SAND2014- 15145P

LAMMPS-Kokkos: The Tutorial

alpha

Christian Trott

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia
U.3. DEPARTMENT OF "V} Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of
@ ENERGY !_‘_Q__& Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

11/19/13

* code based with examples Peisg valid Kokkos prog(yiss
* incrementally increasing complexity for a low entry barrier
What this tutorial is NOT:
e anintroduction to parallel programming

* a presentation of Kokkos features
e a performance comparison of Kokkos with other approaches

What you should know:
* some C++
e general parallel programming concepts

Where the code can be found:
* Trilinos/packages/kokkos/example/tutorial

11/19/13 p.

LAMMPS

Framework Style Classes

Atom, Comm, Neighbor, Modify, Pairs, Bonds, Angles, Dihedrals,
Domain, Integrate, Thermo, Improper, Fix, Compute, Minimize
Update, Velocity

Replace

Kokkos-Package

11/19/13 3

NURKRUS OLYICOS dlC LUINTIPHEU TUI YULIT LACLULIUTIOYALES

fix 1 all nve/kk/device e i
_ fix 1 all nve/kk/host {aboratues
Device Managemnt

Communication can run on Host or Device
package kokkos comm/forward device comm/exchange host

There is a enum corresponding to the DeviceTypes:
enum ExecutionSpace{Host,Device};

11/19/13 4

Data Management - Types S

Type directory: kokkos type.h
* Provides typedefs for all array types for host and device
Use different scalars for different arrays to allow mixed precisi
emplat<ciiAMIGRS typedefs for memory traits variants

struct ArrayTypes;

template <>
struct ArrayTypes<LMPDeviceType> {

/12d F_FLOAT array n*m

typedef Kokkos::DualView<F_FLOAT**, Kokkos::LayoutRight, LMPDeviceType> tdual_ffloat_2d;
typedef tdual_ffloat_2d::t_dev t_ffloat_2d;

typedef tdual_ffloat_2d::t_dev_const t_ffloat_2d_const;

typedef tdual_ffloat_2d::t_dev_um t_ffloat_2d_um;

typedef tdual_ffloat_2d::t_dev_const_um t_ffloat_2d_const_um;

typedef tdual_ffloat_2d::t_dev_const_randomread t_ffloat_2d_randomread;

/12d F_FLOAT array n*3

typedef Kokkos::DualView<F_FLOAT*[3], Kokkos::LayoutRight, LMPDeviceType> tdual_f_array;
typedef tdual_f_array::t_dev t_f_array;

typedef tdual_f_array::t_dev_constt_f array_const;

typedef tdual_f_array::t_dev_umt_f_array_um;

typedef tdual_f_array::t_dev_const_umt_f_array_const_um;

typedef tdual_f_array::t_dev_const_randomread t_f_array_randomread,;

}

11/19/13 5

s,

Data Management - Instances
sistent global data structures (members of Atom class) are Dual

* Wrap classic data structures around Kokkos-Allocation

* Legacy data structure views same data as Host View
e Limitation: Kokkos needs to use legacy data-layout (LayoutRight)
e Convention: prefix DualView with: ‘k_’, Device View with: ‘d_’, Host View with: ‘h_’

AtomKokkos class (atomKK):

class AtomKokkos : public Atom {

public:

/l DAT = ArrayTypes<LMPDeviceType>
DAT::tdual_int_1d k_tag, k_type, k_mask, k_molecule; // Various n of int
DAT::tdual_tagint_1d k_image; // Image n of tagint
DAT::tdual_x_array k_x; // Positions n*3 of X_FLOAT
DAT::tdual_v_array k_v; // Velocities n*3 of V_FLOAT
DAT::tdual f array k_f; // Forces n*3 of F_FLOAT

DAT::tdual_float_1d k_mass; // Mass m of LMP_FLOAT

11/19/13 6

Data Management - Allocation

Allocation:
memory->grow_kokkos(atomKK->k x,atomKK->x,nmax,3,"atom:x");

Internals in memory_kokkos.h:

template <typename TYPE>

TYPE create_kokkos(TYPE &data, typename TYPE::value_type **&array,
int n1, const char *name)

{

data = TYPE(std::string(name),n1);
bigint nbytes = ((bigint) sizeof(typename TYPE::value_type *)) * n1;
array = (typename TYPE::value_type **) smalloc(nbytes,name);

for (inti=0; i <n1; i++)
array[i] = &data.h_view(i,0);

return data;

}

11/19/13 7

Data Management - Synchronization | o

Laboratories

Styles have data masks to identify read and write access
The Framework will call Sync and Modify of DualViews

Modify:
for (int i = 0; i < nfix; i++) {

atomKK->sync(fix[i]->execution_space,fix[i]->datamask_read);
atomKK->modified(fix[i]->execution_space,fix[i]->datamask_modify);
fix[i]->setup(vflag);

}

Verlet_Kokkos:

if (pair_compute_flag) {
atomKK->sync(force->pair->execution_space,force->pair->datamask_read);
atomKK->modified(force->pair->execution_space,force->pair->datamask_modify);
force->pair->compute(eflag,vflag);
timer->stamp(TIME_PAIR);

}

If a style class has multiple parallel functions optimize by leavin

datamasks empty and call atomkk->sync explicitly.

