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Abstract

This report documents the early experiences with porting and performance analysis of
the Tri-Lab Trinity benchmark applications on Intel Xeon Phi (Knights Corner)
(KNC) processor. KNC, the second generation of the Intel Many Integrated Core
(MIC) architectures, uses a large number of small P54C-x86 cores with wide vector
units and is deployed as PCI bus attached process accelerators. Sandia has
experimental test beds of small InifiniBand clusters and workstations to investigate
the performance of the MIC architecture. On these experimental test beds the
programming models that may be investigated are “offload”, “symmetric” and
“native”. Among these program usage models our primary interest is in the so called
“native” mode, because the planned Trinity system to be deployed in 2016 using the
next generation MIC processor architecture called Knights Landing would be self-
hosted. Trinity / NERSC-8 benchmark programs cover a variety of scientific
disciplines and they were used to guide the procurement of these systems.
Architectures such as the Intel MIC are well suited to study evolving processor
architectures and a usage model commonly referred to as MPI + X that facilitates
migration of our applications to use both coarse grain and fine grain parallelism. Our
focus with the applications selected is on the efficacy of algorithms in these
applications to take advantage of features like: large number of cores, wide vector
units, higher-bandwidth and deeper memory sub-system. This is a first step towards
understanding applications, algorithms and programming environments for Trinity
and future exascale computing systems.
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1. INTRODUCTION AND OBJECTIVES OF THIS INVESTIGATION

As of writing this report there are three dominant programming models on systems with KNC.
The systems on which we investigated the KNC performance have Intel Xeon E5-2670 Sandy
Bridge (SB) processors on the compute nodes (host) with one or more Xeon Phi Knights Corner
coprocessors attached to the system PCle bus. The programming models supported in such
configurations are: MPI + Offload, Native Mode and Symmetric Mode. In all three approaches
to using the KNC, an application could be built with a Hybrid (MPI + Threads) computational
model. Our primary focus on this report is on the Native mode. This is because the recently
announced procurement of NNSA/ACES Trinity system will have a large number of compute
nodes (nearly half) using the Intel Xeon Phi Knights Landing (KNL) processor. The Xeon Phi
Knights Landing on Trinity will operate in ‘self-hosted’ mode. An application built today to use
the MIC’s native mode runs entirely on KNC. The executable is not binary compatible with the
host Sandy Bridge processor. The instruction set for MIC is similar to the Intel Pentium 4, but
not all of the 64 bit scalar extensions are included. MIC also has 512 bit vector/SIMD registers
but does not support MMX, SSE or AV X instructions. Neither can applications built for the host
Sandy Bridge processor run on the MIC. The primary reason for our interest in studying the
Native Mode usage model is that it lays the foundation for application migration to Trinity and
this model is the least disruptive in adapting Sandia’s production application to the MIC
architecture. Even on the other half of the compute nodes on Trinity that incorporate the Intel
Haswell processors, our investigation of applications on their efficacy in the use of a hybrid
(MPI1 + OpenMP) programming model and vectorization would be relevant.

As described in the subsequent sections our systems with KNC, have 57 or 61 cores on the
processor with each core capable of supporting four threads in hardware. Each hardware core
has 512 wide SIMD/vector registers. All of the cores have fully coherent L1 and L2 caches and
share 8GB or more of GDDR5 memory.

This investigation focuses on:

1) The KNC performance profile with different combinations of MPI tasks and
OpenMP threads sweeping through a range spanning 1 MPI task and 240
OpenMP threads to 240 MPI tasks each with one OpenMP thread

2) Comparative performance on the host Sandy Bridge two processor nodes with 16
cores

3) The best choice of MPI task and OpenMP thread affinity settings to yield optimal
performance.

4) Preliminary investigations on the ability to maximize performance through
exploitation of 512 bit SIMD/vector registers.

Some of the Trinity benchmarks with a mature Hybrid (MP1 + OpenMP) implementation were
well suited to the investigation of balance between MPI tasks and OpenMP threads. We
supplemented Trinity benchmarks with few other hybrid applications such as the NAS
benchmarks to further gain insights on the optimal use of the KNC architecture. One of
benefits of the Intel MIC architecture is the program development environment helps maintain a



single source code, while permitting migration to the many-core architectures with familiar x86
based compiler, development tools and libraries.

