SAND2015- 0425C

INCORPORATING WORKFLOW FOR V&V/UQ IN
THE SANDIA ANALYSIS WORKBENCH

Dr. E. Friedman-Hill, E. Hoffman, M. Gibson, Dr. R. Clay
(Sandia National Laboratories’, USA)

K. Olson
(SAIC, USA)

1. Introduction

Numerous teams at Sandia National Laboratories develop in-house
codes for problem setup and computation in multiple domains of
physics and engineering. These codes are actively developed,
continuously evolving, and require significant, ongoing learning on the
part of users. The Sandia Analysis Workbench (SAW) is a family of
desktop applications that was developed to provide an integrated
interface to many of these codes, and to improve their ease of use by
providing contextual information and tools that simplify and streamline
common operations. Using the Workbench, users can build models,
submit and manage HPC jobs, visualize results, share and store
models and results in context with versioning and dependency tracking,
and more. Because a diverse array of in-house and commercial tools
must be integrated using limited resources, we use a component-
based, data-driven approach in which tools are treated generically and
customization is handled as much as possible by configuration files.
This approach allows developers to concentrate on specific areas with
high value for the end user.

While many of the codes integrated into the Workbench have scripting
capabilities, overall sequencing of code execution — or workflow -- has
until now been handled manually. A Workbench user invokes
operations like model building, job submission, and post processing as
distinct, deliberate actions. While sufficient for simple use cases,

' Sandia National Laboratories is a multi-program laboratory managed
and operated by Sandia Corporation, a wholly owned subsidiary of
Lockheed Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-
94AL85000.



manual workflow becomes burdensome for more complex situations,
and does not allow users to repeat, archive, and share workflows.

Recently, we began to recast our architectural components as nodes in
an explicit workflow graph. The addition of a robust, configurable
workflow engine supports validation, verification, and uncertainty
quantification (V&V/UQ) activities by allowing combinations of
Workbench components to be used for repeatable, automated
executions of parameterized models, enabling sensitivity analysis,
optimization, and other compound operations with minimal user effort.

In this paper, after first presenting some motivation from the literature,
we will discuss the SAW architecture and give an overview of the data-
driven, component-based strategies we use for integrating tools. We'll
also discuss our planned architecture for adding a workflow capability,
our initial implementation, and the challenges we will face as we scale
the system up for future simulations in the exascale regime.

2. Motivation

Page, Canova, and Tufarolo (1997) noted three categories of modelling
and simulation (M&S): live, virtual, and constructive, where “live”
referred to simulations involving live individuals, virtual referred to
individuals interacting with simulators, and constructive referring to
simulations invoked by executable computer programs. For the
purposes of this paper, only “constructive” M&S is fully considered, and
is frequently referred to as computational simulation. This distinction is
important, as considerations of iterative, executable workflows and
maturity models may have limited applicability to the other categories.

Sargent (2013) provided a useful general (though simplified) description
of the M&S development process. It contained three major components:
the problem entity (the system to be modelled), the conceptual model (a
logical representation of the problem entity), and the computerized
model. Each of these three entities is connected through data, and
provides for iterative feedback between them. This approach also
implicitly overlaid a lifecycle on the model, in that at any given time a
model may be considered being in one of the component areas.
Furthermore, Sargent specifically noted the need for V&V activities at
each of the component areas. This particular process does not directly
consider cases where the problem entity may have more than a single
conceptual model, or the conceptual model may have more than one
computerized model. In such a case, the lifecycle “state” would be tied
to a particular expression. Such an expanded multi-faced expression,
however, re-emphasizes the need for good V&V/UQ activity tracking in
order to ensure than a given conceptual or computerized model



Incorporating Workflow for V&V/UQ in the Sandia Analysis Workbench

remains consistent with the problem entities’ requirements. In addition,
it is clear that diverse expressions of the conceptual or computerized
model may entail different assumptions. Maintaining full traceability
between these assumptions, the V&V/UQ evidence, and the original
problem entity is critical in order to support the credibility of the final
results.