7| Ntora

Parallel Dispatch — Two Approaches

Wrapper Functor

e easier to implement
* less code change
e used for fix/nve

Porting Steps:
1. move loop body into “item” functions
2. create functor with a copy of the class

as member

3. call “item” function of class from
operator()

4. use Kokkos Views for internal and
global data

5. add modify/sync calls where needed
6. add cleanup_copy function

Stand alone Functor
potentially more
performance
used for neighbor list
construction

Porting steps
1. use Kokkos Views for internal and
global data
2. create functor
3. make members in functor for all
variables accessed in function
4. copy loop body into operator()
copy all functions called in loop body

Aw

11/19/13 9

template<class DeviceType> . . _—
class FixNVEKokkos : pubfegFsaVEel Dispatch — Fix NVE i) hen
public:

void cleanup_copy(); // Eliminate all direct allocations (e.g. label)

void initial_integrate(int); / One of the original compute functions

KOKKOS_INLINE_FUNCTION
void initial_integrate_item(int) const; // Loop body of former initial_integrate

}

template <class DeviceType, int RMass>

struct FixXNVEKokkoslInitialintegrateFunctor {
typedef DeviceType device_type ;
FixXNVEKokkos<DeviceType> c;

Il Get a copy of the original class
FixNVEKokkoslInitialintegrateFunctor(FixNVEKokkos<DeviceType>* c_ptr):

c(*c_ptr) {c.cleanup_copy();};

Il Call the correct item function. This is templated on Rmass,
Il so that the conditional is compile time and does not hinder vectorization
KOKKOS_INLINE_FUNCTION
void operator()(const int i) const {
if (RMass) c.initial_integrate_rmass_item(i);
else c.initial_integrate_item(i);
}
3

- ___—"—"—"_______________________.— --~-— _____
11/19/13

emplate<ciass pbalaple! Dispatch — Fix NVE continued i) o

FixXNVEKokkos<DeviceType>::FixXNVEKokkos(LAMMPS *Imp, int narg, char **arg) :
FixXNVE(Imp, narg, arg)
{
atomKK = (AtomKokkos *) atom;
Il Set runtime execution_space identifier
execution_space = ExecutionSpaceFromDevice<DeviceType>::space;

I/l Set data masks
datamask read = X_MASK | V_MASK | F_MASK | MASK_MASK | RMASS_MASK | TYPE_MASK;
datamask_modify = X_MASK | V_MASK;

}

template<class DeviceType>
void FixXNVEKokkos<DeviceType>::initial_integrate_item(int i) const
{
if (mask][i] & groupbit) {
const double dtfm = dtf / mass[type[i]];
v(i,0) += dtfm * f(i,0);
v(i,1) += dtfm * f(i,1);
v(i,2) += dtfm * {(i,2);
x(i,0) += dtv * v(i,0);
x(i,1) +=dtv * v(i,1);
x(i,2) += dtv * v(i,2);

- ___—"—"—"_______________________.— --~-— _____
11/19/13

template<clas ' >N — Ei - .
void FixNVEKmrg%t%?gesﬂigiggpntegrﬁtlg(ﬁ nlt\|v¥I/a|gE) continue d (.) _
{ Laboratores

Il Syncs are performed by modify and are not needed here
I/l atomKK->sync(execution_space,datamask_read);
/I atomKK->modified(execution_space,datamask_modify);

I/l Update data references

x = atomKK->k_x.view<DeviceType>();

v = atomKK->k_v.view<DeviceType>();

f = atomKK->k_f.view<DeviceType>();

rmass = atomKK->rmass;

mass = atomKK->k_mass.view<DeviceType>();

type = atomKK->k_type.view<DeviceType>();

mask = atomKK->k_mask.view<DeviceType>();

int nlocal = atomKK->nlocal;

if (igroup == atomKK->firstgroup) nlocal = atomKK->nfirst;

if (rmass) { // Call functor, template expand rmass conditional
FixNVEKokkoslInitialintegrateFunctor<DeviceType,1> functor(this);
Kokkos::parallel_for(nlocal,functor);

} else {
FixNVEKokkoslnitialintegrateFunctor<DeviceType,0> functor(this);
Kokkos::parallel_for(nlocal,functor);

}

DeviceType::fence();

}

11/19/13

* Lall pair_compute TungslopAeraplated on the pair force style

air_compute provides iteration schemes for different n@%r
« much better extensibility: add new neighbor styles / iteration schemes once

