})$$

- ▶ **Admissibility:** $\mathbf{i} \in \mathcal{I}$ and $\mathbf{i} \geq \mathbf{j} \implies \mathbf{j} \in \mathcal{I}$

- ▶ **Error:** Given the index set $\mathcal{I} \subset \mathbb{N}^M$, the error is

$$\mathbb{E} - \mathbb{E}_{\mathcal{I}} = \sum_{\mathbf{i} \notin \mathcal{I}} (\Delta_1^{i_1} \otimes \dots \otimes \Delta_M^{i_M})$$

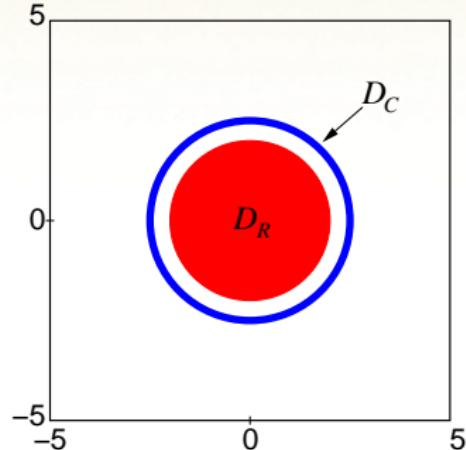
- ▶ **Adaptivity:** Pick $\mathbf{i} \notin \mathcal{I}$ s.t. $\mathcal{I} \cup \{\mathbf{i}\}$ admissible and $\Delta_1^{i_1} \otimes \dots \otimes \Delta_M^{i_M}$ "large"



Direct Field Acoustic Testing (DFAT)

Larkin and Whalen

- ▶ **Physical Domain:** $\Omega = (-5, 5)^2$
- ▶ **Parameter Space:** $\Xi = [-\sqrt{3}, \sqrt{3}]^M$
- ▶ **Probability Measure:**
 $\rho(\xi) d\xi = (2\sqrt{3})^{-M} d\xi$
- ▶ **Stochastic Material:** $\epsilon(\xi, x)$
KL expansion of Matérn covariance
- ▶ **Desired State:** $\theta = \frac{\pi}{4}, k = 10$
 $\bar{w}(x) = \exp(i((k \cos \theta)x_1 + (k \sin \theta)x_2))$



Let $\alpha > 0$ and $\tau = 0.1$. Consider the optimal control problem

$$\min_{z \in L^2(D; \mathbb{C})} \frac{1}{2} \sigma \left[\int_{D_R} (u(z; \xi, x) - \bar{w}(x)) \overline{(u(z; \xi, x) - \bar{w}(x))} dx \right] + \frac{\alpha}{2} \int_{D_C} z(x) \overline{z(x)} dx$$

where $u = u(z) \in L^2_{\rho}(\Xi; H^1(\Omega; \mathbb{C}))$ solves

$$-\Delta u(\xi, x) - k^2(1 + \tau \epsilon(\xi, x))^2 u(\xi, x) = z(x) \quad \forall (\xi, x) \in \Xi \times \Omega$$

$$\frac{\partial u}{\partial n}(\xi, x) = iku(\xi, x) \quad \forall (\xi, x) \in \Xi \times \partial\Omega.$$

Results: Risk Neutral

$$\alpha = 10^{-4}$$

dim	Algorithm	PDE Solves	CP _{grad}	CP _{obj}
20	Grad. Adapt. TR	1,136,784	1,405	120,401
	Obj. Adapt. TR	122,331	1,509	2,933
40	Grad. Adapt. TR	16,327,120	1,445	1,804,001
	Obj. Adapt. TR	128,051	1,549	2,973

Table : Computational cost of the classical trust-region algorithm applied to the Helmholtz example with $M \in \{20, 40\}$ and $\alpha = 10^{-4}$.

Outline

Problem Formulation

Known Probability Distribution

Risk-Neutral Optimization

Risk-Averse Optimization

Unknown Probability Distribution

Conclusions

Motivation - Control Uncertainty

Optimal control should be “**risk averse**.” For example:

- ▶ Reduce **variance** or **deviation**

$$\mathbb{E}[(X - \mathbb{E}[X])^2] \quad \text{or} \quad \mathbb{E}[(X - \mathbb{E}[X])_+^q]^{\frac{1}{q}}$$

e.g. *reduce uncertainty and variability in controlled system.*

- ▶ Control **rare events**, **tail probabilities**, or **quantiles**

$$\Pr[X \leq t] \quad \text{or} \quad \text{VaR}_\beta[X] = \inf \{ t \in \mathbb{R} : \Pr[X \leq t] \geq \beta \}$$

