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Ultra-wide band gaps: Next frontier of power electronics

Post-Si Power Electronics
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»Wide band gaps (WBGs) GaN and SiC displacing Si for power electronics
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Ultra-wide band gaps: Next frontier of power electronics

Post-SiC, Post-GaN Power Electronics
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» Ultra-wide band gap (UWBG) semiconductors (E, > 4 eV) have
potential for dramatic increase in breakdown voltage (V,,)

» Controlling UWBG electrical conductivity = understanding
fundamental relationship between UWBG doping and defects 3



Theory: UWBGs self-compensate by native defect formation

GaN defect formation
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» Compensating defects become more favorable with increasing E,
» Carrier capture reduces defect formation energy by ~ E,



Theory: UWBGs self-compensate by vacancy formation

AIN defect formation

GaN defect formation
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» Vacancy formation energy becomes negligibly small for UWBGs
» Autonomic defect formation pins E; and completely compensates dopants
5



Theory: UWBGs self-compensate by vacancy formation

AIN defect formation

GaN defect formation

Appl. Phys. Rev.. C. G. Van de Walle and J. Neugebauer

E. (eV)

C. Stampfl’ and C. G. Van de Walle®
PHYSICAL REVIEW B, VOLUME 65, 155212

» Do compensating defects limit n-type doping in Al-rich AIGaN?
> If so, what are the physical origin of the defects?
» How can they be controlled?



Study interplay of defects and doping in n-Al, ;Ga, ;N

9 nm Ni Schottky
n-Al,,Ga, 3N:Si (V1 um)

UID-Al, ,Ga, ;N (300 nm)

UID-AIN (1.5um)

Sapphire ( c- miscut 0.15° toward m-)

> Al,,Ga, ;N grown by metal-organic vapor phase epitaxy (MOVPE)
> TDD~1-3x10°cm??
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Study interplay of defects and doping in n-Al, ;Ga, ;N

9 nm Ni Schottky
n-Al,,Ga, 3N:Si (V1 um)

UID-Al, ,Ga, ;N (300 nm)

UID-AIN (1.5um)

Sapphire ( c- miscut 0.15° toward m-)

» Growth temperature (T ) range of 1060 - 1160 °C
» Si flow rate constant
» Increased TMGa flux (2x) to maintain x,, = 0.7
> Growth rate (zm/hr): 0.25 (1160 °C), 0.38 (1060 °C)
» Higher T, improved surface morphology and likely reduced impurities!
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Study interplay of defects and doping in n-Al, ;Ga, ;N

9 nm Ni Schottky
n-Al,,Ga, 3N:Si (V1 um)

UID-Al, ;Ga, ;N (300 nm)

UID-AIN (1.5um)

Sapphire ( c- miscut 0.15° toward m-)

Electron Concentration (cm-3)

Si Doping Aly ;Ga, ;N vs. Growth Temp.
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» Growth temperature (T ) range of 1060 - 1160 °C

> Si flow rate constant

» Increased TMGa flux (2x) to maintain x,, = 0.7
» Growth rate (zm/hr): 0.25 (1160 °C), 0.38 (1060 °C)
» Higher T, improved surface morphology and likely reduced impurities!

> Al, ;,Ga, ;N dopant efficacy 20x lower with higher T *
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Study interplay of defects and doping in n-Al, ;Ga, ;N

Si Doping Aly ;Ga, ;N vs. Growth Temp.
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» C-V and Hall show Si dopant remained shallow
» Decrease in n due to deep level defect compensation

Use deep level optical spectroscopy (DLOS) to understand
how T, mediates defects and doping in n-Al, ;Ga, 3N
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Deep Level Optical Spectroscopy

Deep Level Optical Spectroscopy (DLOS)?

»Photocapacitance technique

» Electrical measurement of optical absorption by deep level defects
»Sub-band gap optical stimulation to photoionize defect levels
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Deep Level Optical Spectroscopy

Deep Level Optical Spectroscopy (DLOS)?

> Fundamental physics from optical cross-section: c°(hv) = e°(hv)/ ¢ (hVv) = /N,
> Determine deep level energy E, from lineshape of o°(hv)
» Discuss defect density later...

Optical analog of Arrhenius plot
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DLOS identifies Al, ,Ga, ;N deep levels

DLOS of n-Al, ;Ga, 3N for T, = 1160 °C
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» Observe three deep level defects

» DLOS spectra does not convey defect density information "



Lighted Capacitance-Voltage identifies compensators

LCV of n-Al, ;Ga, 3N for T, = 1160 °C
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> Lighted Capacitance-Voltage (LCV) measures defect density (N,)
» N, = A(N,— N,) measured by CV under sub-gap, monochromatic illumination
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Lighted Capacitance-Voltage identifies compensators

LCV for VNA4153A
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> E_—2.38 eV level is not a strong compensation center
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Lighted Capacitance-Voltage identifies compensators

log(c’) (r. u.)
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Lighted Capacitance-Voltage identifies compensators
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» E.—3.39 eV and E.—4.74 eV defects are dominate compensating centers
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Identify physical origin from DLOS alloying study

DLOS of (Al)GaN vs. Al mole fraction
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> Systematic evolution suggests similar defect origins for GaN & Al ,Ga, ;N
> Attribute E_— 4.74 eV level to C or Mg impurities?!
> Attribute E_— 3.39 eV level to V,,-related defect?
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Lower Al, ;Ga, 3N T, suppresses defect formation

n-Al, ;Ga, ;N DLOS spectra vs. T,
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» V-related E. - 3.39 eV deep level defect weakly evident for 7, = 1060 °C
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Lower Al, ;Ga, 3N T, suppresses defect formation
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> Net 10x reduction in V,, and impurity defects with lower T, - Unexpected
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Summary and Conclusions
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» Si dopant compensation strongly dependent on Al, ;,Ga, ;N T,

» Lower T, reduced compensating V,, and impurity defects by 10x

» Lowering T, may inhibit the very strong thermodynamic drive to
form compensating point defects in UWBGs like Al-rich AlGaN

» Maintaining electrical quality of Al,Ga, ,N (x> 0.7) at T, > 1100 °C

could require intricate balance of growth conditions
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