Conwell, Enright, and Stutzman (2000) extended Sargent’'s M&S
process model, by emphasizing the V&V/UQ activities necessary to
support the process. The starting point for the problem entity in this
model is a requirements definition specifying the operational needs in
terms of functionality, fidelity, and credibility. From this starting point,
requirements traceability through the V&V/UQ activities is the
cornerstone of this enhanced process. The authors also augmented the
model with capability maturity model (CMM) points. They made explicit
that certain key process areas backed with requirements traceability
can result in an increased and documentable CMM level. In general,
more repeatable and documented processes following identified key
process activities (KPAs) will result in a higher CMM level. As Osman
Balci, Nance, Arthur, and Ormsby (2002) noted, it is likely that an M&S
executed by an CMM Level 3 organization will have more credibility
than developed by a Level 1 organization. In addition to “cost and effort
reduction that may be available once standardized practices are
available” (Osman Balci et al., 2002), it is also implied that such
processes will reduce the full potential scope of V&V/UQ activities. It is
an open question as to whether organizations that have great diversity
in the M&S activities can standardize across the entire organization,
and to a certain extent accept the implied or explicit constraint of
V&V/UQ activities.

Restriction of the tools, V&V/UQ selection, and how they operate in
concert is not necessarily an impediment. Allen, Shaffer, and Watson
(2005) noted that pulling modelling tools into an integrated environment
(IDE) can reduce risk by encouraging particular tool and process usage.
In addition, undertaking M&S activities within a defined IDE can directly
support model branching while maintaining traceability. Such an IDE
also supports the oft-neglected aspect of traceability, in which storage
of the artifacts from a V&V/UQ activity provides the evidence that
ultimate lends credibility to the model. In other words, a world in which
an individual can choose any tool and any V&V/UQ activity at any point
requires that individual to be a supreme librarian. IDEs which provide
validating and structured editors, workflow execution, and artifact
management (which may be considered a part of an overall
configuration management requirement for the evolving and potentially
multiple models) are likely to be more effective at ensuring V&V is
incorporated throughout the lifecycle.



The ability to select particular V&V/UQ activities at a given point through
an IDE suggests the ability to realize the suggestions of Wang (2013).
As this author noted, “conducting model verification and validation
requires systematic selection and application of different V&V
techniques throughout the M&S life cycle” (p. 1233). The selection
criteria, however, are not necessarily obvious in the absence of
guidance. As Wang noted, there are more than 100 potential V&V
activities, but in practice only a limited number are utilized. Vegas and
V. (2005) suggested that lack of theoretical or empirical knowledge is
often the basis for this limited number. O. Balci (1998) proposed a
taxonomy for V&V/UQ activities that had four groups: informal, static,
dynamic, and formal. Wang (2013) noted that a V&V/UQ activity is
dependent not only on the characteristic of the technique, but also the
context of its application. In addition, Wang provided an explicit cost
component to the V&V activity selection. As suggested above, model
iterations will require re-execution of a V&V/UQ activity in order to
maintain the application of V&V throughout the lifecycle. As a result,
selection of a V&V activity must be cost-effective in reference to model
as well.

Executable workflows tied to V&V/UQ activities (as opposed to the
overall model lifecycle) may be especially important given the inherent
iterative nature of model development. Traceability provides the
guidance for when an assumption (or requirement) at one point drives
changes throughout the entire model chain. V&V/UQ executable
workflows allow re-executing V&V/UQ tasks in a structured, repeatable
fashion to ensure the model remains credible within the existing
requirements.

3. The Sandia Analysis Workbench

Given the best practices discussed in the preceding section, we chose
an implementation strategy based on the idea of an integrated
development environment for model development and execution. Our
organization’s structure as a loose federation of science and
engineering groups led us to adopt an architecture based on
independent and highly separable components. Some components are
self-contained, while others are wrappers for in-house or third party
tools.

Our range of integrated applications and the architecture they are built
on are collectively referred to as the Sandia Analysis Workbench
(SAW). We build a flagship “Enterprise Edition” desktop application
which incorporates almost all of our components, and also a number of
smaller, lighter-weight editions that each include tools useful in specific
narrower user domains. In this paper we’ll primarily discuss the general



Incorporating Workflow for V&V/UQ in the Sandia Analysis Workbench

architecture we’ve used to create this collection of modular
components.

Eclipse. Our architecture is based on the Eclipse framework. The
Eclipse IDE was originally developed at IBM as a Java development
environment. The core of Eclipse (itself written in the Java language)
was later extracted and became the basis of a general application
framework for building modular applications. The Eclipse Platform, built
on the OSGi component framework, provides a complete set of
primitives for managing the lifecycles and interactions of a system of
separate but complementary components. The Eclipse Rich Client
Platform (RCP) implements a graphical interface on top of that
framework, Applications built using the Eclipse Framework and the RCP
are portable to many platforms and include both graphical desktop
applications and headless server applications. Our set of integrated
applications contains both graphical and non-graphical instances, as
will be discussed.

