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Project Synopsis
• Overall Project Goal:

– Significantly increase the TRL (Technology 
Readiness Level) of wide area damping control 
systems so that next phase is deployment oriented

– TRL = 2 at start of project (Summer 2013)

– TRL = 6 currently (end of Phase I)

– TRL = 9 planned by end of Phase II

• Primary Phase I Deliverables:
– Constructed and installed a prototype PDCI-based 

damping control system that is being tested and 
validated in the BPA Synchrophasor Laboratory

– Provided analysis and modeling tools to assess the 
capabilities of energy storage for damping control

• Control Design Features:
– Real-time PMU (Phasor Measurement Unit) 

feedback to dampen inter-area oscillations

– Supervisor controller to monitor damping 
effectiveness and enforce “Do No Harm”
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Expected Benefits
Detailed simulation studies have 
demonstrated these benefits:

 Improved system reliability

 Additional contingency in a

stressed system condition

 Potential economic benefits:

• Avoidance of costs from an
oscillation-induced system breakup
(1996 outage costs: > $1B overall 
impact)

• Reduced or postponed need for 
new transmission capacity
(capital cost savings in excess of 
$1M/mile)
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Project Timeline

FY13 FY15

FY15 BPA TI Summit
1-27-2015

Q4
Q1
FY14

Q2 Q3 Q4
Q1
FY15

Q2 Q3

Project Start
7-18-2013

Hardware design review

12-17-2013

Mode shape mapping tool 
delivered
5-8-2014

Prototype controller 
delivered to BPA

9-2-2014

PDCI model code delivered
9-22-2014

I/O data specifications 
document submitted

7-25-2014

Stage gate evaluation 
meeting at BPA

12-19-2014 Revised closed loop testing 
plan to be submitted to 

BPA

Mid Q3 FY15
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Western Interconnect Oscillation Modes
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Benefits of PDCI Damping Control
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Simulation Details

 2013 Heavy Summer base case

 BC-Alberta separation (Cranbrook-Langdon intertie)

 The primary objective is to improve the damping of inter-area modes

 A secondary benefit is voltage support near the terminals of the PDCI
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Project Accomplishments: FY13 - FY15
 Development of prototype hardware 

and real-time software:

• Prototype has been installed and 
operating at BPA Synchrophasor Lab

• Damping control design based on 
real-time PMU feedback

• Supervisor control design to monitor:

– System operation to assure all 
control settings are correct

– Real time stability monitoring

 Damping control strategies 
incorporating energy storage:

• Optimal allocation of distributed 
energy storage for active damping

• PDCI modulation augmented with 
energy storage to mitigate E-W mode
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Project Accomplishments: FY13 – FY15
• Award:

Dan Trudnowski, Dmitry Kosterev, and John Undrill
“PDCI Damping Control Analysis for the Western North 
American Power System,” Proceedings of the 2013 
IEEE Power & Energy Society General Meeting
awarded as one of four “Best of the Best” papers 

• Publications:

– 2013 & 2014 IEEE Power and Energy Society General 
Meeting (PESGM)

– 2013 Electrical Energy Storage Application and 
Technology (EESAT)

• DOE Program Reviews:

– Highly rated by DOE-OE Transmission Reliability 
Program internal review meeting – June 2014

– Strong support from DOE-OE Energy Storage 
Program peer review meeting – Sept 2014
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Technology Transfer/Application to BPA
 BPA end user is Transmission Operations

• Delivered prototype control system to BPA PMU Lab

• Submitted PDCI I/O requests to ABB for Celilo upgrade

• Rack space has been allocated for damping controller

• Ensuring hardware compatibility for transition to Celilo

• Closed loop testing plan in review (phased testing)

• I/O data specifications document submitted FY14

• Hardware architecture diagrams and wiring schematics 
delivered for FY14 prototype hardware design review

 Analysis, modeling, and simulation capabilities

• PDCI Probe testing analysis reports

• Revised mapping software delivered May 2014

• Open loop testing of prototype controller began in late 
FY14 with regular briefings on performance analysis

• Report summarizing options for BPA feedback signals 
delivered in January 2015

• Characterization of PMU latencies and data quality

• PDCI model (in PSLF)

• PSLF simulation studies

• Tools for oscillatory mode analysis (Prony method, 
Eigensystem Realization Algorithm – ERA)

