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. Turf algal biomass for fuels offers significant

benefits over raceway monoculture systems
Algae Turf Scrubber Algae Raceway

NBT — Eilat, Israel

Hydromenti — Vero Beach, Florida

® 2« Polyculture — resilient to crashes * Monoculture — vulnerable
. Growth: 20+ g/m?/day annual »  Growth — 2 to15 g/m?/day
. No added nutrients or external CO, * Fertilizer and external CO,
. Harvesting & dewater — simple * Harvesting & dewater more

difficult & energy-intensive
Lipid focus (historice I) ‘

« Biomass focus - low neutral lipids
« Similarities with open field agriculture °
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Algal Turf to Fuels (ATF) - Overview
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Key Points

Algal Turf to Fuels offers raceway alternative to overcome key barriers
— Pond crashes — Cultivation resiliency
— Expensive harvesting & dewatering (centrifuges, etc.)

— Costly CO, addition &/or co-location w/ industrial source (eg, power plant)
— Fertilizer / nutrient costs

Turf algae pioneered by Walter Adey in 1980s and commercialized by
HydroMentia for water treatment

Robust algae production 20-30 tons act yr -1 AFDW (15-20+ g m=2 d?)
demonstrated 10+ years of operation
Conversion of total algae biomass to fuels and bioproducts is key

— HTL conversion to crude oll

— Biochemical conversion of carbohydrates and proteins to
alcohols/hydrocarbons and/or other bioproduct feedstocks

« Maximize product yields
* Recycle nutrients as ammonium and phosphates

« Reduce nitrogen in biomass residue & subsequent HTL crude oil.




Advantages of benthic algal
polyculture turf for biofuels

« Simple cultivation system configuration - more like open
fleld ag

— Utilizes pulsed, shallow, turbulent flow with excellent solar insolation exposure and
gaseous exchange with atmosphere

— Stable, diversified cultivation ... extremely resilient and resistant to crashes
— Years of commercial experience w/ multi-acre systems for water cleaning

« One-pass operation (typically used for water cleaning)
— Annual average AFDW biomass production of 15 -to- >20 g m2 d+!
— No engineered addition of CO, or nutrients required under single-pass operation
— System improvement potential for 25 to 235 g m2 d-* AFDW productivity
— Recycle system operation can expand sustainable deployment opportunities

- Ease of scale-up and low-energy harvesting/dewatering
— Scale up to larger acreage simple matter of duplication of multi-acre “field” modules
— Simple mechanical harvesting approaches consistent w/ ag operations
— Immediately provides 8% to >15% solids content wet biomass
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~  Sample of Benthic Algal Polyculture Turf
System Diversity over Multi-Year Period

Normalized plots .
of dominant 15-20 - : N ==
species found Sieaad B e
provided courtesy
of Walter Adey?

<
?

1 Data and analysis from:
Haywood Dail Laughinghouse 1V,
“Studies of Periphytic Algae on Algal Turf
—-_ Scrubbers® Along the Chesapeake Bay -
= Community Structure, Systematics, and
" Influencing Factors”, PhD Thesis, U. of
' MD - College Park, 2012.
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Challenges with algal turf biomass
processing & conversion to fuels

Low neutral lipid content (< 10%)
— high in protein and carbohydrates

High ash content (~ 30-50+%) in raw harvested material

seen with current systems (not optimized for reduced ash)
— Ash is combination of biogenic and exogenous environmental material
— Improvement possible with cultivation and harvesting systems & ops
— Dilute acid pre-treatment & separation provides ash reduction

Heterogeneous polyculture biomass characteristics

— Dynamically changes with season, water source chemistry
— Provides robust and resilient culture immune to “crashes”

HTL biocrude can have high nitrogen content (~5+%)
— Biochem pretreatment of proteins can reduce and recycle nitrogen
— Resulting HTL biocrude from residue has N-content <1%

Preliminary TEA looks promising for achieving cost-

effective biofuels at large scale




Algal turf biomass characterization*

* Systems non-optimized for increased AFDW biomass w/ reduced ash

« Variable composition: dependent
on water source, climate, season

« Composed of multiple phylogenetic groups:
dominant clades include chlorophyta,
diatoms, and cyanobacteria

* Low lipid content

« Biogenic and non-biogenic ash content

« System not optimized for ash reduction

Total harvest

A lipid
B carbs

Oproteins
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Processing & Recycling Pathways

Whole biomass to HTL option

Nutrient-loaded

Upgrading to

Water & Sunlight Mixed
Alcohols & Low-N hydrocarbon
Neutral Lipids | Organic fuels

e |
P —

T Residue
Benthic Dilute Protein / Carb l T
Polyculture =» "Y€ Lyl Fermentation —=» HTL > Biocrude
. 1 Acid P/T .. . w/ lower N-
Biomass & Distillation
A A ‘ content
Non-soluble Ash 1 L(:)”S?\r’ggg
Separat|0n Nut”ent ASh &. ReS|dual prOteinI
N&P Recovery Carbon (Char) ~ "*™°*
3 (Struvite) | o
< z SNL process patent applications
E g With multi-pass Water on fuel intermediate production
Z 8 recycle operations Recovery from algae and nutrient recycling
< =
V)m 1 Benthic algal polyculture turf will also include entrained planktonic species




Biomass pretreatment:
ash removal, solubilization, and hydrolysis

* Dilute acid and enzymatic treatments Native biomass Pretreated residuals
are each effective for separating ash e biogenic SiO, (frustules)?