The fundamental unit of composition in Eclipse is the OSGi plugin. Each
plugin is a separately loadable software unit. A minimal plugin can
contain nothing but declarative data stored in a manifest file, but most
plugins contain Java code, Java or native libraries, images, scripts, and
other data. A plugin can have no user interface, or optionally it can have
a graphical user interface (GUI) that appears within the IDE
“‘workbench.” It can also contribute menu items or other additions to
customize the GUIs offered by other plugins. As used in SAW, each tool
to be integrated is implemented as one or more plugins. Typically this
small group of plugins — which we loosely refer to as a component -- will
have compile-time dependencies among themselves, but will not
directly depend directly on plugins supporting other tools.

A plugin can depend on and interact explicitly with other plugins, but
ideally plugins interact more abstractly through the use of Eclipse
extension points. An extension point is a declarative (XML) description
of a service that one plugin can offer to another. A plugin satisfies an
extension point by implementing an extension. It is possible to query the
Eclipse framework for all the extensions that implement a particular
extension point. In this way, a consumer of a service (as defined by an
extension point) can do so without compile-time knowledge of any
plugins that provide that service. This means that multiple applications
can be composed by selecting from a set of components, according to
user needs. Each component can discover at runtime the providers or
consumers of any services it involves. Component developers
concentrate on delivering specific services and need not worry about
how those services will be combined.



This architecture based on plugins and extension points allows us to
use a technique called a bridge plugin to allow individual teams to
develop separate but interacting plugins while operating with a great
deal of autonomy and minimizing the need for communication between
groups. A bridge plugin is a plugin A that implements an extension point
declared in a plugin B in terms of the capabilities of a third plugin C. In
this way plugins B and C (which generally interface to different tools
and are created by different development teams) can directly interact
even though the plugins have no interdependencies and the teams
implementing them may in fact be completely unaware of one another.

Our set of components includes wrappers for the SIERRA suite of
analysis codes as well as a few other analysis codes, for the CUBIT
meshing and geometry library (Owen, 2009), the DAKOTA optimization
library (Adams, et al, 2014), and other tools. It also includes
components for general model building, parameter management,
response extraction, data management, requirements management,
remote computational job submission and monitoring, remote
visualization, and more.

Declarative Component Definition. Many of our wrapper components
are quite detailed and contain significant information about an external
tool. While users want to see a GUI that exposes all the capabilities of
the wrapped tool, hard-coding the necessary information (often in the
form of input file syntax) would be both prohibitively expensive and very
fragile as the codes evolve and syntax is added and removed. As a
result, whenever possible we use a data-driven or declarative approach
in which the syntax of a code is described in a data file, and graphical
interfaces are generated at runtime from that description. Besides the
reduction in implementation effort, ancillary benefits include a consistent
appearance of generated GUI panels and easier and more complete
testing and validation.

In some cases the developers of the wrapped code create the syntax
definition file or can maintain it themselves, but in other cases that task
falls to the integration team. It is still often better to use a declarative
approach because changes in the wrapped code are easier to track and
test.

We do not mandate a format for declarative description of input syntax,
but rather try to accommodate formats created by various other
development teams. Most tools use some form of XML. SAW includes
several code generators that are driven by these various formats.

It is often the case that specific features of a code suggest a unique
graphical interface presentation that cannot be specified within a simple



Incorporating Workflow for V&V/UQ in the Sandia Analysis Workbench

general-purpose description format. As way of maximizing both optimal
user presentation and simplicity of the format, we provide escape
mechanisms for these cases in which hand-coded GUI panels can
replace generated ones for specific syntax features. We have found this
to be an optimal compromise between generated and hand coded
GUIs.

Data Management. One central component of the Sandia Analysis
Workbench is the Workbench Server that stores data in a commercial
product data management (PDM) system. Our data management
component (which interfaces to the Workbench Server) provides
versioned storage, maintains relationships between artifacts, and is the
basis for data security. Our data management model stores everything
in a project. A project has an associated team that can access those
files; access can be granted to individuals outside the team using
access control lists integrated with our Laboratory’s directory system.

Our data management system was originally developed for interactive
use, but over time have been interfaced to other tools in the Workbench
including job submission and requirements management; in both cases
the interface to data management adds useful capabilities to the other
tools. All parts of a model and all related resources can be stored in
context in our data management system.