2. HARDWARE USED

2.1. Corner Workstation

For most of our performance investigation of the MIC/KNC architecture, a dual-socket
workstation with dual 8 core Xeon E5-2670 (Sandy Bridge) processors with 64GB of RAM
memory is used. It has been configured with two MIC PCle attached Knight Corner processors;
stepping CO ES2, 1.2 GHz (1.3 GHz turbo), 61-core, 16 GB on 4 Gb technology. This
workstation is named “Corner”. A block diagram of the KNC processor with 61 cores is shown
in Figure 1. The core architecture is shown in Figure 2.

The KNC processor is primarily composed of CPU cores, caches, memory controllers, PCle
client logic, and a high bandwidth, bidirectional ring interconnect. There are a total of 61 cores
on each KNC. Each core uses a short in-order pipeline and is capable of supporting 4 threads in
hardware. Each core has a private 32KB instruction and 32KB data L1 cache, and a private 512
KB L2 cache that is kept fully coherent by a global-distributed tag directory as shown in Figure
2. The memory controllers and the PCle client logic provide a direct interface to the 8GB
GDDR5 memory on the processor and the PCle bus, respectively. All these components are
connected together by the ring interconnect.

Multiple Intel Xeon Phi coprocessors can be installed in a single host system. Within a single
system, the coprocessors can communicate with each other through the PCle peer-to-peer
interconnects without any intervention from the host. Similarly, the coprocessors can also
communicate through a network card such as InfiniBand or Ethernet, without any intervention

from the host.
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Figure 1 Knights Corner Block Diagram
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Figure 2 Knights Corner Core Architecture

An important component of the Intel Xeon Phi coprocessor’s core is its vector processing unit
(VPU), shown in Figure 3. The VPU features a 512-bit SIMD instruction set, officially known as
Intel Initial Many Core Instructions (Intel IMCI). Thus, the VPU can execute 16 single-precision
(SP) or 8 double-precision (DP) operations per cycle. The VPU also supports Fused Multiply-
Add (FMA) instructions and hence can execute 32 SP or 16 DP floating point operations per
cycle. It also provides support for integers.

- .

v viz Viv4  wB

- —
V3 v4
|

Vector ALUs

16 Wide x 32 bit
8 Wide x 64 bit

Fused Multiply Add

Figure 3 Knights Corner Vector/SIMD Unit

2.2. Compton InfiniBand cluster
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The Compton cluster is an Appro InifiniBand cluster with 42 compute nodes and is similar to the
production TLCC2 capacity clusters called Chama and Pecos. Each node has two 8-core Sandy
Bridge, Xeon E5-2670 2.6 GHz processors. The nodes differ from Chama and Pecos nodes in
that each node has two 1.1 GHz Knights Corner processors, each with 57 cores and 6GB of
GDRR5 memory. The compute nodes are connected with a Mellanox Infiniscale QDR
InfiniBand interconnect. For benchmarking purposes one must be aware that unlike on Chama
and Pecos, on Compton Hyperthreading is active. The Knights Corner processor used in
Compton comes from a different SKU to that used in the “corner” workstation and so has only
57 active cores.

3. SOFTWARE ENVIRONMENT

3.1. Corner Workstation
3.1.1. Intel Compiler and Composer version

All the needed software for program development is available in
/opt/intel/composer_xe 2013 spl. The latest install date is March 20, 2014. This environment
consisted of compilers icc, ifort versions 14.0.2, with MKL libraries version 11.1 update 2, TBB
libraries version 4.2 update 3. It also included Intel MPI, impi version 4.1.3 and
vtune_amplifier_xe 2013 Update 16.

3.1.2. Setup for Host/Sandy Bridge compile and run

The setup for compiling and running on the host Sandy Bridge processors requires sourcing the
file:
/opt/intel/bin/compilervars.sh intel64.

