
615o45- ow6000m000irtiesiesii5nroww545555554)41•••••eim000000000000000000000000000so—cioo4466674;;;;;;;4444:44e00000•0000000mm000•00000mm0000000mmommoim000000000000000000im00000000000000mmowoo••••••••• eeeeee
000800000000000000000000000080000000040•000000000000000000004,0000000000000000•00000rnemommo
0000000000104000400OSO0000004100000011040001,0000000041 000000
00000001,404104/4004,04000000888=3888888:04888088040000008800000000000000000,408004,600OOMM 0000000
011414000MOWNDOWIWOM, 1,40 0 0000000 00004,000004000041IWOMOOODOWDOWDoe OOOOO
411,04110/14AWONDOMMOMO0000000000000004,4,00000000000000000000410000000000001,0040411,00004,0000000004,0 00000
0000000000000000000000000000•0000000000000000000000000000000040400400004000000001000000400001041 00000000
000rne000eommimeseememoommem eeeeeeeeee
0000000000000000001,000000000001,000000000000000000004100000004,000040000410000emeemememeoe eeeee

eeeee
00000000000000000000000000000000100000000000000000•04mOrnommemeemeeemmilemmmememi eeeeeee
000emeeemeeeemeemmosomoseemmem eeeee
000ommommmeemeemeomm
000000000OOVNDOOommmmmmimmwmmmmmmmommm, 0000000
000000000000000000000.000000000000000000000000000000000000000rnimeemeesseeemommeeo 000000
0000000000mpeommer
000000000000000eam
00000000000000seem
00000000000414000001
0000000000000000001
00rnomiesommomimeemooc
000000000000000400000000000000000000000000000000000rneesomposememOseseseakeimmemosomm000c
000mmememmeemoOmmes00000emeemmeesosemeeooc
00MOOOMOMO•0001,00000004,0004meeeseeeeeme0oc
0004,00000004600000000rnimeeeoeoc
0000000000000000000000000080000000000000000000000000000000000oemieOmme0000rnmOwimeee0000oo(
00000000000000000•000.0000080000000000000000000mmemommemeammoOmares000004mmoommeem0000cac
0000000000000000000mm0000000000000000000000000•••••••••••.........o....0000000s000000sem000000c
8888888888888888888=8:88888888888888000008000•••••••••••••••••••••omp00000000ws000000m•000000c

00000 0000dlommo••••••••••mm000000000000•0000000•ow0000000celmoo•e•00000000000000000•••••••••••••••••••••••000000000•000000•000000000c
ommeop0000000000000000esmommomempommeecomp00000000000•000000s00000000c
essoose•000000000000000000000•••••••••••••••000000000000000000000000000cmmommmm0000000000000000000000eemme•oeee•000000000000000000•00000•000c
wwwwwwim000000000000000000000mmommesoimm00000000000000000000s000e.o..,'

•••••••••••••••••••"1,1601,14,1"Aelurt"MeN

LAMMPS-Kokkos: The Tutorial alpha

U.S. DEPARTMENT OF II\ .W ietk(16

ENERGY 11!,

Christian Trott

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of

Energys National Nuclear Security Administration under contract DE-AC04-94AL85000.

SAND2014-15145PE

• code based with exqfflkfik[ilf valid Kokkos prog@EVal
laboratories

• incrementally increasing complexity for a low entry barrier

What this tutorial is NOT:
• an introduction to parallel programming

• a presentation of Kokkos features
• a performance comparison of Kokkos with other approaches

What you should know:
• some C++

• general parallel programming concepts

Where the code can be found:
• Trilinos/packages/kokkos/example/tutorial

11/19/13

LAMMPS

Framework

Atom, Comm, Neighbor, Modify,
Domain, Integrate, Thermo,

Update, Velocity

Sandia
National
Laboratories

Style Classes

Pairs, Bonds, Angles, Dihedrals,
Improper, Fix, Compute, Minimize

Replace Add

Kokkos-Package

11/19/13 3

NUMWS 3lyltS cl1t LUMplItU 101 IJUU1 EXtUULIU113[JdUtS

• fix 1 all nve/kk/device
• fix 1 all nve/kk/host

Device Managemnt

Communication can run on Host or Device
• package kokkos comm/forward device comm/exchange host

