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• Polyculture – resilient to crashes 

• Growth:  20+ g/m2/day annual 

• No added nutrients or external CO2 

• Harvesting & dewater – simple 

• Biomass focus - low neutral lipids 

• Similarities with open field agriculture 

NBT – Eilat, Israel 

VS 

• Monoculture – vulnerable  

• Growth – 2 to15 g/m2/day 

• Fertilizer and external CO2 

• Harvesting & dewater more 

difficult & energy-intensive 

• Lipid focus (historical) 

Algae Turf Scrubber 

Hydromentia – Vero Beach, Florida 

Algae Raceway 

Turf algal biomass for fuels offers significant 

benefits over raceway monoculture systems 



Algal Turf to Fuels (ATF) - Overview 
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Key Points 

• Algal Turf to Fuels offers raceway alternative to overcome key barriers 

– Pond crashes – Cultivation resiliency 

– Expensive harvesting & dewatering (centrifuges, etc.) 

– Costly CO2 addition &/or co-location w/ industrial source (eg, power plant) 

– Fertilizer / nutrient costs 

• Turf algae pioneered by Walter Adey in 1980s and commercialized by 

HydroMentia for water treatment 

• Robust algae production 20-30 tons ac-1 yr -1 AFDW (15-20+ g m-2 d-1) 

demonstrated 10+ years of operation 

• Conversion of total algae biomass to fuels and bioproducts is key 

– HTL conversion to crude oil 

– Biochemical conversion of carbohydrates and proteins to 

alcohols/hydrocarbons and/or other bioproduct feedstocks 

• Maximize product yields 

• Recycle nutrients as ammonium and phosphates 

• Reduce nitrogen in biomass  residue & subsequent HTL crude oil. 



Advantages of benthic algal  

polyculture turf for biofuels 

• Simple cultivation system configuration - more like open 

field ag 
– Utilizes pulsed, shallow, turbulent flow with excellent solar insolation exposure and 

gaseous exchange with atmosphere 

– Stable, diversified cultivation … extremely resilient and resistant to crashes 

– Years of commercial experience w/ multi-acre systems for water cleaning 

• One-pass operation (typically used for water cleaning) 
– Annual average AFDW biomass production of 15 -to- 20 g m-2 d-1  

– No engineered addition of CO2 or nutrients required under single-pass operation 

– System improvement potential for 25 to ≥35 g m-2 d-1 AFDW productivity 

– Recycle system operation can expand sustainable deployment opportunities  

• Ease of scale-up and low-energy harvesting/dewatering 
– Scale up to larger acreage simple matter of duplication of multi-acre “field” modules 

– Simple mechanical harvesting approaches consistent w/ ag operations 

– Immediately provides 8% to 15% solids content wet biomass 

 



Sample of Benthic Algal Polyculture Turf  

System Diversity over Multi-Year Period 

Normalized plots 

of dominant 15-20 

species found 

provided courtesy 

of Walter Adey1 

1 Data and analysis from: 

Haywood Dail Laughinghouse IV, 

“Studies of Periphytic Algae on Algal Turf 

Scrubbers Along the Chesapeake Bay - 

Community Structure, Systematics, and 

Influencing Factors”, PhD Thesis, U. of 

MD – College Park, 2012. 



Challenges with algal turf biomass  

processing & conversion to fuels 

• Low neutral lipid content ( 10%) 
– high in protein and carbohydrates 

• High ash content (~ 30-50+%) in raw harvested material 

seen with current systems (not optimized for reduced ash) 
– Ash is combination of biogenic and exogenous environmental material 

– Improvement possible with cultivation and harvesting systems & ops 

– Dilute acid pre-treatment & separation provides ash reduction  

• Heterogeneous polyculture biomass characteristics  
– Dynamically changes with season, water source chemistry 

– Provides robust and resilient culture immune to “crashes” 

• HTL biocrude can have high nitrogen content (5+%) 
– Biochem pretreatment of proteins can reduce and recycle nitrogen 

– Resulting HTL biocrude from residue has N-content 1% 

• Preliminary TEA looks promising for achieving cost-

effective biofuels at large scale 



Algal turf biomass characterization* 
* Systems non-optimized for increased AFDW biomass w/ reduced ash 

Total harvest 
Ash 

• Variable composition: dependent 

     on water source, climate, season 

• Composed of multiple phylogenetic groups:  

     dominant clades include chlorophyta,  

     diatoms, and cyanobacteria 

• Low lipid content 

• Biogenic and non-biogenic ash content 

• System not optimized for ash reduction  
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Processing & Recycling Pathways   
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Biomass pretreatment:  
ash removal, solubilization, and hydrolysis 

  Native biomass           Pretreated residuals  

biogenic SiO2 (frustules)? 