3.1.3. Setup for MIC/Xeon Phi compile and run in native mode
The steps involved in running on KNC in native mode are:

1) source /opt/intel/bin/compilervars.sh intel64

2) use -mmic flag to compile code to run native on MIC; -O2 and above compiler
optimization flags invokes vectorization

3) Copy all the needed libraries (like MPI, MKL, etc.) to MIC. The script that was used for
this called load-mic.sh shown below

4) scp the executable to MIC: (example; sudo scp ./hello_mpi-mic micO:/tmp)

5) ssh to the MIC and cd to /tmp and run (example; sudo ssh micO; cd /tmp; mpirun -n 4
Jhello_mpi-mic )

The load-mic.sh shown below copies the necessary libraries to MIC.
#!/bin/sh
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sudo scp /opt/intel/impi/4.1.0/mic/bin/mpiexec.hydra mic0:/bin

sudo ssh micO In -s /bin/mpiexec.hydra /bin/mpiexec

sudo scp /opt/intel/impi/4.1.0/mic/bin/mpirun mic0:/bin

sudo scp /opt/intel/impi/4.1.0/mic/bin/pmi_proxy mic0:/bin

sudo scp /opt/intel/impi/4.1.0/mic/lib/libmpi.so.4.1 micO:/lib64

sudo ssh micO In -s /lib64/libmpi.so.4.1 /1ib64/libmpi.so.4

sudo scp /opt/intel/impi/4.1.0/mic/lib/libmpigf.so0.4.1 mic0:/lib64

sudo ssh micO In -s /lib64/libmpigf.so.4.1 /lib64/libmpigf.so.4

sudo scp /opt/intel/impi/4.1.0/mic/lib/libmpigc4.so0.4.1 mic0:/1ib64

sudo ssh micO In -s /lib64/libmpigc4.so.4.1 /lib64/libmpigc4.so.4

sudo scp /opt/intel/impi/4.1.0/mic/lib/libmpi_mt.s0.4.1 micO:/lib64

sudo ssh micO In -s /lib64/libmpi_mt.so0.4.1 /lib64/libmpi_mt.so0.4

sudo scp /opt/intel/impi/4.1.0.027/mic/lib/libmpi_dbg.so0.4 micO:/lib64

sudo scp /opt/intel/composer_xe_2013/lib/mic/libimf.so mic0:/lib64

sudo scp /opt/intel/composer_xe_2013/lib/mic/libsvml.so micO:/lib64

sudo scp /opt/intel/composer_xe_2013/lib/mic/libintlc.s0.5 mic0:/lib64

sudo scp /opt/intel/composer_xe_2013/lib/mic/libiomp5.so mic0:/lib64

sudo scp /opt/intel/composer_xe_2013/lib/mic/libirng.so mic0:/lib64

sudo scp /opt/intel/composer_xe_2013/lib/mic/libirng.so mic0:/1ib64

sudo scp /opt/intel/mkl/lib/mic/libmkl_sequential.so mic0:/lib64

sudo scp /opt/intel/composer_xe_2013/mkl/lib/mic/libmkl_intel_Ip64.so mic0:/lib64
sudo scp /opt/intel/composer_xe_2013/mkl/lib/mic/libmkl_intel_thread.so mic0:/lib64
sudo scp /opt/intel/composer_xe_2013/mkl/lib/mic/libmkl_core.so mic0:/lib64

sudo scp /opt/intel/composer_xe_2013/mkl/lib/mic/libmkl_cdft_core.so mic0:/lib64
sudo scp /opt/intel/composer_xe_2013/mkl/lib/mic/libmkl_scalapack _Ip64.so mic0:/lib64
sudo scp /opt/intel/composer_xe_2013/mkl/lib/mic/libmkl_scalapack _Ip64.so mic0:/lib64
sudo scp /opt/intel/impi/4.1.0/mic/lib/libmpi_dbg_mt.so0.4 mic0:/lib64

3.2.  Compton InfiniBand cluster

The software environment on Compton is similar to Chama in the sense it has SLURM and
supports modules. Both Intel MP1 and OpenMPI can be used with Intel compilers or GNU
compilers. The /home and /projects directories are visible when running in native mode on the
MIC and so running a program on the MIC is simpler than on the corner workstation as there is
no need to explicitly copy the executable or input/output files to and from the local memory on
the MIC.