» Dilute acid is effective for solubilizing RS
the protein and carb fractions, and
carb hydrolysis, but additional
enzymatic treatment is necessary for
protein hydrolysis

» Large fraction of biogenic ash

o Ash separation Solubilization and hydrolysis
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Carbohydrate Profile Data*

* Based on algal turf sample from HydroMentia

Bfucose

B oalactose
Oelucose
B xylose

A mannose

O mannitol
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Biochemical conversion:
sugar & protein fermentation

« Sugar fermentation strain: Zymomonas sp.

_— . 4.00
for utilization of C5 and C6 sugars Phenyiethano
. Protein fermentation strain: E.coli YH83 :3'50: et
= 3.00 isohutanal
. . . -]
for conversion of amino acids to >C2 5 250
2
alcohols + NH,, developed by collaborator =%
) ] © 150 -
Liao & coworkers (Huo Nat. Biotech 2011)  §
Amino /‘;e:o ------ F-U;S--\\\ Chemicals <
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“:Zt i Qr I15-:rop‘|anol i [Acetiﬂy : ] o dII aCId 100
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< S« 70% of theoretical protein conversion
™

achieved with bench scale testing




Thermochemical conversion:
Un-optimized HTL gives >40% biocrude yields

* 44% biocrude achieved .
« Cin aqueous co-product/solids can potentially be ?n:f
recovered to increase this yield o 15% volatiles
- Gas composition mostly NH,, CO, and some CH, PP inash
* Solids yield is mixture of oil and char; char TBD s

o 200 400 &00 300

Temperature / [°C]

Carbon Nitrogen
partitioning partitioning

3% Biocrude N
30% content: 4.5%
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Thermochemical conversion:
Un-optimized residue HTL reduces N by > 80%

22% biocrude achieved from residue, process unoptimized

C in aqueous co-product and solids can be recovered to increase this yield
Higher content ash likely changing heat/mass transfer profiles and affecting yield
High heating value of 38.7 MJ/kg compared . (Typical upgraded HTL oil 46 MJ/Kg
versus 45 MJ/kg gasoline*)

Carbon Nitrogen
partitioning partitioning

2% Biocrude N
33% content: 0.89%
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Based on wet biomass w/ 10% SOLIDS
DOI: 10.1016/j.algal.2013.07.003
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Comparative Estimates of Biofuel Yield

Incorporating Different Algal Biomass Productivity & Composition

ATF estimate of

~ 2500 - 3000 GGE/acrelyr

/v/ current un-optimized

nology and productivity

*

ATP3

Cultivation method

HPA

W protein (mixed alcohals)

B |ipid

B carbohydrate

B other organics

#* crude oil from
HTL processing
of total biomass



Foundational TEA Assumptions*

* Using HTL/CHG + Hydroprocessing
performance based on PNNL 2014 report

Algal Turf Hydro-
Platform processing

« Economic Assumptions
— Similar to process design case studies by NREL & PNNL

Input Value
Equity 40%
Loan Interest Rate 8%
Loan Term 10 yrs
Internal Rate of Return 10%
- Income Tax Rate 35%

S % Plént L.|fe 30 yrs

a3 Build Time 3yrs

Z 8 Annual Fuel Production 46 Mgal

C;t)a ATS Cultivation Acreage 15000 acres
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Core Process Assumptions

for current non-optimized ash content case

ATS Growth
Growth Rate (aArbw) 20 g m2 d-l
Pumping Duty Cycle 14 hr d?

Pumping n 67%
Pumping Head 4m
ATS Length 152 m
Biomass (AFbw) Flow 1340 ton d-1
Capital Cost $10 m2
Harvest
Harvest Density 20% solids
Ash Content 50%
Harvest Frequency 7 days
Operation Cost $0.23 m2yrt
Capital Cost $0.35 m

HTL/CHG Processing

NG Energy 3.7 M-MJ d-!

Electrical Energy 120 MWh d+

Capital Cost $183 M

Oil Yield 47%

Aqueous Yield 40%

Ash Content 50%

Gas 3%
Hydrotreating

Fuel Yield 78%

Capital Costs $69 M

Processing Capacity 153 kgal d?