• Dilute acid and enzymatic treatments 

      are each effective for separating ash 

•  Dilute acid is effective for solubilizing 

      the protein and carb fractions, and 

      carb hydrolysis, but additional  

      enzymatic treatment is necessary for  

      protein hydrolysis 

•  Large fraction of biogenic ash 

Ash separation Solubilization and hydrolysis  



Carbohydrate Profile Data* 
* Based on algal turf sample from HydroMentia 



Biochemical conversion: 
sugar & protein fermentation 

• Sugar fermentation strain: Zymomonas sp. 

      for utilization of C5 and C6 sugars  

• Protein fermentation strain: E.coli YH83 

      for conversion of amino acids to >C2   

      alcohols + NH4, developed by collaborator     

      Liao & coworkers (Huo Nat. Biotech 2011) 

  

 

 

 

 

 

 

 

 

 

• 70% of theoretical protein conversion 

achieved with bench scale testing 

  

dil. acid 

dil. acid  

+ enzyme 



Thermochemical conversion: 
Un-optimized HTL gives >40% biocrude yields 

 

• 44% biocrude achieved  

• C in aqueous co-product/solids can potentially be 

recovered to increase this yield 

• Gas composition mostly NH3, CO2 and some CH4 

• Solids yield is mixture of oil and char; char TBD 
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Thermochemical conversion: 
Un-optimized residue HTL reduces N by > 80% 

 

• 22% biocrude achieved from residue, process  unoptimized 

• C in aqueous co-product and solids can be recovered to increase this yield 

• Higher content ash likely changing heat/mass transfer profiles and affecting yield 

• High heating value of 38.7 MJ/kg compared . (Typical upgraded HTL oil 46 MJ/Kg 

versus 45 MJ/kg gasoline*) 
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DOI: 10.1016/j.algal.2013.07.003 



Comparative Estimates of Biofuel Yield  
Incorporating Different Algal Biomass Productivity & Composition 

ATF estimate of  

~ 2500 - 3000 GGE/acre/yr 

w/ current un-optimized 

technology and productivity 



Foundational TEA Assumptions* 
* Using HTL/CHG + Hydroprocessing  

performance based on PNNL 2014 report 

Input Value 

Equity 40% 

Loan Interest Rate 8% 

Loan Term 10 yrs 

Internal Rate of Return 10% 

Income Tax Rate 35% 

Plant Life 30 yrs 

Build Time 3 yrs 

Annual Fuel Production 46 Mgal 

ATS Cultivation Acreage 15000 acres 

Algal Turf 

Platform 
Harvest HTL/CHG 

Hydro-

processing 
System Boundary 

• Economic Assumptions 

– Similar to process design case studies by NREL & PNNL 



Core Process Assumptions  
for current non-optimized ash content case 

ATS Growth 

Growth Rate (AFDW) 20 g m-2 d-1 

Pumping Duty Cycle 14 hr d-1 

Pumping η 67% 

Pumping Head 4 m 

ATS Length 152 m 

Biomass (AFDW) Flow 1340 ton d-1 

Capital Cost $10 m-2 

Harvest 

Harvest Density 20% solids 

Ash Content 50% 

Harvest Frequency 7 days 

Operation Cost $0.23 m-2yr-1 

Capital Cost $0.35 m-2 

HTL/CHG Processing 

NG Energy 3.7 M-MJ d-1 

Electrical Energy 120 MWh d-1 

Capital Cost $183 M 

Oil Yield 47% 

Aqueous Yield 40% 

Ash Content 50% 

Gas 3% 

Hydrotreating 

Fuel Yield 78% 

Capital Costs $69 M 

Processing Capacity 153 kgal d-1 

Diesel Yield 83% 

Naphtha Yield 17% 



Results for HTL processing of raw algal 

turf biomass from current systems* 
* High ash content (50%) biomass to HTL processing 
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Current Non-optimzed Case* 
* High ash content (50%) biomass to HTL processing 
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Results for HTL processing of improved 

(lower ash content) algal turf biomass* 
* Lower ash content (13%) biomass to HTL processing 
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* Lower ash content (13%) biomass to HTL processing 



Example Path to $3 per GGE 
• Reduce ash content to ≤13%  (Improved case) 

– Reduced ash in raw cultivated & harvested material (systems & ops) 

– Ash reduction via pre-processing prior to conversion processing 

• Increase in annual growth rate to 30 g/m2/day (AFDW) 

• 10% Decrease in Capital Costs 

• Subsidies at 2x Fertilizer Costs (environmental service) 

• Results in estimated cost of $3.07/gal 
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Biofuel Cost Comparison  

(GGE) to Past Studies 
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Scale-up Feasibility TEA  

… Next Steps in Progress 

• Include biochemical processing pathways 
– Protein &/or carb conversion to sugars, mixed alcohols, other 

compounds that provide fuel intermediates and blend stock 

– Feedstock for higher-value products 

• HTL/CHG + Hydroprocessing on residue 

• Integration of nutrient recycling processes 
– Production of fungible fertilizer material for other markets 

– Recycling to support upstream algal cultivation 

• Cost trade-offs of processing & products paths 

• Environmental credits for water clean-up 
–  Co-service income stream to offset fuel & bioproduct costs 

– With point source WW and non-point source water bodies 



Conclusions 
• Benthic algal turf polyculture assemblages offer a promising 

alternative approach to algal biofuels 

• Polyculture algal turf systems have demonstrated long-term 

(multi-year) culture stability at large scales with relatively high 

annual average biomass productivities (15-20 g m-2 d-1) w/ 

low energy-intensity harvesting & dewatering 

− Based on the use of systems focused on efficient water cleaning 

… not yet optimized for biomass production and ash reduction 

− Without the need for supplemental CO2 or commercial nutrients (N, P) 

− Significant opportunities for improvement for high productivity of lower-

ash content biomass  

• Preliminary (rough) estimates show potential for ≥1 BGY U.S. 

biofuel production using nutrients & CO2 from non-pt. sources 

– Using single-pass operation … greater potential with recycle operation   

• Initial/Preliminary TEA performance looks promising  

• Future work includes LCA and resource assessment 
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