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Ultra-wide band gaps: Next frontier of power electronics
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>Wide band gaps (WBGs) GaN and SiC displacing Si for power electronics
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Ultra-wide band gaps: Next frontier of power electronics
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>Ultra-wide band gap (UWBG) semiconductors (Eg > 4 eV) have
potential for dramatic increase in breakdown voltage (Vbr)

>Controlling UWBG electrical conductivity 4 understanding

fundamental relationship between UWBG doping and defects 3



Theory: UWBGs self-compensate by native defect formation

GaN defect formation

Appl. Phys. Rev.: C. G. Van de WaIle and J. Neucx-bauer

➢ Compensating defects become more favorable with increasing Eg
➢ Carrier capture reduces defect formation energy by Eg

4



Theory: UWBGs self-compensate by vacancy formation

GaN defect formation
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➢ Vacancy formation energy becomes negligibly small for UWBGs
➢ Autonomic defect formation pins Ef and completely compensates dopants



Theory: UWBGs self-compensate by vacancy formation

GaN defect formation
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➢ Do compensating defects Iimit n-type doping in Al-rich AIGaN?
➢ If so, what are the physical origin of the defects?
➢ How can they be controlled? 6



Study interplay of defects and doping in n-A10.7Ga0.3N

9 nm Ni Schottky

n-A10.7Ga0.3N:Si (-1 [tm)

UID-A103Ga0.3N (300 nm)

UID-AIN (1.5um)

Sapphire ( c- miscut 0.15° toward m-)

> A10.7Ga0.3N grown by metal-organic vapor phase epitaxy (MOVPE)

> TDD - 1 - 3 x 109 cm-2

1. Cantu et al. APL 82, 3683 (2003). aarmstr@sandia.gov
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Study interplay of defects and doping in n-A10.7Ga0.3N

9 nm Ni Schottky

n-A10.7Ga0.3N:Si (-1 [tm)

UID-A103Ga0.3N (300 nm)

UID-AIN (1.5um)

Sapphire ( c- miscut 0.15° toward m-)

> Growth temperature (Tg) range of 1060 - 1160 °C

> Si flow rate constant

> Increased TMGa flux (2x) to maintain xpd = 0.7

> Growth rate (pm/hr): 0.25 (1160 °C), 0.38 (1060 °C)

> Higher Tg, improved surface morphology and likely reduced impurities1

1. Cantu et al. APL 82, 3683 (2003). aarmstr@sandia.gov
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Study interplay of defects and doping in n-A10.7Ga0.3N

9 nm Ni Schottky

n-A10.7Ga0.3N:Si (-1 [tm)

UID-A103Ga0.3N (300 nm)

UID-AIN (1.5um)

Sapphire ( c- miscut 0.15° toward m-)

Si Doping A10.7Ga0.3N vs. Growth Temp.
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➢ Growth temperature (Tg) range of 1060 - 1160 °C

➢ Si flow rate constant

➢ Increased TMGa flux (2x) to maintain xpd = 0.7

➢ Growth rate (pm/hr): 0.25 (1160 °C), 0.38 (1060 °C)

➢ Higher Tg, improved surface morphology and likely reduced impurities1

➢ A10.7Ga0.3N dopant efficacy 20x lower with higher Tg1
9
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Study interplay of defects and doping in n-A10.7Ga0.3N

9 nm Ni Schottky

n-A10.7Ga0.3N:Si (-1 [tm)

UID-A103Ga0.3N (300 nm)

UID-AIN (1.5um)

Sapphire ( c- miscut 0.15° toward m-)

Si Doping A10.7Ga0.3N vs. Growth Temp.
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➢ C-V and Hall show Si dopant remained shallow

➢ Decrease in n due to deep level defect compensation

Use deep level optical spectroscopy (DLOS) to understand
how Tg mediates defects and doping in n-A10.7Ga0.3N

1. Cantu et al. APL 82, 3683 (2003). aarmstr@sandia.gov
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Deep Level Optical Spectroscopy

Deep Level Optical Spectroscopy (DLOS)1 
>Photocapacitance technique
>Electrical measurement of optical absorption by deep level defects
>Sub-band gap optical stimulation to photoionize defect levels
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1 Chantre et al. PRB 23, 5335 (1981). aarmstr@sandia.gov
11



Deep Level Optical Spectroscopy

Deep Level Optical Spectroscopy (DLOS)1 
➢ Fundamental physics from optical cross-section: a° (h = eqh v)/ 0 (h = Nt
➢ Determine deep level energy E 0 from lineshape of crqh
➢ Discuss defect density later...