e.g. *reduce failure regions and certify reliability.*

- ▶ Minimize over **quantiles**

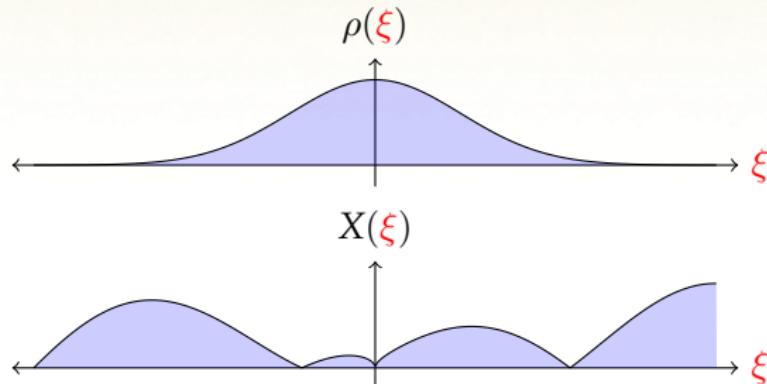
$$\text{CVaR}_\beta[X] = \frac{1}{1-\beta} \int_{X \geq \text{VaR}_\beta[X]} X(\xi) \rho(\xi) d\xi = \mathbb{E}[X \mid X \geq \text{VaR}_\beta[X]]$$

e.g. *minimize over undesirable events.*

Risk Measures

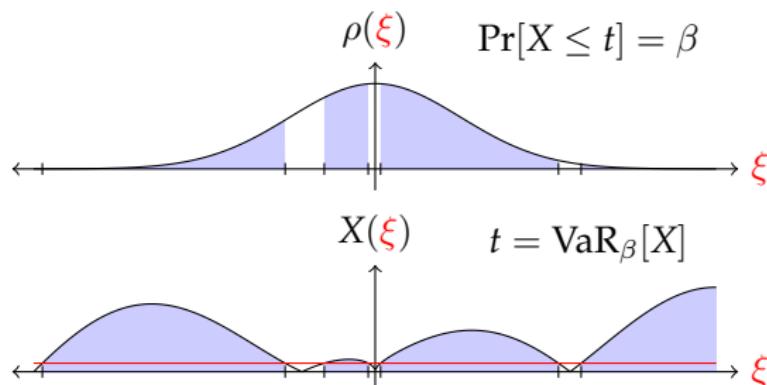
RISK NEUTRAL:

$$\mathcal{R}(X) = \mathbb{E}[X]$$



**CONDITIONAL
VALUE-AT-RISK:**

$$\mathcal{R}(X) = \text{CVaR}_\beta[X]$$



Risk Measures

Shapiro, Dentcheva, Ruszczynski, Rockafellar, Uryasev, . . .

$\mathcal{R} : L_p^q \rightarrow \mathbb{R} \cup \{\infty\}$ is a **monetary** risk measure if for $X, X_1, X_2 \in L_p^q(\Xi)$

- ▶ **Monotonicity:** $X_1 \geq X_2$ a.e. $\implies \mathcal{R}(X_1) \geq \mathcal{R}(X_2)$
- ▶ **Translation Equivariance:** $\mathcal{R}(X + t) = \mathcal{R}(X) + t, \quad \forall t \in \mathbb{R}$

\mathcal{R} is a **convex** risk measure if

- ▶ \mathcal{R} is a monetary risk measure
- ▶ **Convexity:** $\mathcal{R}(tX_1 + (1 - t)X_2) \leq t\mathcal{R}(X_1) + (1 - t)\mathcal{R}(X_2), \quad \forall t \in [0, 1]$

\mathcal{R} is a **coherent** risk measure if

- ▶ \mathcal{R} is a convex risk measure
- ▶ **Positive Homogeneity:** $\mathcal{R}(tX) = t\mathcal{R}(X), \quad \forall t > 0.$

Examples of coherent risk measures with $X \in L_p^q(\Xi)$:

- ▶ Risk Neutral: $\mathcal{R}(X) = \mathbb{E}[X]$
- ▶ Mean Plus Semideviation: $\mathcal{R}(X) = \mathbb{E}[X] + c\mathbb{E}[(X - \mathbb{E}[X])_+], \quad c \in (0, 1)$
- ▶ Conditional Value-at-Risk: $\mathcal{R}(X) = \inf \{ t + c\mathbb{E}[(X - t)_+] : t \in \mathbb{R} \}, \quad c > 1$

Duality Theory of Risk Measures

By the Fenchel-Moreau Theorem, if \mathcal{R} is a **convex** risk measure, then

$$\mathcal{R}(X) = \sup_{\vartheta \in \text{dom}(\mathcal{R}^*)} \{\mathbb{E}[\vartheta X] - \mathcal{R}^*(\vartheta)\}$$

where \mathcal{R}^* is conjugate to \mathcal{R} , i.e., $\mathcal{R}^*(\vartheta) = \sup_{X \in \text{dom}(\mathcal{R})} \{\mathbb{E}[\vartheta X] - \mathcal{R}(X)\}$.

Moreover, if \mathcal{R} is a **coherent** risk measure, then

$$\mathcal{R}(X) = \sup_{\vartheta \in \text{dom}(\mathcal{R}^*)} \mathbb{E}[\vartheta X].$$

$\text{dom}(\mathcal{R}^*)$ is the **risk envelope** \implies related to the **ambiguity set** for unknown pdf.