Diesel Yield 83%

Naphtha Yield 17%

e IUI. ST OT T EOTatU| 1CS



Results for HTL processing of raw algal
turf biomass from current systems*

* High ash content (50%) biomass to HTL processing

Total Cost: 8.54 $/gal (GGE) m Captial Costs

Operation Costs
|
$2.59

Operation Cost: S/gal Fuel

W Tax

B

Capital Cost: S/gal Fuel

B Power
Requirements

M HTL Cost of m ATS Growth
Supplies |S_|ystem
™ Fuel For Harvesting W Rarvest
W HTL

B Pumping Costs

B Hydrotreating

W Labor for
ATS/Harvesting
Labor for HTL
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Sensitivity Analysis

Current Non-optimzed Case*
*High ash content (50%) biomass to HTL processing

Growth Rate

Capital ATS Liner Costs

Capital HTL Costs

Pump Head

Capital Hydrotreating Costs

Cost of Diesel for Harvesting

Capital Earthworks & Piping Costs

Capital Harvest Costs

$7.40

Model Inputs Sensitivity Analysis

$7.70  $8.00  $8.30  $8.60  $8.90

$/gal

$9.20  $9.50  $9.80 $10.10

B +20% Baseline B -20% Baseline

() Sondia National taboratries



Results for HTL processing of improved

(lower ash content) algal turf biomass*
* Lower ash content (13%) biomass to HTL processing
Total Cost: 6.57 $/gal (GGE) g coptial Costs

Operation Costs
|
$1.69

Operation Cost: S/gal Fuel

W Tax

B

Capital Cost: S/gal Fuel

B Power
Requirements

$0.01 So.o|4

M HTL Cost of m ATS Growth
Supplies |S_|ystem
™ Fuel For Harvesting W Rarvest
W HTL

B Pumping Costs
B Hydrotreating
W Labor for
ATS/Harvesting
= Labor for HTL
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Sensitivity Analysis
Improved Lower Ash Content Case*
* Lower ash content (13%) biomass to HTL processing

Model Inputs Sensitivity Analysis

Capital ATS Liner Costs ]
Capital HTL Costs B
Pump Head ..

Capital Hydrotreating Costs ..
Cost of Diesel for Harvesting II
Capital Earthworks & Piping Costs II
m Capital Harvest Costs II
Q
ﬂ E] $5.50 $5.70 $5.90 $6.10 $6.30 $6.50 $6.70 $6.90 $7.10 $7.30 $7.50 $7.70
= 1
Qo $/ga
Z & B +20% Baseline B -20% Baseline
<
7)) () s Notona Laboratores.




Example Path to ~$3 per GGE

Reduce ash content to <13% (Improved case)

— Reduced ash in raw cultivated & harvested material (systems & ops)
— Ash reduction via pre-processing prior to conversion processing

Increase in annual growth rate to 30 g/m?/day (AFDW)
10% Decrease in Capital Costs
Subsidies at 2x Fertilizer Costs (environmental service)

Results in estimated cost of $3.07/gal
_ Cost Breakdown - 3.07 $/gal

H Capital
Costs

B Operation
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Biofuel Cost Comparison

(GGE) to Past Studies

®PBR

== Improved , lower ash content algal turf feedstock

— Current non-optimized algal turf feedstock
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Scale-up Feasibility TEA
... Next Steps in Progress

Include biochemical processing pathways

— Protein &/or carb conversion to sugars, mixed alcohols, other
compounds that provide fuel intermediates and blend stock

— Feedstock for higher-value products

HTL/CHG + Hydroprocessing on residue

Integration of nutrient recycling processes

— Production of fungible fertilizer material for other markets
— Recycling to support upstream algal cultivation

Cost trade-offs of processing & products paths

<2 * Environmental credits for water clean-up

a § — Co-service income stream to offset fuel & bioproduct costs
<Z’:c% — With point source WW and non-point source water bodies
N
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Conclusions

« Benthic algal turf polyculture assemblages offer a promising
alternative approach to algal biofuels

« Polyculture algal turf systems have demonstrated long-term
(multi-year) culture stability at large scales with relatively high
annual average biomass productivities (~15-20 g m= d-1) w/
low energy-intensity harvesting & dewatering

— Based on the use of systems focused on efficient water cleaning
... hot yet optimized for biomass production and ash reduction
— Without the need for supplemental CO, or commercial nutrients (N, P)

— Significant opportunities for improvement for high productivity of lower-
ash content biomass

* Preliminary (rough) estimates show potential for 21 BGY U.S.
biofuel production using nutrients & CO, from non-pt. sources

— Using single-pass operation ... greater potential with recycle operation

Initial/Preliminary TEA performance looks promising
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Future work includes LCA and resource assessment =«
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Thank you! - Questions?

Ron Pate, SNL/NM 505-844-3043 rcpate@sandia.gov
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