There is a enum corresponding to the DeviceTypes:
• enum Executionspace{Hosi,Device);

Sandia
National
Laboratories

11/19/13 4

Data Management - Types

Type directory: kokkos_type.h
• Provides typedefs for all array types for host and device

Use different scalars for different arrays to allow mixed precisi
tem plate<claRravides typedefs for memory traits variants
struct ArrayTypes;

template <>
struct ArrayTypes<LMPDeviceType> {

112d F_FLOAT array n*m
typedef Kokkos::DualView<F_FLOAT**, Kokkos::LayoutRight, LMPDeviceType> tdual_ffloat_2d;
typedef tdual_ffloat_2d::t_dev t_ffloat_2d;
typedef tdual_ffloat_2d::t_dev_const t_ffloat_2d_const;
typedef tdual_ffloat_2d::t_dev_um t_ffloat_2d_um;
typedef tdual_ffloat_2d::t_dev_const_um t_ffloat_2d_const_um;
typedef tdual_ffloat_2d::t_dev_const_randomread t_ffloat_2d_randomread;

//2d F_FLOAT array n*3
typedef Kokkos::DualView<F_FLOATI3], Kokkos::LayoutRight, LMPDeviceType> tdual_f_array;
typedef tdual_f_array::t_dev t_f_array;
typedef tdual_f_array::t_dev_const t_f_array_const;
typedef tdual_f_array::t_dev_um t_f_array_um;
typedef tdual_f_array::t_dev_const_um t_f array_const_um;
typedef tdual_f_array::t_dev_const_randomread t_f array_randomread;

}

Sandia
I Fib National

Laboratories

11/19/13 5

Sandiaei tiaagioogries
Data Management - Instances

3istent global data structures (members of Atom class) are Dual'
• Wrap classic data structures around Kokkos-Allocation

• Legacy data structure views same data as Host View

• Limitation: Kokkos needs to use legacy data-layout (LayoutRight)
• Convention: prefix DualView with: ̀k J, Device View with: 'cl J, Host View with: ̀h_'

AtomKokkos class (atomKK):
class AtomKokkos : public Atom {
public:
// DAT = ArrayTypes<LMPDeviceType>
DAT::tdual_int_ld k_tag, k_type, k_mask, k_molecule; // Various n of int
DAT::tdual_tagint_ld k_image; // image n of tagint
DAT::tdual x array k_x; // Positions n*3 of X_FLOAT
DAT::tdual_v_array k_v; // Velocities n*3 of V_FLOAT
DAT::tdual f array k_f; // Forces n*3 of F FLOAT

DAT::tdual float 1 d k mass; 11 Mass m of LMP FLOAT
}

11/19/13

Sandia
II National

Laboratories

Data Management - Allocation
Allocation:

memory->grow kokkos(atomKK->k_x,atomKK->x,nmax,3,"atom:x");

Internals in memory_kokkos.h:

template <typename TYPE>
TYPE create_kokkos(TYPE &data, typename TYPE::value_type **&array,

int nl, const char *name)
{
data = TYPE(std::string(name),n1);
bigint nbytes = ((bigint) sizeof(typename TYPE::value_type *)) * n1;
array = (typename TYPE::value_type **) smalloc(nbytes,name);

for (int i = 0; i < n1; i++)
array[i] = 8tdata.h_view(i3O);

return data;
}

11/19/13

Data Management - Synchronization Sandia
National
Laboratories

Styles have data masks to identify read and write access
The Framework will call Sync and Modify of DualViews