4. PROGRAM DEVELOPMENT TOOLS

4.1. Intel Parallel Studio XE

The primary program development tool used in this effort are packaged with the Intel Parallel
Studio XE and consists of:

e C++, C and Fortran Compilers

e Thread Building Blocks (TBB)

e Math Kernel Library (MKL)
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OpenMP, version 4.0

Advisor XE for threading design and prototyping
Inspector XE for memory and thread debugging
e VTune Amplifier XE for performance profiling
e MPI Library

Details of these software Intel software elements can be easily located on the Intel web site:
https://software.intel.com/en-us/intel-parallel-studio-xe

5. MICRO BENCHMARKS

5.1. Matrix Multiply
The objectives of this benchmark are:

1) Evaluate performance of MKL’s threaded SGEMM and DGEMM, and compare it to the
theoretical peak performance. The performance is compared to the theoretical peak to
gauge what percentage of the peak we are able to achieve.

2) Compare against host results and understand status of threading efficiency and MKL’s
ability to achieve fine grain parallelization and vectorization.

3) This benchmark also serves as a good upper bound of the sustained performance we can
anticipate with code kernels that have good data locality.

4) Can also use this code with tools such as PAPI to understand performance tuning and
hardware counter measures with this simple kernel.

Matrix Multiply Performance with MKL,
240 threads MIC; 16 threads on SB
1400
1200 !
==@==SGEMM-MIC
1000 —8—DGEMM-MIC
& 300 SGEMM-SB
9 / =>é=DGEMM-SB
G 600 —— — —
400 —ZAWF"?I#-—I—I—H
B
200
NV
0
0 5000 10000 15000
Matrix Size, N

Figure 4 Matrix multiply performance on the MIC and the host SB with MKL
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Figure 4 shows the measured performance on both the MIC and the dual-processor host Sandy
Bridge node. For both the measurements the same program that call the threaded ‘SGEMM’ and
‘DGEMM’ MKL routines were used. While the measured performance for SGEMM on the MIC
showed about 54% of the peak with 240 threads, the percent of peak on the host was close to
93%. Similarly for DGEMM the percentage of peak on MIC did not exceed 38% while on the
host it was 93%. In a recent publication, Heinecke et.al. [1], outline an algorithm that takes full
advantage of the KNC’s salient architectural features to achieve close to 90% of the peak. This
apparent large gap between our measured performance using MKL and this demonstrated high
performance is not fully understood and needs further study.

An objective of this SAND Report is also to gain experience with use of hardware event
counters, which are described in Intel Reference [2], and [3]. Micro-architectural performance
tuning using the hardware events available through the built-in Performance Monitoring Unit
(PMU) can be accessed through Intel’s Vtune. We have recently installed a version of the
TAU[4] performance tool on Compton and used it to measure hardware counter metric ratios like
Vectorization intensity defined as:

Vectorization Intensity=VPU_ELEMENTS_ACTIVE / VPU_INSTRUCTIONS_EXECUTED

For this matrix multiply benchmark using MKL’s DGEMM, a few measurements of this metric
ratio on the MIC with 4 and 8 threads gave a vectorization intensity value of 7.84. As suggested
in Reference [3] this metric has an upper bound of 8 and so values close it suggest efficient use
of MIC’s SIMD units. However since the VPU ELEMENTS ACTIVE counter measures vector
instructions like vector load/stores from memory, and instructions to manipulate vector mask
registers, in addition to the double precision floating point instructions of interest to us, caution is
needed in use of this metric for performance tuning. The fact that our measurements of this
metric achieves close to the peak showing high vectorization intensity is misleading if our goal is
to achieve high floating point operations throughput. The percentage of peak double precision
floating point operations achieved in this test (which agrees with the values shown in Figure 4
when all the threads on the MIC’s cores are utilized) is about 30%, which as stated previously is
considerably less than published best performance of close to 90% [1]. However since at the
present time the Xeon Phi does not have a PMU event to measure floating point performance, we
still plan to use this Vectorization Intensity metric to give us some insights to the effective use of
the SIMD units.