Example (Conditional Value-at-Risk):

$$\mathcal{R}(X) = \text{CVaR}_\beta[X] = \inf_t \left\{ t + (1 - \beta)^{-1} \mathbb{E}[(X - t)_+] \right\} = \sup_{\vartheta \in \text{dom}(\mathcal{R}^*)} \mathbb{E}[\vartheta X]$$

where $\text{dom}(\mathcal{R}^*) = \left\{ \vartheta \in (L_\rho^q(\Xi))^* : \vartheta(\xi) \in \left[0, \frac{1}{1-\beta}\right] \text{ } \rho\text{-a.e.}, \int_\Xi \vartheta(\xi) \rho(\xi) d\xi = 1 \right\}$.

The Risk Quadrangle

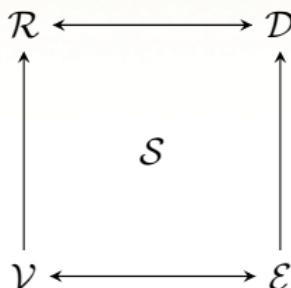
Optimization

Risk \mathcal{R} : Measures overall “hazard”

$$\begin{aligned}\mathcal{R}(X) &= \mathbb{E}[X] + \mathcal{D}(X) \\ &= \min_t \{t + \mathcal{V}(X - t)\}.\end{aligned}$$

Regret \mathcal{V} : Measures ones “displeasure”

$$\mathcal{V}(X) = \mathbb{E}[X] + \mathcal{E}(X).$$



Estimation

Deviation \mathcal{D} : Measures “non-constancy”

$$\begin{aligned}\mathcal{D}(X) &= \mathcal{R}(X) - \mathbb{E}[X] \\ &= \min_t \{\mathcal{E}(X - t)\}.\end{aligned}$$

Error \mathcal{E} : Measures proximity to zero

$$\mathcal{E}(X) = \mathcal{V}(X) - \mathbb{E}[X].$$

Statistic: $\mathcal{S}(X) = \arg \min_t \{t + \mathcal{V}(X - t)\} = \arg \min_t \{\mathcal{E}(X - t)\}.$

Example: Given $\eta > 0$,

$$\begin{aligned}\mathcal{E}(X) &= \eta \|X\|_{L^2_\rho(\Xi)} \implies \mathcal{V}(X) = \mathbb{E}[X] + \eta \|X\|_{L^2_\rho(\Xi)} \quad \text{and} \quad \mathcal{S}(X) = \mathbb{E}[X] \\ &\implies \mathcal{D}(X) = \eta \|X - \mathbb{E}[X]\|_{L^2_\rho(\Xi)} = \eta \sigma(X) \\ &\implies \mathcal{R}(X) = \mathbb{E}[X] + \eta \|X - \mathbb{E}[X]\|_{L^2_\rho(\Xi)} = \mathbb{E}[X] + \eta \sigma(X).\end{aligned}$$

The Expectation Quadrangle

Let the **scalar regret function**, $v : \mathbb{R} \rightarrow \mathbb{R} \cup \{\infty\}$, be convex, lsc, and satisfy

$$v(0) = 0, \quad \text{but} \quad v(x) > x \quad \forall x \neq 0.$$

We define the **scalar error function** as $e(x) = v(x) - x$.

- ▶ e is convex and lsc;
- ▶ $e(0) = 0$, but $e(x) > 0$ for all $x \neq 0$.

The corresponding regret and error measures are

$$\mathcal{V}(X) = \mathbb{E}[v(X)] \quad \text{and} \quad \mathcal{E}(X) = \mathbb{E}[e(X)], \quad \text{respectively.}$$

Example (Quantile-based Quadrangle): Given $0 < \beta < 1$, define

$$v(x) = \frac{1}{1-\beta}(x)_+ \quad \Rightarrow \quad e(x) = \frac{\beta}{1-\beta}(x)_+ + (-x)_+$$

This gives rise to the quadrangle

$$\mathcal{R}(X) = \min_t \left\{ t + \frac{1}{1-\beta} \mathbb{E}[(X - t)_+] \right\} = \text{CVaR}_\beta[X]$$

$$\mathcal{D}(X) = \text{CVaR}_\beta[X - \mathbb{E}[X]] = \beta\text{-CVaR deviation of } X$$

$\mathcal{E}(X)$ = normalized Koenker-Bassett error

$$\mathcal{S}(X) = \text{VaR}_\beta[X] = \beta\text{-quantile of } X.$$

Complications with Risk Measures

- ▶ \mathcal{V} (or v) are lsc $\implies \mathcal{R}$ may not be differentiable.
- ▶ Derivative-based optimization algorithms may not apply.
- ▶ If v is not differentiable, quad. approx. may not converge.

Our Approach

- ▶ Smooth \mathcal{V} or \mathcal{E} to improve differentiability of objective function;
- ▶ Smoothing may help ensure convergence of quad. approx.;
- ▶ Use Newton-type algorithms to solve smoothed problem;
- ▶ Must quantify error committed by smoothing;
- ▶ Must perform continuation on smoothing parameter.