Modify:
for (int i = 0; i < nfix; i++) {
atomKK->sync(fix[i]->execution_spacefix[i]->datamask_read);
atomKK->modified(fix[i]->execution_spacefix[i]->datamask_modify);
fix[i]->setup(vflag);
}

Verlet_Kokkos:
if (pair_compute_flag) {
atomKK->sync(force->pair->execution_spaceforce->pair->datamask_read);
atomKK->modified(force->pair->execution_spaceforce->pair->
force->pair->compute(eflag,vflag);
timer->stamp(TIME PAIR);
}

datamask modify);

If a style class has multiple parallel functions optimize by leavin
datamasks empty and call atomKK->svnc explicitly.

11/19/13

Parallel Dispatch —
Wrapper Functor

• easier to implement
• less code change
• used for fix/nve

Porting Steps:
1 move loop body into "item" functions
2. create functor with a copy of the class

as member
3. call "item" function of class from

operator()
4. use Kokkos Views for internal and

global data
5. add modify/sync calls where needed

6. add cleanup_copy function

Sandia
National
Laboratories

Two Approaches
Stand alone Functor

potentially more
performance

used for neighbor list
construction

Porting steps
use Kokkos Views for internal and

global data
2 create functor

3. make members in functor for all
variables accessed in function

4. copy loop body into operator()
5. copy all functions called in loop body

tn fi inrtnr

1.

11/19/13

template<class DeviceType>
class FixNVEKokkos : publRjFaa+1Hel Dispatch — Fix NVE
public:
void cleanup_copy(); 11 Eliminate all direct allocations (e.g. label)
void initial integrate(int); 11 One of the original compute functions

KOKKOS_INLINE_FUNCTION
void initial integrate item(int) const; 11 Loop body of former initial integrate
}

template <class DeviceType, int RMass>
struct FixNvElcokkoslnitiallntegrateFunctor {
typedef DeviceType device_type ;
FixNVEKokkos<DeviceType> c;

11 Get a copy of the original class
FixNvElcokkoslnitiallntegrateFunctor(FixNvEKokkos<DeviceType>* c_ptr):
c(*c_ptr) {c.cleanup_copy();};

11 Call the correct item function. This is templated on Rmass,
11 so that the conditional is compile time and does not hinder vectorization
KOKKOS INLINE FUNCTION
void operator()(const int i) const {
if (RMasF) c.initial integrate_rmass_item(i);
else c.initial integrate item(i);

}

};

Sandia
National
Laboratories

11/19/13

template<class DEPS:1, l Dispatch — Fix NVE continued
FixNVEKokkos<DeviceType>::FixNVEKokkos(LAMMPS imp, int narg, char **arg) :
FixNVE(Imp, narg, arg)

{
atomKK = (AtomKokkos *) atom;
11 Set runtime execution_space identifier
execution_space = ExecutionSpaceFromDevice<DeviceType>::space;

// Set data masks
datamask_read = X_MASK I V_MASK I F_MASK I MASK_MASK I RMASS_MASK I TYPE_MASK;
datamask modify = X_MASK I V_MASK ;
}

template<class DeviceType>
void FixNVEKokkos<DeviceType>::initial_integrate_item(int i) const
{

if (mask[i] & groupbit) {
const double dtfm = dtf / mass[type[i]];
v(i3O) += dtfm * f(i 3O);
v(i,1) += dtfm * f(i,1);
v(i,2) += dtfm * f(i,2);
x(i3O) += dtv * v(i3O);
x(i,1) += dtv * v(i,1);
x(i,2) += dtv * v(i,2);

}

}

Sandia
National
Laboratories

11/19/13

template<classpDalfigne4>Dispatch — Fix NVE continued (ii)
void FixNVEKokkoseviceType>.:initial_integrate(int vflag)

{
// Syncs are performed by modify and are not needed here
// atomKK->sync(execution_space,datamask_read);
// atomKK->modified(execution_space,datamask_modify);