5.2. STREAMS

The objectives of this benchmark are:
1) To measure the STREAMS memory bandwidth with an OpenMP version of the

STREAMS benchmark.
2) To investigate impact of affinity settings on the measured performance
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Figure 5 STREAMS Triad memory bandwidth on KNC

Figure 5 shows the KNC achieving an impressive 180 Gbytes/sec. This may be compared to
about 74GBytes/sec on the host dual Sandy Bridge nodes. Runs on the MIC used the
environment variables KMP_PLACE_THREADS=,4T (i.e. 4 threads per core) and
KMP_AFFINITY=compact ( or scatter or balanced).

Attempts to validate these measurements on Compton and Morgan, gave a maximum achieved
STREAM Triad bandwidth of 133GB/s. Not sure as to the reasons for this discrepancy, but
published numbers by other investigators are close to the lower values and suggest that the
differences may be attributable to units with ECC correction enabled and higher values when it is
disabled. This needs further investigation.

6. APPLICATION BENCHMARKS

6.1 miniFE

miniFE is a Finite Element mini-application which implements a couple of kernels representative
of implicit finite-element applications. It assembles a sparse linear-system from the steady-state
conduction equation on a brick-shaped problem domain of linear 8-node hex elements. It then
solves the linear-system using a simple un-preconditioned conjugate-gradient algorithm.

Thus the kernels that it contains are:

computation of element-operators (diffusion matrix, source vector)
assembly (scattering element-operators into sparse matrix and vector)
sparse matrix-vector product (during CG solve)

vector operations (level-1 blas: axpy, dot, norm)
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This version of miniFE has support for OpenMP. However, it is not deemed to be complete
and/or optimal. There is scope to tune OpenMP sections to particular architecture. This version
of miniFE corresponds to miniFE_ref 1.4b.

6.1.1 Hybrid (OpenMP+MPI) code performance

The code uses OpenMP pragmas in the ‘for loops’: computing BLAS daxpy type operations (in
function waxpby(), computing a reduction BLAS ddot type operations (in function dot()) and in
the computing Matrix-Vector products in function matvec().

The code was compiled with Intel C++ compiler version: ‘icpc (ICC) 13.0.1 20121010 and with
compiler flags '-mmic -O3 -openmp' for running on the Xeon Phi in the native mode. The same
compiler was used for generating the executable that was run on the host with the same compiler
flags except ‘—mmic’ option. The process/thread affinity settings used were:
KMP_AFFINITY=compact,granularity=fine and I_MPI_PIN_DOMAIN=0omp.

As mentioned in the introduction one objective of this investigation is to find the optimal
combination of MPI tasks and OpenMP threads that gives the best performance. Taking the
smallest run time among three trials, Figure 6 shows the run time for the three dominant compute
kernels, MATVEC, DOT and WAXPBY. The data for KNC shown on the left half of the chart
and that for the host SB on the right half.
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Figure 6 miniFE performance on KNC (left) and SB(right)

The best performance on KNC for the most time consuming kernel, MATVEC, was with 60 MPI
tasks and 4 threads per MPI task. This was 1.3X faster than the best performance on the host
with 16 MPI tasks and 1 task per thread. Interestingly the data shows that for the DOT compute
kernel the optimal performance on KNC requires a different MPI tasks / OpenMP threads
combination: 30/8.
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The key to optimal usage of the MIC architectures is to efficiently use the 60/61 cores and the
four hardware threads each core provides. Efficient usage could be viewed as achieving good
thread level parallelism using the fewest MPI tasks on the processor. This is to permit future
efficient multi-node scaling as a consequence of fewer MPI task on each node leading to better
utilization of memory and smaller volume of inter-node message exchanges. Efficient usage also
entails high level of vectorization of the compute loop kernels and full utilization of the excellent
memory bandwidth Xeon Phi provides.