Example: Smoothed CVaR

Given $\varepsilon > 0$, we consider approximations of $(\cdot)^+$ given by

$$(x)_\varepsilon^+ = \int_{-\infty}^x \mathbf{G}_\varepsilon(\tau) d\tau \quad \text{where} \quad \mathbf{G}_\varepsilon(x) = \int_{-\infty}^x \frac{1}{\varepsilon} \delta\left(\frac{\tau}{\varepsilon}\right) d\tau$$

and $\delta : \mathbb{R} \rightarrow \mathbb{R}$ satisfies

1. $\delta \in C(\mathbb{R})$ and let $0 < K < \infty$ s.t. $\sup_x |\delta(x)| \leq K$;
2. $\delta(x) \geq 0 \forall x$ and $\int_{-\infty}^{\infty} \delta(x) dx = 1$;
3. Either $\int_{-\infty}^{\infty} \delta(x)x dx \leq 0$ or $\int_{-\infty}^0 \delta(x)|x| dx = 0$;
4. $\text{supp}(\delta)$ is connected.

Results:

- $x \mapsto (x)_\varepsilon^+$ is nondecreasing and convex;
- $x \mapsto (x)_\varepsilon^+$ is at least twice continuously differentiable;
- $-\varepsilon \Delta_2 \leq (x)_\varepsilon^+ - (x)^+ \leq \varepsilon \Delta_1$ where

$$\Delta_1 = \int_{-\infty}^0 \delta(x)|x| dx \quad \text{and} \quad \Delta_2 = \max \left\{ 0, \int_{-\infty}^{\infty} \delta(x)x dx \right\}$$

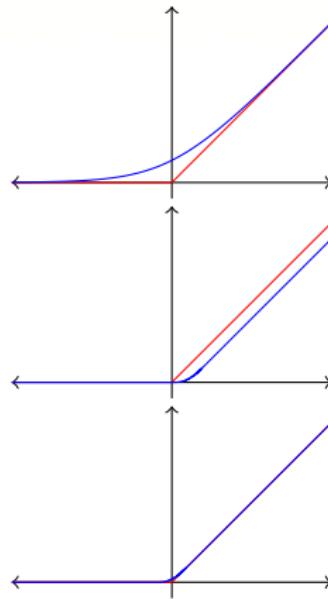
Smoothed Plus Function

Examples:

$$(x)_{\varepsilon,1}^+ = x + \varepsilon \log \left(1 + \exp \left(\frac{-x}{\varepsilon} \right) \right)$$

$$(x)_{\varepsilon,2}^+ = \begin{cases} 0 & \text{if } x \leq 0 \\ \left(\frac{x^3}{\varepsilon^2} - \frac{x^4}{2\varepsilon^3} \right) & \text{if } x \in (0, \varepsilon) \\ x - \frac{\varepsilon}{2} & \text{if } x \geq \varepsilon \end{cases}$$

$$(x)_{\varepsilon,3}^+ = \left(x + \frac{\varepsilon}{2} \right)_{\varepsilon,2}^+$$



Smoothed CVaR

$$F_\varepsilon^\beta(t, X) = t + \frac{1}{1-\beta} \mathbb{E}[(X - t)_\varepsilon^+] \quad \text{and} \quad \mathcal{R}_\varepsilon^\beta[X] = \inf \{F_\varepsilon^\beta(t, X) : t \in \mathbb{R}\}$$

Results:

- ▶ There exists $c > 0$ s.t. $\left| \mathcal{R}_\varepsilon^\beta[X] - \text{CVaR}_\beta[X] \right| \leq \frac{c}{1-\beta} \varepsilon$ for all $X \in L_\rho^1(\Xi)$.
- ▶ Smoothed CVaR, $\mathcal{R}_\varepsilon^\beta$, is a convex risk measure.
- ▶ $X \mapsto F_\varepsilon^\beta(t, X) : L_\rho^1(\Xi) \rightarrow \mathbb{R}$ is Hadamard differentiable.
- ▶ $X \mapsto F_\varepsilon^\beta(t, X) : L_\rho^2(\Xi) \rightarrow \mathbb{R}$ is twice continuously Fréchet differentiable.
- ▶ $t \mapsto F_\varepsilon^\beta(t, X) : \mathbb{R} \rightarrow \mathbb{R}$ is twice continuously differentiable.

PDE-Optimization Problem

$$J_\varepsilon(t, z) \equiv t + \frac{1}{1-\beta} \mathbb{E} \left[(f(U(z), z), \cdot)_\varepsilon^+ \right]$$

Results:

- ▶ **Differentiability:** $J_\varepsilon(t, z)$ is Hadamard differentiable w.r.t. z and continuously differentiable w.r.t. t .
- ▶ **Differentiability:** If $u = u(z) \in L_\rho^p(\Xi; \mathcal{U})$ with $p \geq 4$ then $J_\varepsilon(t, z)$ is twice continuously Fréchet differentiable.
- ▶ **Convergence Rate:** Suppose $(t_\varepsilon, z_\varepsilon)$ is a minimizer of $J_\varepsilon(t, z)$ and (t^*, z^*) is a minimizer of $J(t, z)$. Then, $(|t^* - t_\varepsilon|^2 + \|z^* - z_\varepsilon\|_{\mathcal{Z}}^2)^{\frac{1}{2}} \leq C\varepsilon^{\frac{1}{2}}$.