// Update data references
x = atomKK->k_x.view<DeviceType>();
v = atomKK->k_v.view<DeviceType>();
f = atomKK->ki.view<DeviceType>();
rmass = atomKK->rmass;
mass = atomKK->k mass.view<DeviceType>();
type = atomKK->k_type.view<DeviceType>();
mask = atomKK->k mask.view<DeviceType>();
int nlocal = atomKK->nlocal;
if (igroup == atomKK->firstgroup) nlocal = atomKK->nfirst;

if (rmass) { // Call functor, template expand rmass conditional
FixNvEKokkosInitialIntegrateFunctor<DeviceType,1> functor(this);
Kokkos::parallel_for(nlocal,functor);

} else {
FixNvEKokkosInitialIntegrateFunctor<DeviceType,0> functor(this);
Kokkos::parallel_for(nlocal,functor);

}
DeviceType: :fence();

}

Sandia
National
Laboratories

11/19/13

• Call pair_compute tunchipMfflgated on the pair torce style
Sandia

'air compute provides iteration schemes for different n
• much better extensibility: add new neighbor styles / iteration schemes once

• Pair force provides tunctions ror actual physics code
• take distance and atom types, return force or energy

• Two options to handle force parameters: on stack or in heap
• significant performance difference in particular on GPU
• stack can only handle limited amount: compile time setting (Default 12 types)

template<class DeviceType>
template<bool STACKPARAMS, class Specialisation>
KOKKOS_INLINE_FUNCTION
F FLOAT PairllCutKokkos<DeviceType>::
compute_fpair(const F_FLOAT& rsq, const int& i, const int&j,

const int& itype, const int& jtype) const {
const F FLOAT r2inv = 1.0/rsq;
const F FLOAT r6inv = r2inv*r2inv*r2inv;

const F_FLOAT forcelj = r6inv *
((STACKPARAMS?m_params[itype][jtype].1j1:params(itypejtype).1j1)*r6inv -
(STACKPARAMS?m_params[itype][jtype].1j2:params(itypejtype).1j2));

return forcelj*r2inv;
}

11/19/13

friend class PairComputeFunctor<PairllCutKokkos,HALFTHREAD,true>;
friend class PairComputeFunctor<PairllCutKokkos,N2,true>;
friend class PairComputeFunctor<PairllCutKokkos,FULLCLUSTER,true >;
friend class PairComputeFunctib

'OrrL1_11=14/Z,tilet;;friend class PairComputeFunct•r e'-'
friend class PairComputeFunctor<PairllCutKokkos,HALFTHREAD,false>;
friend class PairComputeFunctor<PairllCutKokkos,N2,false>;
friend class PairComputeFunctor<PairllCutKokkos,FULLCLUSTER,false >;
friend EV_FLOAT pair_compute<PairllCutKokkos,void>

(PairLJCutKokkos*,NeighListKokkos<DeviceType>*);

Pair styles don't need to support aII of them

Sandia
National
Laboratories

11/19/13

dIAJI I 11Nr\--•"byl lUkeAel;ULIVI l_bpdl;e7Udi.d1 I lelbMI eau),

k_cutsq.template sync<DeviceType>OD •i r F o rce Dispatchk_params.template sync<DeviceType0
if (eflag 11 vflag) atomMK->modified(execution_space,datamask_modify);
else atomla(->modified(execution_space,F_MASK);

x = atomKK->k_x.view<DeviceType>0;
c_x = atomKK->k_x.view<DeviceType>0;
f = atomKK->k_f.view<DeviceType>0;
type = atomKK->k_type.view<DeviceType>0;
nlocal = atom->nlocal;
nall = atom->nlocal + atom->nghost;
special_lj[0] = force->special_lj[0];
special_lj[1] = force->special_lj[1];
special_lj[2] = force->special_lj[2];
special_lj[3] = force->special_lj[3];
newton_pair = force->newton_pair;