Optical analog of Arrhenius plot
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1. Chantre et al. PRB 23, 5335 (1981). aarmstr@sandia.gov
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DLOS identifies A10.7Ga0.3N deep levels

4

2

0

-2

-4

1

DLOS of n-A10.7Ga0.3N for Ta = 1160 °C

2 3 4 5

Photon energy (eV)

6

> Observe three deep level defects

> DLOS spectra does not convey defect density information
3



Lighted Capacitance-Voltage identifies compensators

DLOS of n-A10.7Ga0.3N for Ta = 1160 °C

Ec — 2.38 eV

Tg = 1160 °C

Ec- 4.74 eV

Ec- 3.39 eV
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> Lighted Capacitance-Voltage (LCV) measures defect density (Nt)
> Nt= A(Nd- No) measured by CV under sub-gap, monochromatic illumination

14
aarmstr@sandia.gov



Lighted Capacitance-Voltage identifies compensators

DLOS of n-A10.7Ga0.3N for Ta = 1160 °C
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> Ec — 2.38 eV level is not a strong compensation center

200

aarmstr@sandia.gov
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Lighted Capacitance-Voltage identifies compensators

DLOS of n-A10.7Ga0.3N for Ta = 1160 °C

Tg = 1160 °C

Ec —3.39 eV
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aarmstr@sandia.gov
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Lighted Capacitance-Voltage identifies compensators

DLOS of n-A10.7Ga0.3N for Ta = 1160 °C
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➢ Ec — 3.39 eV and Ec — 4.74 eV defects are dominate compensating centers

17
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Identify physical origin from DLOS alloying study

DLOS of (AI)GaN vs. Al mole fraction

I I I I I I I I I I I I 1 1 1

0
- 0.08

0.22
-0- 0.70
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1 2 3 4 5 6
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> Systematic evolution suggests similar defect origins for GaN & A10.7Ga0.3N

> Attribute Ec — 4.74 eV level to C or Mg impurities1

> Attribute Ec — 3.39 eV level to Viii-related defect2
18

1. Armstrong et al, APL 84, 374 (2004) 2. Hierro, et al., Appl. Phys. Lett. 77, 1499 (2000)



Lower Al0.7 Ga0.3 N Tg suppresses defect formation

n-A10.7Ga0.3N DLOS spectra vs. Ta

1
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T = 1060 °Cg
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2 3 4 5 6

Photon energy (eV)

> I/Hi-related Ec — 3.39 eV deep level defect weakly evident for Tg = 1060 °C

19



Lower Al0.7 Ga0.3 N Tg suppresses defect formation

Tg = 1060 °C Tg = 1160 °C

Ec Ec

Ev Ev

Density of States

Ec - 2.38 eV 2.4 x 1016 1 x 1016

Ec- 3.39 eV 3.6 x 1016 5.1 x 1017

Ec- 4.74 eV 1.0 x 1017 6.6 x 1017

VIII-related

C- or Mg-related

> Net 10x reduction in vill and impurity defects with lower Tg 4 Unexpected

20
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Summary and Conclusions

Si Doping Alo 7Gao 3N vs. Growth Temp.

"2 2.1E+18

.2 1.6E+18

2 1.1E+18
o

2 ▪ 6.0E+17

LTJ

1.0E+17
1050

A 1060°C

Hall

A 1120°C

A 
1160°C

1100 1150 1200

Growth Temperature (C)

Tg = 1060 °C Tg = 1160 °C

- E 111-

VIII-related
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➢ Si dopant compensation strongly dependent on A10.7Ga0.3N Tg

➢ Lower Tg, reduced compensating Vlll and impurity defects by 10x

➢ Lowering Tg may inhibit the very strong thermodynamic drive to
form compensating point defects in UWBGs like Al-rich AIGaN

➢ Maintaining electrical quality of AlxGal,N (x > 0.7) at Tg > 1100 °C
could require intricate balance of growth conditions

aarmstr@sandia.gov
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