• Simplified models to study distributed damping schemes 10
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Damping Control Strategy
Control Objectives:

– Dampen all modes of interest for all 
operating conditions without 
destabilizing peripheral modes

– Do NOT worsen transient stability

(first swing) of the system

– Do NOT interact with
frequency regulation
(e.g. speed governors)

Feedback control signal
should be proportional to
the frequency difference
between two areas
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PDCI Modulation:
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Supervisor Control Design Philosophy
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Design was driven by the need to detect and respond to certain 
system conditions in real-time as well as asynchronous 

monitoring functions at slower than real time
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Open Loop Testing of Prototype 
 Continuously operating (24/7) since mid-October 2014 in BPA Synchrophasor Lab

 Acquires live PMU data from multiple sites (e.g. John Day, Big Eddy, Malin)

 Constructs real-time feedback control signal from acquired data

 Control signal is not sent to PDCI (goes to log file for analysis)

 System event: morning of November 4th, 2014

• An apparent generation outage led to a 120mHz decline in system frequency 
(moderate inter-area deviation = 18mHz).

• Control system performance is precisely as expected
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Project Direction/Next Steps

• Phase II of project will transition from proof-of-concept to
deployment: TRL = 6 → TRL = 9

– Draft of Phase II statement of work is being iterated upon by 
BPA and SNL/MTU (includes closed loop testing plan)

– Phase II is proposed as a 2 year project: FY2016 – FY2017

• Analysis of open loop testing

• Refinement of control system based on above

• Assess PMU data quality and latency issues

• Resolve hardware issues for transition to Celilo

• Address cyber security issues for closed loop testing
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PDCI Probing Tests
 Probing signal added to PDCI reference

• Over 100 tests conducted since start of project
• In 2014, 36 tests conducted

– Includes 4 high-freq probe tests

 Testing benefits
• Monitor western interconnect dynamics
• Damping control data and testing

– Evaluate control-system robustness
– Compare to model-based studies
– Test PDCI performance

 What we’ve learned
• Why control didn’t work in 1970s
• New theory supported by tests
• Candidate Feedback Signals

– JohnDay – Malin
– JohnDay – Sylmar
– ChiefJoe – Malin

• Feedback gain of 5 to 10 MW/mHz will provide 
SIGNIFICANT damping

• PDCI has adequate bandwidth
• Optimal design of feedback filter
• We need to further test and fine-tune PMUs
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PDCI Bandwidth Testing

 PDCI bandwidth well above 10 Hz

 Delay is constant and about 25 msec

 Gain is linear and “flat”

 PDCI system upgrade

• Includes injection point for damping 
controller

• Signal communication compatible with 
damping controller
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Candidate Feedback Signals
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Conclusions

 Theory  working prototype < 2 years

 Transition to deployment well underway

 Demonstrated success in implementation issues

18

 Likelihood of continued success is very promising

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Additional Slides
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Control System Overview
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State Machine Architecture
 Supervisor incorporates a state machine to enable the control system to 

transition smoothly between modes of operation.

 Ensures the system starts up, shuts down, and reinitializes safely.
Init: Set initial values to ensure a flat-start condition

Prime: Play data through the calculations while holding the command signal to zero

Standby: Compute the commanded power, but ground the controller output

Normal: Update the command signal as dictated by the control scheme

Shutdown: Ground the controller output and wait for further instructions
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Watchdog Circuit
 The watchdog circuit monitors the 

following:

• Emergency Stop button on the chassis

• Supervisory controller watchdog circuit

• Real-time controller watchdog circuit

 The overriding design philosophy 
was to make the circuit “failsafe” –
failure of any component would 
safely disconnect the control system

 Bumpless transfer describes the 
seamless transition between modes 
of operation

 Ensures that the controller never 
injects a step function into the 
system

 Additionally ensures smooth start-up 
and re-initialization procedures
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Energy Storage Based Damping Control

23

 A Structured Control Algorithm (SCA) is under development for 
designing damping controls using distributed energy storage 

• Distributed damping provides improved controllability of multiple modes

• Mode shapes may be specified or prioritized through control design

• Example – Algorithm provides selective damping of East-West Mode
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Addition of energy storage reduces amplitude of East-West A mode

Three Node Damping Control Scheme: PDCI 
augmented with Energy Storage
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