* Pair force provides functions for actual physics code
« take distance and atom types, return force or energy

 Two options to handle force parameters: on stack or in heap
 significant performance difference in particular on GPU
stack can only handle limited amount: compile time setting (Default 12 types)

template<class DeviceType>

template<bool STACKPARAMS, class Specialisation>
KOKKOS_INLINE_FUNCTION

F_FLOAT PairLJCutKokkos<DeviceType>::
compute_fpair(const F_FLOAT& rsq, const int& i, const int&j,

const int& itype, const int& jtype) const {
const F_FLOAT r2inv = 1.0/rsq;

const F_FLOAT r6inv = r2inv*r2inv*r2inv;

const F_FLOAT forcelj = r6inv *

((STACKPARAMS ?m_paramsl[itype][jtypel.lj1:params(itype,jtype).lj1)*r6inv -

(STACKPARAMS?m_paramslitype][jtypel.lj2:params(itype,jtype).lj2));
return forcelj*r2inv;

}

- ___—"—"—"_______________________.— --~-— _____
11/19/13

friend class PairComputeFunctor<PairLJCutKokkos,HALFTHREAD,true>;
friend class PairComputeFunctor<PairLJCutKokkos,N2,true>; 'I' Sandia
friend class PairComputeFunctor<PairLJCutKokkos,FULLCLUSTER,true >;

friend class PairComputeFunct j kos. F#é%i@ H

friend class PairComputeFunctor E:II-_PJMkQ]F : t:-i;

friend class PairComputeFunctor<PairLJCutKokkos,HALFTHREAD,false>;

friend class PairComputeFunctor<PairLJCutKokkos,N2,false>;

friend class PairComputeFunctor<PairLJCutKokkos,FULLCLUSTER,false >;

friend EV_FLOAT pair_compute<PairLJCutKokkos,void>
(PairLJCutKokkos*,NeighListKokkos<DeviceType>*);

Pair styles don’t need to support all of them

11/19/13

ALUITINNIAT7 O yTIU\TATULULIVUII_opaltt,Udlalllasi_1cdld),

k_cutsq.template sync<DeviceType>(1 1
k_params.template sync<DeviceType§()),a Ir FO rce D IS p d tC h 'I‘ m
if (eflag || vflag) atomKK->modified(execution_space,datamask_modify); Laboratories

else atomKK->modified(execution_space,F_MASK);

x = atomKK->k_x.view<DeviceType>();
c_x = atomKK->k_x.view<DeviceType>();
f = atomKK->k_f.view<DeviceType>();
type = atomKK->k_type.view<DeviceType>();
nlocal = atom->nlocal;

nall = atom->nlocal + atom->nghost;
special_lj[0] = force->special_lj[0];
special_lj[1] = force->special_lj[1];
special_lj[2] = force->special_lj[2];
special_lj[3] = force->special_Ij[3];
newton_pair = force->newton_pair;

/I loop over neighbors of my atoms
EV_FLOAT ev = pair_compute<PairLJCutKokkos<DeviceType>,void >(this,(NeighListKokkos<DeviceType>*)list);

DeviceType::fence();

if (eflag) eng_vdwl += ev.evdwil;
if (vflag_global) {

virial[0] += ev.v[0];

virial[1] += ev.v[1];

virial[2] += ev.v[2];

virial[3] += ev.v[3];

virial[4] += ev.v[4];

virial[5] += ev.v[5];

11/19/13

Pair Force Dispatch

template<class PairStyle, class Specialisation>
EV_FLOAT pair_compute (PairStyle* fpair,
NeighListKokkos<typename PairStyle::device_type>* list) {
EV_FLOAT eyv;
if(fpair->atom->ntypes > MAX_TYPES_STACKPARAMS) {

if (fpair->neighflag == FULL) {
PairComputeFunctor<PairStyle,FULL,false,Specialisation >
ff(fpair, list);
if (fpair->eflag || fpair->vflag) Kokkos::parallel_reduce(list->inum,ff,ev);
else Kokkos::parallel_for(list->inum,ff);

} else if (fpair->neighflag == HALFTHREAD) {
PairComputeFunctor<PairStyle, HALFTHREAD,false,Specialisation >
ff(fpair, list);
if (fpair->eflag || fpair->vflag) Kokkos::parallel_reduce(list->inum,ff,ev);
else Kokkos::parallel_for(list->inum,ff);

} else if (fpair->neighflag == HALF) {
PairComputeFunctor<PairStyle,HALF,false,Specialisation >
ff(fpair, list);
if (fpair->eflag || fpair->vflag) Kokkos::parallel_reduce(list->inum,ff,ev);
else Kokkos::parallel_for(list->inum,ff);

11/19/13

DO ¢

Questions and further discussion: crtrott@sandia.gov

