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Inertial sensing with atom
interferometers
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Light-pulse atom interferometry [
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Building a fringe, one atom at a time ) e
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Light-pulse atom interferometry [
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Force resolution of a single atom interferometer  (rh) i
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Rotation Measurement ) i,
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Ensemble Exchange ) i,

Laboratories




Dueling interferometers ) e
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LAUNCH AND RECAPTURE @i,




LAUNCH AND RECAPTURE @i
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CCD images of ensemble exchange

0.0
&
Steady state atom number: 0.4 S
O
Oé?]TC =

B — e

Ns = BT. + (1 —rg)

Base recapture efficiency r, =96 %

Time (ms)
Jajowolauau|

< — O —
2
* Increases signal by 10x g
e  Minimizes cycle dead time
. I I | I I
* Reduced complexity 0 1 2 3 4

Distance (cm)




EXPERIMENT PLATFORM )
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Picture of interferometer sensor

Trapping Coils




ENSEMBLE EXCHANGE TECHNIQU E &
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* Dynamic aspects of Ensemble Exchange characterized in previous work
* Robust to rotations, tilts and displacements
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t=0ms

t=10ms

Significant detuning develops over 10 ms
due to gravitationally-driven Doppler shift
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TECHNICAL CHALLENGE

Controlling frequency and phase in a dynamic environment

Raman laser frequency scan
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Small changes in acceleration or rotation
during one interferometer cycle cause

phase slip



Rotation rate limit )
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Sensor on rotation stage
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Solutions: 3D readout or ultra-short T




Exploring ultra-short T )

= Want a small, low-power, low-
cost atomic accelerometer

= Warm vapor approach has
historically made excellent gyros,
clocks and magnetometers.

= What about accelerometers?

Sandia atom interferometer
* Laser cooled ensemble

* >1,000,000 cc Symmetricom SA.45s CSAC
* Warm vapor ensemble
e 17cc




Warm vapor concept ) e,
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= Using the Doppler sensitivity of Raman transitions, and ultra-short duration atom
interferometry, LPAI is possible in a warm vapor

» The challenge: Target atom shot noise limit on 108 atoms
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Rot. Detector B

DOE: beam shaping and
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Motivation: potentially highly compact and simplified. Conceptual diagram
(not to scale) of a 2-axis atomic sensor.




Basic Idea )
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Analyze in momentum space
* each atom interferes with itself
* Non-ideal paths do not contribute

to fringe

Result of Raman transition used for LPAI

K. Moler, et al., Phys. Rev. A, 45, 342 (1992)

A¢ = ke - (g — 2v x Q)T?




Basic Idea 7 i
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Basic Idea
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. F=1 MB distribution with laser fields
* use detuning 0 to drive and probe nonzero
velocity class
* Width set by Rabi frequency




Basic Idea 7 i
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State preparation ) i

Laboratories

To eliminate background signal, must depump all velocity classes

In-house coating development

Tris(N,N-dimethylamino)octadecylsilane
measured: T = 23 ms hyperfine state lifetime

Trajectory simulation
= 200 bounces
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The experiment
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New possibilities ) .

Common mode noise rejection

AD =k ¢ aT?

Simultaneous interferometers
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Wavepacket overlap in a “warm” vapor @i
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The contrast, %(0T), is given by

2 2
X(0T) =exp (— o ! )

2
8x:

where v, is the recoil velocity (11.8 mm/s)

and x, is the average coherence length x,
=0.81(3) nm. 0018

This corresponds to a temperature of
1.44(6) mK

Contrast [arb.]

Consistent with a Doppler width of 0.95(4) MHz
Note: Rabi frequency is 1.61 MHz




Wavepacket overlap in a “warm” vapor (@i
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F=1 (mesh)
The contrast, %(0T), is given by

2¢T2
X(0T) = exp (—ﬂ>

2
8x:

= —
where v, is the recoil velocity (11.8 mm/s) kv, =8

and x, is the average coherence length x,
=0.81(3) nm. 0018

+ data

This corresponds to a temperature of
1.44(6) mK

Contrast [arb.]

Consistent with a Doppler width of 0.95(4) MHz
Note: Rabi frequency is 1.61 MHz




Results 3 iz,
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10.4 mg/VHz
0.035 rad/shot

« data

atom number [106]
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phase [r radians]

Measured:
e without CMR: 40 mg/VHz
e With CMR: 10.4 mg/VHz

Atom shot noise: 3.1 mg/VHz
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