6.1.2 Vampir Profile to gauge coarse and fine grain parallelization effectiveness

Analysis of an application as to its efficient mapping on to an MPI + OpenMP programming
model requires in addition to the scaling characteristics shown in Figure 6, an application
function profile giving us an understanding of the fraction of time spent by the application in
OpenMP compute loops, serial compute kernels, time spent in OpenMP overheads such as
locks/barriers, time spent in MPI, time spent in MPI synchronizations. Towards this goal it is
useful to obtain a profile of the application that reveals these wall-time components. The profile
may be strongly influenced by scale and input. The input data set used for this analysis is the
Trinity/NERSC8 “single-node” benchmark as described at [5].

For miniFE this data was gathered using, 9 nodes, 72 MPI tasks and 2 OMP threads per task on
Sandia’s TLCC2 system called Chama which has twin socket, 8-cores/socket Sandy Bridge
nodes with Qlogic QDR InfiniBand Interconnect. ScoreP and Vampir are the profiling tools of
choice to gather the desired information. VVampir API to bracket only code section that is of
interest, namely conjugate gradient solver in miniFE is used to generate the plot shown in Figure
1.
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Figure 7 miniFE profile showing percentage run time fractions

From the profile it is clear why this application performs well with the hybrid programming
model. The large fraction of the run time ( > 72%) that is registered for an OpenMP construct
and small fraction of the time in MPI gives this application the performance noted above.
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6.1.3 Vectorization effectiveness

Another key factor in the efficient use of the Xeon Phi architecture is vectorization. As
suggested in their book on Xeon Phi by Jeffers and Reinders [6], one approach to gauge effective
vectorization is to compare run times of the application with and without auto vectorization by
the compiler. Using the same input used for gathering the comparative performance between SB
and KNC shown in Figure 6, picking the run with MPI tasks and OpenMP threads that yielded
the best performance, the performance gain with compiler generated auto-vectorization for the
host SB and the MIC measured on the Corner workstation is shown in Table 1.

Table 1 miniFE compiler auto vectorization performance for SB and KNC

Processor Total CG time (secs) with Total CG time (secs) with No
Auto Vectorization Auto Vectorization

Intel MIC (60 MPI tasks/4 7.941 8.313

threads)

Intel Sandy Bridge(8 MPI 12.116 12.3219

tasks/4threads)

Use of compiler vectorization report (with flag —vec-report3) shows that the inner loop in the
most time consuming kernel, matrix-vector product, in SparseMatrix_functions.hpp, line 573 is
reported as vectorized. However this vectorization, reported by the compiler, does not register as
a significant performance gain for run time comparisons with and without vectorization. This
needs to be further investigated, but suspected to be related to the indirect addressing required in
the operation in line 574:  sum += Acoefs[i]*xcoefs[Acols[i]]. Most of the small gain in run
time seen in Table 1 comes from the vectorization of the other two key kernel computations:
waxpby() and dot().

Another measure of vectorization that we wish to gain further experience is with the use
hardware performance counters. In reference [2], Shannon Cepda presents various metrics using
hardware events counts from the processing core’s Performance Monitoring Unit (PMU). PMU
hardware counters can be programmed to count occurrences of various events. Intel VTune
provides developers the ability to collect and view sampled data from the Xeon Phi. Recently
we have installed the TAU performance monitoring tool on Compton. TAU can also provide
access to the PMU through PAPI. Of particular interest in investigating effective vectorization
are two counters: VPU_INSTRUCTIONS_EXECUTED and VPU_ELEMENTS_ACTIVE. The
number of vector elements active given by the second counter above is a measure of the number
of vector operations and provides correct estimates of the multiple vector operations in both
single and double precision for each instruction executed. So the metric ratio
VPU_ELEMENTS_ACTIVE/VPU_INSTRUCTION_EXECUTED, called vectorization
intensity is very useful in gauging how well the compute intensive sections of the code are
vectorized. For double precision vectors optimal vectorization is achieved if vectorization
intensity is close to 8 and for single precision close to 16.
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MiniFE was instrumented with TAU with the following build script which sets the necessary
environment variable and replaces the mpiicxx in the makefile with tau_cxx.sh.