Optimal Control of 1D Elliptic Equation

Let $\alpha = 10$, $\Omega_o = \Omega_c = \Omega = (-1, 1)$, and $\bar{u} \equiv 1$ and consider

$$\underset{z \in L^2(-1,1)}{\text{minimize}} \quad J(z) = \frac{1}{2} \text{CVaR}_\beta \left[\int_{-1}^1 (u(\cdot, x; z) - 1)^2 \, dx \right] + \frac{\alpha}{2} \int_{-1}^1 z(x)^2 \, dx$$

where $u = u(z) \in L^2_\rho(\Xi; H_0^1(0, 1))$ solves the weak form of

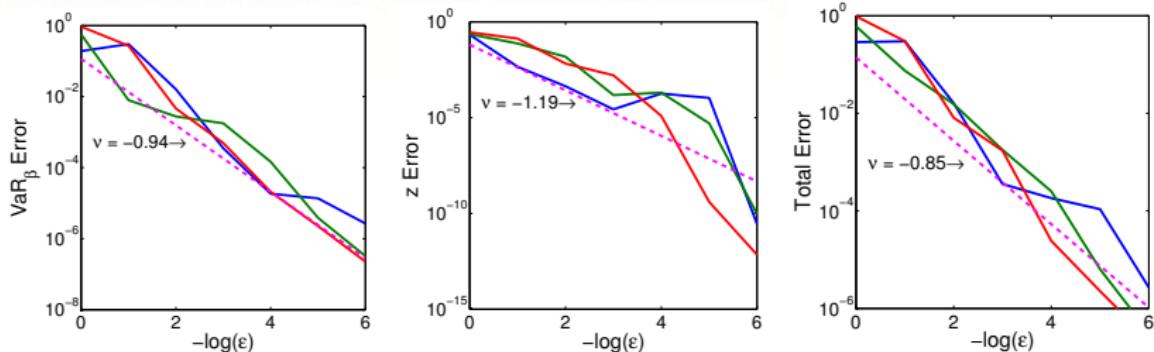
$$\begin{aligned} -\partial_x (\epsilon(\xi, x) \partial_x u(\xi, x)) &= f(\xi, x) + z(x) & (\xi, x) \in \Xi \times \Omega, \\ u(\xi, -1) &= 0, \quad u(\xi, 1) = 0 & \xi \in \Xi. \end{aligned}$$

$\Xi = [-0.1, 0.1] \times [-0.5, 0.5]$ is endowed with the uniform density $\rho(\xi) \equiv 5$, and the random field coefficients are

$$\epsilon(\xi, x) = 0.1\chi_{(-1, \xi_1)} + 10\chi_{(\xi_1, 1)}, \quad \text{and} \quad f(\xi, x) = \exp(-(x - \xi_2)^2).$$

Primal Results

Sample Approximation: Level 8 Gauss-Patterson sparse grids.



Optimization Algorithm: Trust region with truncated CG.

		$\log(\epsilon)$						
		0	-1	-2	-3	-4	-5	-6
β	0.05	12(11)	18(5)	15(4)	6(11)	4(16)	24(3)	22(2)
	0.5	11(9)	4(22)	4(21)	6(13)	16(4)	5(8)	5(8)
	0.95	14(12)	14(11)	5(17)	5(19)	3(9)	4(7)	4(5)

Continuation: # TR iterations (average # CG iterations)

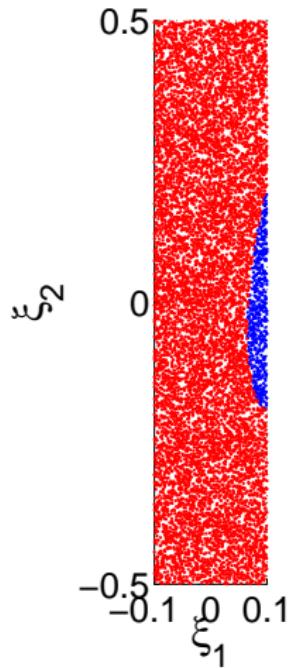
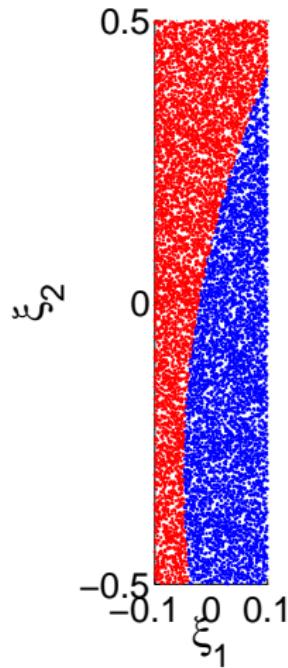
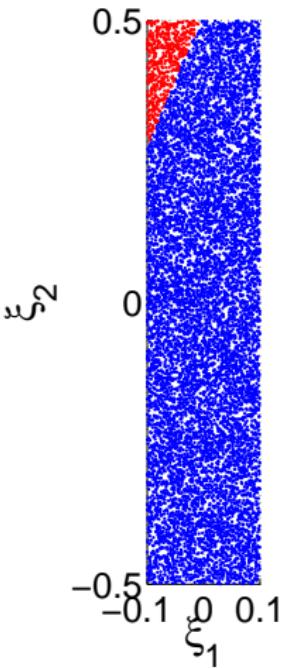
Dual Results

