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v Pyroprocessing: A Hot Mess

Pyroprocessing is a promising technology to electrochemically
recycle spent nuclear fuel.
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# Motivation: Recycling LiCl-KCL Molten Salts @

= The accumulation of waste products (e.g., fission products,
transuranics, etc.) in KCI-LiCl molten salt can impact the
electrorefining process.

» Changes in ionic conductivity (impacts efficiency of uranium ion
transport)

= Changes in eutectic melt properties
= Removing waste products from the salt:
= Key to recycling high conductivity salt electrolytes

= Stands to significantly reduce waste volume (reduction of HLW)

= There are significant environmental and cost benefits to
removing “short-lived” hot fission products such as Sr and Cs.



' Current Salt Recovery/Disposal Approaches @

Current approaches to removal of fission product waste includes
extraction with zeolites or consolidation through zone freezing.
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An Electrochemical Approach @

2CI' " ClL+2e Cl,+2e' " 2CI

This electrochemical approach uses ion-selective ceramics as “filters” to isolate and
concentrate contaminant ions such as Cs* in LiCI-KCl eutectic molten salts.



Advantages of the Electrochemical @
Approach

;,'

e Potentially compatible with existing electrochemical
materials setup.

* Electrochemical process allows high degree of

control over degree of purification.
* In-situ quantification of contaminant concentration
* Control heat load in final waste form

* Not expected to require changes to current waste
stream.



Ceramics are Key! (h)

;'

= Critical Ceramic Criteria:

= High Li* and K* conductivity
= Selectivity against Cs* transport

= Chemical, electrochemical, and structural stability in
molten LiCl-KCl

= Temperature stability (> 500°C)

= Radiation resistant



Candidate Ceramics (i)

;’

= “NaSICONs” — Super lon CONductors (e.g., KSICON:
KZr,P;0,,)

= Lattice is chemically, structurally flexible

= High Na* conductivity ~10“S/cm at room temperature
(modified versions as high as 10-3) in NaSICON

= Expected to be stable against molten salts

= Designed to facilitate Li* and K* transport
= LLTO — Garnet structured Lithium Lanthanum
Tantalates (LisLa;Ta,0,, and Li;Bala,Ta,0,,)
=  Chemically flexible lattice

= Favors Li*-transport; conductivity (~10>-104S/cm) at
room temperature
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Viv A Technical Complication (i)

Chlorine chemistry at 500°C poses significant materials compatibility
(and human compatibility) challenges...

2CI' " ClL+2e Cl,+2e' " 2CI

Through proper materials engineering, these problems are addressable, but an
safer variant of the process was desirable. ?



A Safer Alternative (h)

Pellet stacks that use copper
oxidation/reduction for charge balance.

Excess chloride at the anode is
compensated by Cu dissolution
(oxidation).

Excess positive charge at
cathode (from Li*, K*) are
compensated by Cu?* reduction
from CuCl..
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‘ ' Pellet Testing materials/configuration @

Borrowing from thermal battery technologies at SNL allowed for ready testing of
the “pellet stack” configuration.
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ﬁ‘ Initial Galvanostatic Discharges @

Galvanostatic discharge at 100mA/cm? shows effective charge
transport with minimal overpotential.
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"=, @ Macroscopic Material Transport during @
Discharge

SainiessSteel Examination of discharged cells

U0 > Cutt+ 26 reveals significant mass transfer,
evidenced by Cu dissolution and
deposition.
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"=, @ Macroscopic Material Transport during
i: Discharge
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e
i’”Qualitative” lonic Selectivity (/)

Energy dispersive x-ray (EDXS) analysis of molten salts post—d/scharge
reveals effective Cs*ion “filtration.”
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#Quantitative lonic Selectivity (dh)

Elemental Analysis (ICP) shows negligible Cs in cathodic molten salt after
galvanostatic discharge.

Elemental concentrations

dissolved in deonized water (ppm) Stainless Steel
LBLTO Li K Cs
Anode (Cs-Li-K-Cl) 630 2600 660

Cathode (Cu-Li-K-Cl) 740 2700 @

KSICON Li K GCs
Anode (Cs-Li-K-Cl) 960 3800 860
Cathode (Cu-Li-K-Cl) 440 2000 (3)

16



i

e
i‘ Trans-ceramic lon Transport (!I:'l)

Elemental Analysis (ICP) also reveals which ionic species move
preferentially through the ceramic separators.
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¥ AVolumetric Variation ()

To make this process viable for larger scale purification, a modified
purification scheme is needed...
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" Volumetric Reactor Design ()

Volumetric reactions require an air-free environment, a reactor capable of
heating separated salt volumes to 500°C and a system to electrochemically
drive and interrogate the system.
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AN Engineering Solution (i)

Using Swagelok VCR fittings, we could create a volumetric reactor
design using ceramic pellets!

Cu Cathode

Cathodic Salt

316 Stainless Steel (CuCl,-LiCI-KCl)

Swagelok® -1

VCR Gland
Insulating
alumina
sheath
Copper Sealing
Gasket
lon Conducting 316 Stainless Steel
Ceramic Swagelok® ¥5-1”
VCR Nut
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‘ An Assembled Volumetric Reactor @

Alumina-beaded
Steel Container Cu Anode

Alumina
Crucible

Anodic salt
(LiCl-KCI-
CsCl)
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‘ Characterizing Volumetric Purification @

Using potentialstatic discharge this time, Elemental Analysis of anodic and
significant current passing through the LLTO cathodic salts shows K* and Li* (Li*
ceramic was observed. not shown) transport, but no

significant Cs* transport.
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Vil ¥ cathodic Copper Deposition (/)

Before Discharge After Discharge
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v Key Points (h)

If you remember nothing else...

Electrochemical isolation of contaminant waste from eutectic molten salts is feasible using
ceramic ion conductors.

If you remember a little more...

» Selective ion transport through LLTO-based and NaSICON-based ceramics allowed
concentration of Cs* out of contaminated LiCI-KC| waste

e Although charge balance would ideally be achieved through reduction and oxidation of
chlorine and chloride, copper served as a suitable substitute for proof of principle.

* This process was demonstrated using “pellet stacks,” but more significantly, it was
demonstrated in volumetric scale with VCR reactors.

e This approach offers a potentially new way to recycle and consolidate molten salt waste

generated by pyroprocessing
* Potentially compatible with existing electrochemistry and waste streams
e Highly controllable process allowing regulation of contaminant concentration and

subsequent heat load.
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