#!1/bin/bash

source /projects/tau/tau.bashrc

export TAU_MAKEFILE=$TAU/Makefile.tau-icpc-papi-mpi-pdt-openmp-opari
export TAU_OPTIONS="-optVerbose'

make CXX=tau_cxx.sh

The instrumented executable produced a run profile on Compton. However the profile did not
readily provide the desired information for the most time consuming sparse Matrix-Vector
operations in the conjugate gradient solve. To focus on the section of code of interest, the TAU
API for selective instrumentation was used to introduce in cg_solve.hpp calls to
TAU_PROFILER_START and TAU_PROFILER_STOP functions bracketing the function call
to matvec(). Execution of the instrumented miniFE on the MIC using similar parameters to that
used for the data in Figure 4, gave the vectorization intensity of: 7.634e08/4.363e08 = 1.75.
Since this value is not close to 8, the previous conclusion on the need to improve vectorization
for the compute intensive MATVEC kernel is reinforced.

6.2 AMG

AMG is a parallel algebraic multigrid solver for linear systems arising from problems on
unstructured grids.

6.2.1 Hybrid (OpenMP+MPI) code performance

The code uses OpenMP pragmas to invoke OpenMP threads for the Hypre library GMRES
solver kernel operations. For the Laplace solver benchmarked, the dominant GMRES kernel
OpenMP operations (called by hypre. GMRESSolve) are in the source code files in the directory
src/seq_mv, in the files csr_matvec.c ( line numbers 344,317,215,134,126) and vector.c (line
numbers 445, 419, 391, 320, 265.

The code was compiled with Intel C++ compiler version: 'icpc (ICC) 13.0.1 20121010' and with
compiler flags -mmic -O3 -openmp' for running on the Xeon Phi in the native mode. The same
compiler was used for generating the executable that was run on the host with the same compiler
flags except ‘“mmic’ option. The process/thread affinity settings used
KMP_AFFINITY=compact, granularity=fine and I_MPI_PIN_DOMAIN=0mp.

The optimal combination of MPI tasks and OpenMP threads that gives the best performance was
investigated with this benchmark. Taking the smallest run time among three trials, Figure 8
shows the GMRES solve wall clock time. The data for KNC shown on the left half of the chart
and that for the host SB on the right half.
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Figure 8 AMG performance on KNC (left) and SB (right)

The best performance on KNC was with 30 MPI tasks and 8 threads per MPI task and in the SB
32 and 1. The host SB performance is 2X faster than KNC.

6.2.2 Vampir Profile to gauge coarse and fine grain parallelization effectiveness

A profile of AMG is needed to reveal various compute time components. The profile may be
strongly influenced by scale and input. The input data set used for this analysis is the
Trinity/NERSCS “single-node” benchmark as described at [5]. For AMG this data was gathered
using, 6 nodes, 48 MPI tasks and 2 OpenMP threads per task on Sandia’s TLCC2 system called
Chama with an mpiexec command as shown below:

mpiexec —n 48 —npersocket 4 —bind-to-core ./amg2013 —P 4 4 3 —n 189 189 189 —solver 2
ScoreP and Vampir are the tools used to gather the desired trace information. ScoreP API is
used to bracket only code section that is of interest. SCOREP_USER_REGION_BEGIN and

SCOREP_USER_REGION_END bracket the call to HYPRE_GMRESSolve function in the file
amg2013.c Figure 9. Shows the function profile as percentage of the run time.
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Figure 9 AMG profile showing percentage run time fractions
From the run time fraction percentage we see that while there is substantial fraction of the run
time in OpenMP ‘for’ loops it is not as high as we saw with miniFE and consequently we see
small gains in run time when using MPI_tasks + OpenMP threads as opposed to only MPI tasks
using the same number of cores in a given run. We also see from the profile that the fraction of

the run time spent in MPI is less than 6% which helps with using large number of MPI tasks on
the Xeon Phi.

6.2.3 Vectorization effectiveness

Using the same input used for gathering the comparative performance between SB and KNC
shown in Figure 8, picking the run with MPI tasks and OpenMP threads that yielded the best
performance, the performance gain with compiler generated auto-vectorization for the host SB
and the MIC measured on the Corner workstation is shown in Table 2.