Sample Approximation: Monte Carlo with 10,000 samples.

$$\beta = 0.05$$

$$\beta = 0.5$$

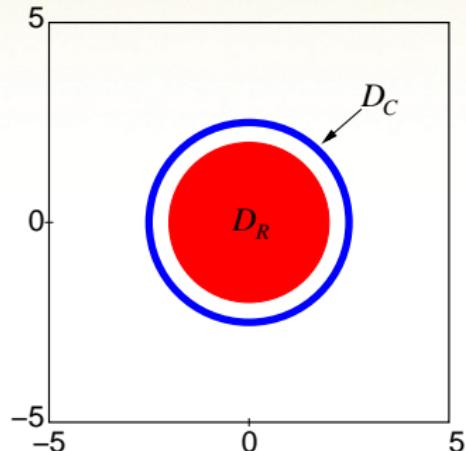
$$\beta = 0.95$$



$$\vartheta^* = 0 \quad \text{and} \quad \vartheta^* = (1 - \beta)^{-1}$$

Direct Field Acoustic Testing (DFAT)

- ▶ **Physical Domain:** $D = (-5, 5)^2$
- ▶ **Parameter Space:** $\Xi = [-\sqrt{3}, \sqrt{3}]^M$
- ▶ **Probability Measure:**
$$\rho(\xi) d\xi = (2\sqrt{3})^{-M} d\xi$$
- ▶ **Stochastic Material:** $\epsilon(\xi, x)$
KL expansion of Matérn covariance
- ▶ **Desired State:** $\theta = \frac{\pi}{4}, k = 10$
$$\bar{w}(x) = \exp(i((k \cos \theta)x_1 + (k \sin \theta)x_2))$$



Let $\alpha > 0$ and $\vartheta = 0.1$. Consider the optimal control problem

$$\min_{z \in L^2(D; \mathbb{C})} \frac{1}{2} \sigma \left[\int_{D_R} (u(z; \xi, x) - \bar{w}(x)) \overline{(u(z; \xi, x) - \bar{w}(x))} dx \right] + \frac{\alpha}{2} \int_{D_C} z(x) \overline{z(x)} dx$$

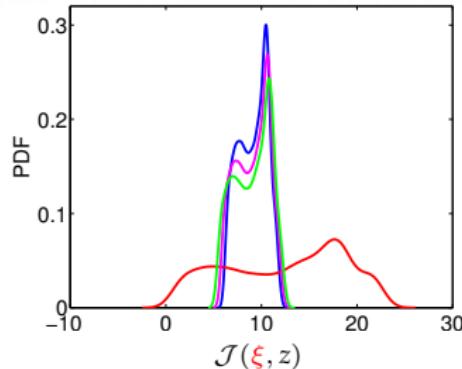
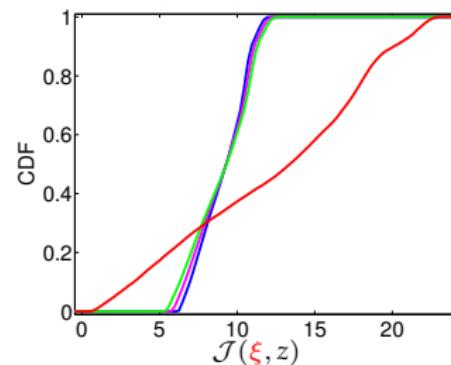
where $u = u(z) \in L^2(\Xi; H^1(D; \mathbb{C}))$ solves

$$-\Delta u(\xi, x) - k^2(1 + \vartheta \epsilon(\xi, x))^2 u(\xi, x) = z(x) \quad \forall (\xi, x) \in \Xi \times D$$

$$\frac{\partial u}{\partial n}(\xi, x) = iku(\xi, x) \quad \forall (\xi, x) \in \Xi \times \partial D.$$

Results: $M = 6$, $\gamma = 5$, and $\alpha = 10^{-4}$

$$\mathcal{J}(\xi, z) = \int_{D_R} (u(z; \xi, x) - \bar{w}(x)) \overline{(u(z; \xi, x) - \bar{w}(x))} \, dx.$$

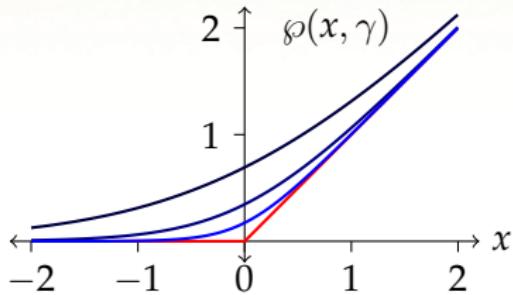


- Mean value: $\xi \leftarrow \mathbb{E}[\xi]$
- Risk neutral: $\sigma[X] = \mathbb{E}[X]$
- Mean plus CVaR: $\sigma[X] = \frac{1}{2}\mathbb{E}[X] + \frac{1}{2}\text{CVaR}_{0.1}[X]$
- CVaR: $\sigma[X] = \text{CVaR}_{0.1}[X]$