// loop over neighbors of my atoms
EV FLOAT ev = pair_compute<PairllCutKokkos<DeviceType>,void >(this,(NeighListKokkos<DeviceType>llist);

DeviceType::fence();

if (eflag) eng_vdwl += ev.evdwl;
if (vflag_global) {
virial[0] += ev.v[0];
virial[1] += ev.v[1];
virial[2] += ev.v[2];
virial[3] += ev.v[3];
virial[4] += ev.v[4];
virial[5] += ev.v[5];

Sandia
National
Laboratories

Pair Force Dispatch
template<class PairStyle, class Specialisation>
EV FLOAT pair_compute (PairStyle* fpair,

NeighListKokkos<typename Pairstyle::device_type>* list) {
EV FLOAT ev;
if(fpair->atom->ntypes > MAX_TYPES_STACKPARAMS) {

if (fpair->neighflag == FULL) {
PairComputeFunctor<PairStyle,FULL,false,Specialisation >
ff(fpair, list);

if (fpair->eflag 11 fpair->vflag) Kokkos::parallel_reduce(list->inum,ftev);
else Kokkos: : parallel_for(list->inum,ff);

} else if (fpair->neighflag == HALFTHREAD) {
PairComputeFunctor<PairStyle,HALFTHREAD,false,Specialisation >
ff(fpair, list);

if (fpair->eflag 11 fpair->vflag) Kokkos::parallel_reduce(list->inum,ftev);
else Kokkos: : parallel_for(list->inum,ff);

} else if (fpair->neighflag == HALF) {
PairComputeFunctor<PairStyle,HALF,false,Specialisation >
ff(fpair, list);

if (fpair->eflag 11 fpair->vflag) Kokkos::parallel_reduce(list->inum,ftev);
else Kokkos: : parallel_for(list->inum,ff);

11/19/13

555—000000asoo•iiiiio•oiooOrii50000000sem•••••••5666665c00000co-566—0000cicio—osioonlooss••••••• •••••••000000•0000000•••000•000000mm000000mmommoomp000l0000cc0000m000iw0000moom000wooeime••••••••••••.4
••••••••••••00000000mm000000sommoo••••••esommoo00000000•••••••omoomm000mmoommemeemmemme •••• e
000000000000000,000 000000 e
00 00000000
000••••e
000000000000000000000000000000000000000nnneuvInnnnnnannm1000n
000000000000000000000000000000000000001
00000000000000000000000000000000000000
00000000000000000000000000000000000000 wommeemoimmageolows 0,•••••••••••••
00000000000000000000000000000000000000
00000000000000000000000000000000000000
000000000000000000000004moso0000000000
00000000000000000000000000000000000000
00000000000000000000000000000000000000
00000000000000000000000000000000000000
00000000000000000000000000000000000000
00000000000000000000000000000000000000
00000000000000000000000000000000000000
00000000000000000000000000000000000000
00000000000000000000000000000000000000
00000000000000000000000000000000000000
00000000000000000000000000000000000000
00000000000000000000000000000000000000
00000000000000000000000000000000000000
00000000000000000000000000000000000000
00000000000000000000000000000000000000
00000000000000000000000000000000000000

88866666666ossoimmo••••••dmoomoo3M666eara661250;;OW&Moisooimm00000000000000000mmilimpovimmoommemp000000000wb000000•000000000cemmeeeem000m0000000mmoimmoommommoomm00000000000coommocwocxxxxxx;e•••••emoopoomm00000000, •••••••••••••••000000000000000000000000000c ••••••••:::::-• -.,o18888888888886666
0000000

5 ::••••••••••:::::88888888000000g000poomo888:28882:80.o.c.:

:+:+M+NXXXXXXXXXg+M.! :•NXXXXXXX+:

Questions and further discussion: crtrott@sandia.gov