4. Adding a Workflow Engine

A previous section of this paper discussed the value of an IDE for
modelling and simulation, and feel that we have created a capable IDE
for M&S at our organization, to the extent that our collection of
components provides easy access to a range of tools and aids in their
use both singly and in combination. To take the next step we are adding
automated workflows that orchestrate the use of all of our components
in a robust and repeatable way. By doing so we hope to ease the
introduction of more rigorous V&V/UQ into our M&S process as well as
to improve quality and traceability.

To that end, we have begun to map our set of components onto
workflow elements that can be composed into workflows and executed
under the control of a formal workflow engine. In this section we’ll
discuss the capabilities of a workflow engine, discuss our planned
architecture, and describe the current status of our implementation.

Definition of Workflow. If we adopt the definition of an action as
something that can be executed, a process definition as a directed
graph of interconnected actions that need to be performed, and a
process as an actual instantiation of a process definition, then a



workflow engine is just software which can load a process definition and
from it, generate and execute a process. A workflow engine will
generally offer the ability to connect actions in various ways, to force
some actions to wait for the completion of others, and to retry or restart
failed actions. A robust workflow engine will be able to persist the state
of a process and report on it as it runs. Typically a workflow engine will
include ancillary software to assist in creating process definitions, often
in the form of a graphical builder.

Individual actions generally need to communicate: they must
communicate their status with the workflow engine, and often must
communicate data with other actions. In the typical directed graph
illustration of workflow (see Figure 1) it is important to realize that the
edges represent sequencing of actions and do not necessarily
represent data flow. The two kinds of communications (with the engine,
and with other actions) can and often do occur via separate channels.
Communication with the workflow engine is often implicit; an action can
communicate its status simply by completing, as when a launched
program exits.

Process 2 Choice 1

N

Process 1 Decision
> Parallel section
‘ Process 3 Choice 2 /

Failure
Cleanup

Figure 1: A diagram of a simple workflow showing various arrangements of
interconnected nodes, including parallel tasks, branches, and error handlers.
It is important to realize that the edges represent sequencing of actions and
do not necessatrily represent data flow.

Proposed Architecture. Notionally, our proposed architecture for M&S
workflows is simple. Individual existing components within the SAW
framework implement a Java interface defining the characteristics of an
action, including required inputs and outputs. A new workflow
component then makes these actions available to an embedded
workflow engine. The engine executes workflows by invoking the
components as actions, and each component is responsible for
communicating in its own way with any wrapped external tool, launching



Incorporating Workflow for V&V/UQ in the Sandia Analysis Workbench

and monitoring it locally or remotely as required and reporting its status
back to the workflow engine.

The specification of each input and output will of necessity be fairly rich.
In addition to a name, each input and output must have a data type
(integer, character string, JPEG file) and a description of acceptable
communication channels. For example, some tools may accept inputs
via files on disk, others via UNIX pipes, and others by command-line
arguments; some may be able to use more than one channel. Any
information about the specified communication channel to be used by a
process is communicated to the components; it is then up to the
components to establish the channel and transfer the required data.

Process execution should be possible both in a graphical interactive
mode and in a detached mode where the engine runs unattended on a
server. Therefore neither the actions themselves nor the workflow
engine must require the presence of a GUI.

5. Current Status

As the first step in realizing the architecture described in the previous
section, we have embedded a third-party workflow engine into our
framework. At this time we are using Google Sarasvati, although we are
not tied to this product and may change it in the future (other candidates
include Activiti and jBPM). We provide a standard interface for an
action, and currently have several implementations based on existing
plugins in our framework. Our action interface is still evolving as we
gain experience with our implementation.

Currently, we don’t expose a process description editor to the user. Our
process description is generated internally based on a simulation model
as built by the user, and is generally quite simple (see figure 2). There
is a sequence implicit in the combination of codes invoked as part of the
model, and so our process definitions are based around this simple
linear process definition. The main process definition is then augmented
by the addition of response elements added by the user, which are
basically probe calculations that can be attached to other components.



CUBIT Sierra
—
Jacobians Max Energy Max
Displacement

/
\/

Figure 2: A typical process definition generated by our current workflow
component. A simple one- or two- step meshing/simulation workflow is
augmented by the addition of an arbitrary number of “response” elements
(here, computing Jacobians for the mesh and extracting two quantities from
the simulation results) created by the user. These workflows can be run singly
or as part of a parameter study or optimization loop using DAKOTA.

The communication channel type for many of our components is
implicitly file-based. Components in the Workbench marshal files for
their wrapped tools and ensure that appropriate paths are passed from
one action to the next. This works because all of the wrapped tools are
inherently file-based as well.