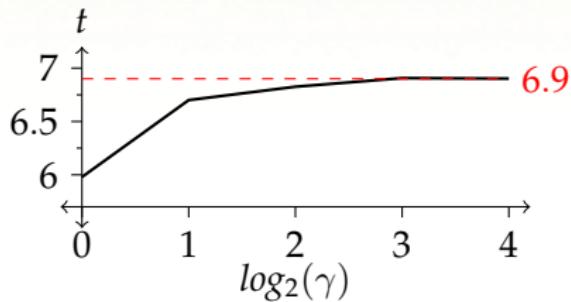
Mean plus CVaR Value-at-Risk: $t = 6.59073$
CVaR Value-at-Risk: $t = 6.90629$

Results: The Effect of Smoothing - CVaR

Smoothed Plus Function



VaR Approximation



γ	$\ z\ _z$	Abs. Err.	Rate	t	Abs. Err.	Rate
1	37.8369	-	-	5.9792	-	-
2	37.0495	1.2177	-	6.7004	0.7212	-
4	36.7416	0.7111	0.7760	6.8258	0.1254	2.5239
8	36.6653	0.4396	0.6939	6.9066	0.0808	0.6341

Theoretical convergence rate is $\frac{1}{2}$ (Kouri and Surowiec).

Outline

Problem Formulation

Known Probability Distribution

Risk-Neutral Optimization

Risk-Averse Optimization

Unknown Probability Distribution

Conclusions

Distributionally Robust PDE-Optimization

Recall: (Ξ, \mathcal{F}) is a measurable space and prob. measure is *unknown*.

- ▶ \mathcal{M} denotes the Banach space of regular Borel measures on \mathcal{F} .
- ▶ $\mathcal{M}^+ \subset \mathcal{M}$ is the set of positive measures, i.e.,

$$\mu \in \mathcal{M}^+ \implies \mu(V) \geq 0 \quad \forall V \in \mathcal{F}.$$

- ▶ **Ambiguity Set:** $\mathcal{A} \subset \mathcal{M}$ defined by data. For example:

- ▶ **Moment Matching:** Given generalized moment data m_1, \dots, m_N ,

$$\mathcal{A} = \left\{ P \in \mathcal{M}^+ : P(\Xi) = 1, \int_{\Xi} \psi_i(\xi) dP(\xi) = m_i, i = 1, \dots, N \right\}.$$

- ▶ **Φ -Divergence (e.g., Kullback-Leibler):** Given an estimated prob. measure P_0 and $\epsilon > 0$,

$$\mathcal{A} = \left\{ P \in \mathcal{M}^+ : P(\Xi) = 1, D_{\Phi}(P, P_0) \leq \epsilon \right\}.$$

- ▶ **Distributionally-robust (a.k.a. data-driven) optimization problem:**

$$\min_{z \in \mathcal{Z}_{\text{ad}}} \sup_{P \in \mathcal{A}} \int_{\Xi} f((U(z))(\xi), z, \xi) dP(\xi).$$

Measure Discretization

General Approach:

1. Let $\{\varphi_i\}_{i=1}^n$ be a partition of unity and $\mu \in \mathcal{M}$ be any measure.
2. Define the “localized” measures

$$\mu_i(V) = \int_V \varphi_i(\xi) \, d\mu(\xi).$$

3. Note $\mu(\Xi) = \mu_1(\Xi) + \dots + \mu_n(\Xi)$.
4. Define the projection operators $\Pi_n : C(\Xi) \rightarrow \text{span}\{\varphi_1, \dots, \varphi_n\}$ as

$$\Pi_n y = \sum_{i=1}^n \mu_i(\Xi)^{-1} \int_{\Xi} y(\xi) \, d\mu_i(\xi) \varphi_i \quad \forall y \in C(\Xi) \quad (3)$$

and $\Lambda_n : \mathcal{M} \rightarrow \text{span}\{\mu_1, \dots, \mu_n\}$ as

$$\Lambda_n \nu = \sum_{i=1}^n \mu_i(\Xi)^{-1} \int_{\Xi} \varphi_i(\xi) \, d\nu(\xi) \mu_i \quad \forall \nu \in \mathcal{N}, \quad (4)$$

5. **Lemma:** Π_n is the adjoint of Λ_n .
6. **Lemma:** Λ_n is invariant on the space of prob. measures.

Measure Discretization

Piecewise Constants:

1. Let $\{V_i\}_{i=1}^n$ be a tessellation of Ξ and define $\varphi_i = \chi_{V_i}$.
2. The “localized” measures are

$$\mu_i(V) = \mu(V \cap V_i).$$

3. The projection operator $\Pi_n : C(\Xi) \rightarrow \text{span}\{\varphi_1, \dots, \varphi_n\}$ is

$$\Pi_n y = \sum_{i=1}^n \mu(V_i)^{-1} \int_{V_i} y(\xi) d\mu(\xi) \chi_{V_i} \quad \forall y \in C(\Xi) \quad (5)$$

and $\Lambda_n : \mathcal{M} \rightarrow \text{span}\{\mu_1, \dots, \mu_n\}$ is

$$\Lambda_n \nu = \sum_{i=1}^n \mu(V_i)^{-1} \nu(V_i) \mu_i \quad \forall \nu \in \mathcal{N}, \quad (6)$$

