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The case for High Fidelity Simulations

 Most scientific relevant simulations: 10k — 10M atoms
e But typical MD simulations need ~50k atoms per GPU/Xeon Phi to
be effective

=> Bad scaling beyond 10-100 nodes

* Use increased compute capabilities for higher accuracy

=> Close the gap to DFT
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SNAP Potential

* DFT like accuracy with lower cost and linear scaling

* Potential complexity can be increased systematically
 Parameters through fitting to DFT data

* Currently we have Silicon and Tantalum, working on InP

* Characteristics
» 500k flops per interaction; 12M per atom
« 300 kB temporary data per particle with calculations in flight
« 30 kB temporary data per interaction with calculations in flight
« Working on 27 interactions in parallel: TMB temporary data per atom
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Available Parallelism

Compute_SNAP
for 7 in natoms() {

100k atoms
u; = calc_U(z)

Z; = calc Z(i.u; )
[for j in neighbors(i) {}¢— 15.5 neighbors
Vju = calc_dUdR(%, j,u;)
VjBi = calc.dBdR(%, j,u;,Z;,V;u)
Fi; = —3-V,B*
F; += -Fi;; F; +=F;;

Sets per System per Atom per Interaction
' 1.0x10° N/A N/A

i,j 1.6x105 155 N/A

iy, 1,72, 7 1.0x10® 902 64

i, f, 1;1,17:’;*7,!,;:,;.: 21x10° 32528 1,388

iy Jy T, Ti2s T s 5 1, 1 2. 4x10"  2.4x10° 15,183

F ¥ &
Function Calc_dBdR(i.j) {
for (7) 71, 1m2) in GetBispectrumlIndices() { H 64 Coeff|C|entS
V B'n .11 0
[for (u = 0. < mptt) L J€ :
=0 =t T ke ) 1-8 lterations
LYY LN |
for (p1 = max (0, + (m — m2 — n)/2); «—
p1 < min (g1, 1+ (m +n2 —1)/2); u1++) {
Lo — Lt — JI1
for (py = max (0,1 + (m1 — m2 — n)/2);
) €
ph < min (g, 1 4 (m + 2 —1)/2); wi++) {
!
Ha = H — M
}V Z} n += 7717;“1‘,#1,772,#2,#2( 211 uy VI ZZ Hh +“Z§ Ko J“le ul)
V;Bnimem += (“ ) VjZ#l,fLT;Q,"I + Z#fﬁ;mn(vjuz,p')*
Py
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Target machines

« Commodity CPUs: Chama Intel Sandy Bridge, SNL
« #100in Top 500 (Nov 2013)
» 2 Sockets/ 16 Cores per Node
* Infiniband Interconnect
« |IBM Blue Gene Q: Sequoia and Vulcan, LLNL
« # 3 and #9 in Top 500 (Nov 2013)
16 Cores / 64 Threads per Node
« (NVIDIA) GPUs: Titan, ORNL
« #2in Top 500 (Nov 2013)
« 16 Cores Opteron + NVIDIA Kepler K20x

System Nodes Cores  Threads Power/Node  Perf./Node

Chama 1,230 19680 39,360 688 W 3328 GFLOP/s
Sequoia/Vulcan 122,880 2.0 x 10° 7.9 x 10° 8026 W  204.8 GFLOP/s
Titan 18,688 50x 107 54 x 10° 4303 W  1450.8 GFLOP/s
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\eed local load-balancing to enable as little as 1 atom pd)Eide
Micro Load-Balancing
Micro Load-Balancer:
* increase communication cutoff by domain size
* reassign force calculation to neighboring process
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Micro Load-Balancing 65k atoms BG/Q e
MPI — only (64 ranks per node), MPI+OMP (2x32 per node)

I
64 256

I ! | ! I ! |
1024 4096 16384 65536
# of nodes
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Strong Scaling | — Time per Step
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Strong Scaling Il = Normalized Performance
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Conclusions

* High Fidelity Molecular Dynamics Simulations can use
PetaScale HPC systems efficiently
* MPI—-onlyis not enough for extreme strongscaling
* Micro load-balancing can help at very low workloads
* All system architectures exhibit similar power efficiency
at large workloads
* For small workloads fewer, more powerful nodes are
more efficient than many smaller nodes

=> Current trend of increasing node performance is
good

11/19/13




DO ¢

Questions and further discussion: crtrott@sandia.gov