Our system can run multiple concurrent processes. Because many
actions actually consume little or no local CPU during execution (since
they are merely a wrapper for remote execution of a simulation code,)
this presents so significant problems. However, our complete workflow
system cannot currently be run in a non-graphical mode; it must
execute in the context of an interactive application. This places a
practical limit on the length of time that any one process can run, and
also on the number of concurrent processes that can be executed.

Even given the simple nature of our generated workflows, we are
already seeing some real benefits. It has now become a simple task to
use our DAKOTA component to create and execute a wide range of
sensitivity studies and optimizations that combine parameterized mesh
generation with a solid mechanics, thermal or structural dynamics



Incorporating Workflow for V&V/UQ in the Sandia Analysis Workbench

simulation. Our current implementation provides an excellent laboratory
for testing strategies and techniques for robust execution.

6. Future Work

As previously stated, our workflow system is in its infancy, but is already
producing useful results. Our current work centers on removing many of
the limitations of our existing implementation. For example, we are
adding the ability for users to create custom workflow components, as
well as to build complete workflows of their own design. We are also
working toward a non-graphical host for the workflow actions and
engine.

One significant challenge that lies ahead is scalability to larger and
larger simulations. In the near future (or indeed, even now,) storing
simulation results in serial files will become impractical or impossible.
Our architecture specifically addresses this by abstracting the notion of
a communication channel such that a process description contains only
a specification of the type of channel to be used, and processes
augment that specification with only some channel parameters. It is
expressly not the responsibility of the workflow engine to marshal data
from one action to the next, but only to provide them with the
information needed to communicate. As scalable I/O channels are
created to enable exascale communication between tools, the workflow
action input and output specifications can offer those mechanisms as
options in building a process definition. Our data management system
will also need to use a broader definition of data sets which can account
for “virtual” data sets which represent a link in a dependency or
provenance chain but which are too large to be preserved.

7. References

Adams, B., Ebeida, M., Eldred, M., Jakeman, J., Swiler, L., Stephens,
J., Vigil, D., Wildey, T., Bohnhoff, W., Dalbey, K., Eddy, J., Hu, K,
Bauman, L., and Hough, P., (2014), Dakota, A Multilevel Parallel
Object-Oriented Framework for Design Optimization, Parameter
Estimation, Uncertainty Quantification, and Sensitivity Analysis: Version
6.1 User's Manual, Sandia Technical Report SAND2014-4633.

Allen, N.A., Shaffer, C.A., & Watson, L.T. (2005). Building modeling
tools that support verification, validation, and testing for the domain
expert. Proceedings of the 37th conference on Winter simulation.
Orlando, Florida (pp. 419-426).

Balci, O. (1998). Verification, validation, and testing. In J. Banks (Ed.),
Handbook of simulation (pp. 335-393): John Wiley & Sons.



Balci, O., Nance, R.E., Arthur, J.D., & Ormsby, W.F. (2002). Improving
the model development process: Expanding our horizons in verification,
validation, and accreditation research and practice. Proceedings of the
34th conference on Winter simulation: exploring new frontiers. San
Diego, California (pp. 653-663).

Conwell, C.L., Enright, R., & Stutzman, M.A. (2000). Capability maturity
models support of modeling and simulation verification, validation, and
accreditation. Proceedings of the 32nd conference on Winter
simulation. Orlando, Florida (pp. 819-828).

Owen, S (2009) "CUBIT 10.2 Documentation”, Sandia Technical Report
SAND2006-7156P.

Page, E.H., Canova, B.S., & Tufarolo, J.A. (1997). A case study of
verification, validation, and accreditation for advanced distributed
simulation. ACM Trans. Model. Comput. Simul., 7(3), 393-424. doi:
10.1145/259207.259375

Sargent, R.G. (2013). An introduction to verification and validation of
simulation models. Proceedings of the 2013 Winter Simulation
Conference: Simulation: Making Decisions in a Complex World.
Washington, D.C. (pp. 321-327).

Vegas, S., & V., B. (2005). A characterization schema for software
testing techniques. Empirical Software Engineering, 10(4), 437-466.

Wang, Z. (2013). Selecting verification and validation techniques for
simulation projects: A planning and tailoring strategy. Proceedings of
the 2013 Winter Simulation Conference: Simulation: Making Decisions
in a Complex World. Washington, D.C. (pp. 1233-1244).