4. **Theorem:** Suppose V_i are convex, bounded, and Lipschitz, and $\mu \in \mathcal{M}$. Then $\exists c > 0$ only depending on M such that

$$\|\nu - \Lambda_n \nu\|_{W^{1,\infty}(\Xi)^*} \leq c \sum_{i=1}^n \left(1 + \frac{|\mu|(V_i)}{|\mu(V_i)|} \right) |\nu|(V_i) \text{ diam}(V_i).$$

Example

Suppose $\Xi = [0, 1]$ and P has pdf

$$\text{pdf}(\xi) = \frac{\beta}{1 - e^{-\beta}} e^{-\beta\xi} \quad \text{for } \beta > 0.$$

Approx. P using piecewise constant projection and μ set to the uniform prob. measure:

$$\text{approx-pdf}(\xi) = \sum_{i=1}^n \frac{(e^{-\beta a_{i-1}} - e^{-\beta a_i})}{(1 - e^{-\beta})(a_i - a_{i-1})} \chi_{[a_{i-1}, a_i]}(\xi).$$

β	n	Error	Sum W. Diam.	Max. Diam.	Max. W. Diam.
1	10	3.592×10^{-2}	1.438×10^{-1}	2.518×10^{-1}	5.899×10^{-2}
	100	3.740×10^{-3}	1.496×10^{-2}	4.269×10^{-2}	1.471×10^{-3}
	1000	3.751×10^{-4}	1.501×10^{-3}	6.089×10^{-3}	2.733×10^{-5}
	10000	3.750×10^{-5}	1.500×10^{-4}	7.955×10^{-4}	4.404×10^{-7}
10	10	2.282×10^{-1}	1.304×10^{-1}	7.572×10^{-1}	1.010×10^{-1}
	100	3.053×10^{-2}	1.451×10^{-2}	5.328×10^{-1}	8.191×10^{-3}
	1000	3.551×10^{-3}	1.502×10^{-3}	3.133×10^{-1}	5.424×10^{-4}
	10000	3.763×10^{-4}	1.517×10^{-4}	1.300×10^{-1}	2.710×10^{-5}
100	10	3.076×10^{-1}	1.226×10^{-1}	9.758×10^{-1}	1.194×10^{-1}
	100	4.128×10^{-2}	1.327×10^{-2}	9.531×10^{-1}	1.261×10^{-2}
	1000	5.022×10^{-3}	1.348×10^{-3}	9.301×10^{-1}	1.247×10^{-3}
	10000	5.899×10^{-4}	1.360×10^{-4}	9.072×10^{-1}	1.224×10^{-4}

Optimization Algorithms

$$J(z) = \sup_{P \in \mathcal{A}} \int_{\Xi} f((U(z))(\xi), z, \xi) dP(\xi) \quad \text{may not be differentiable!}$$

- \mathcal{Z} Hilbert + $\nabla^2 f(U(z), z, \cdot)$ bounded $\implies J(z)$ is *proximally subdiff.*
 - **Analytic Definition:** $\zeta \in \mathcal{Z}^*$ is a *proximal subgradient* if $\exists \sigma$ and η such that $\forall y \in \mathcal{Z}$ with $\|z - y\|_{\mathcal{Z}} \leq \eta$,

$$J(y) \geq J(z) + \langle \zeta, y - z \rangle_{\mathcal{Z}^*, \mathcal{Z}} - \sigma \|y - z\|_{\mathcal{Z}}^2.$$

- **Geometric Definition:** J is *locally supported* by a quadratic.
- **Example:** $-|x|$ is not proximally subdifferentiable at $x = 0$.
- **Optimality:** If $z \in \mathcal{Z}$ minimize J then 0 is a proximal subgradient.
- **Cannot** use derivative-based optimization algorithms.
- Subgradient descent and bundle methods converge *sublinearly*.
- **Expensive PDEs** \implies **Need rapid optimization algorithms.**

Outline

Problem Formulation

Known Probability Distribution

Risk-Neutral Optimization

Risk-Averse Optimization

Unknown Probability Distribution

Conclusions

Conclusions:

- ▶ **Risk Neutral:**
 - ▶ Can efficiently solve using adaptive sparse grids and trust regions.
- ▶ **Risk Averse:**
 - ▶ Risk measures often not differentiable;
 - ▶ Define smooth risk measures using the risk quadrangle;
 - ▶ Can use Newton's method/quad. and can prove error bounds.
- ▶ **Unknown Distribution:**
 - ▶ Incorporate data into distributionally-robust opt. formulation;
 - ▶ Objective func. not differentiable;
 - ▶ Nonsmooth optimization algorithms converge slowly.

Future Work:

- ▶ **Risk measures:** Develop error indicators and use locally adaptive sparse grids with trust-region algorithm.
- ▶ **Unknown distribution:** Develop opt. algorithm that exploits structures inherent to PDE-constrained problems.
- ▶ Incorporate **(buffered) probabilistic objectives and constraints** to control *tail-probabilities* and *rare events*
(Rockafellar, Uryasev, Royset, Shapiro, Henrion, Kibzun, ...)