Table 2 AMG compiler auto vectorization performance for SB and KNC

Processor Total CG time (secs) with Total CG time (secs) with No
Auto Vectorization Auto Vectorization

Intel MIC (30 MPI tasks/8 3.342 3.124

threads)

Intel Sandy Bridge(16 MPI 2.210 2.219

tasks/2 threads)

Use of —vec-report3 compiler flag shows that the Intel icc compiler was unable to vectorize any
of the loops in the most compute intensive function as per the profile shown in Figure 9, namely
the functions in csr_matevc.c. From Table 2, We see that both on SB and KNC very little gain
in performance with vectorization is measured. The repeatable (using 3 measurements not
recorded here) slightly better performance without vectorization on the MIC is not fully
understood. We could measure the vectorization intensity with PMU counters as shown in the
section on miniFE, but it may not add to our analysis of this application.
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6.3 UMT
The UMT benchmark is a 3D, deterministic, multigroup, photon transport code for unstructured
meshes.

6.3.1 Hybrid (OpenMP+MPI) code performance

The optimal combination of MPI tasks and OpenMP threads that gives the best performance was
investigated with this benchmark. Taking the smallest run time among three trials, Figure 10 and
Figure 11 shows the two metrics of interest: CumulativeWork Time and AngleLoop Time. The
data for KNC shown on the left half of the chart and that for the host SB on the right half.
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Figure 10 UMT performance (Cumulative Work Time) on KNC (left) and SB (right)
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Figure 11 UMT performance (AngleLoop Time) on KNC (left) and SB (right)
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6.3.2 Vampir Profile to gauge coarse and fine grain parallelization effectiveness

Initial attempts on Chama to collect this profile with VVampir/ScoreP ran into some link time
errors. This will have to be pursued after either building a version of ScoreP that generates
dynamic libraries or a setup on Chama that uses GNU compilers. The data from Figure 10, 11
suggest that fine grain parallelism with OpenMP is quite effective resulting in improved
performance with up to 16 or 8 OpenMP threads on the MIC.

6.3.3 Vectorization effectiveness

Using the same inputs as used for the runs in Figure 11 and picking the combinations of MPI
tasks and OpenMP threads that lead to the best performance the impact of vectorization on the
MIC and on the host SB node was investigated. The data recorded for the AngleLoop Time and
the Cumulative Work time are shown in Table 3.

Table 3 UMT compiler auto vectorization performance for SB and KNC

processor AngleLoop AngleLoop time/Cum.Work
time/Cum.Work time time (secs) with No Auto
(secs) with Auto Vectorization
Vectorization
Intel MIC (30 MPI tasks/8 8.10/23.61 11.98/27.09
threads)
Intel Sandy Bridge(16 MPI 6.68/9.88 8.35/11.52
tasks/2 threads) on Chama

Vectorization gives about 20% better performance for the SB and 32.4% for the KNC for the
Angle Loop Time metric, which is of more interest in this application.

6.4 GTC

GTC is used for Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas. It is
a fully self-consistent, 3D Particle-in-cell code (PIC) with a non-spectral Poisson solver and a
grid that follows the magnetic field lines (twisting around the torus). It solves the gyro-averaged
Vlasov equation in real space; the Vlasov equation describes the evolution of a system of
particles under the effects of self-consistent electromagnetic fields. The unknown is the flux,
f(t,x,v), which is a function of time t, position x, and velocity v, and represents the distribution
function of particles (electrons and ions) in phase space.

6.4.1 Hybrid (OpenMP+MPI) code performance
Among all the applications studied here, GTC is best set up to use OpenMP for thread

parallelization of many computationally intensive loops. The compiler vector report indicates
several of the loops in key functions like pushi, chargei get vectorized.
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The code was compiled with Intel Fortran compiler ifort with compiler flags -mmic -O3 -
openmp' for running on the Xeon Phi in the native mode. The same compiler was used for
generating the executable that was run on the host with the same compiler flags except ‘—-mmic’
option. The process/thread affinity settings used are:
KMP_AFFINITY=compact,granularity=fine and I_MPI_PIN_DOMAIN=0mp.

The optimal combination of MPI tasks and OpenMP threads that gives the best performance was
investigated with this benchmark. Taking the smallest run time among three trials, Figure 12
shows the NERSC Time used as the metric for this benchmark. The data for KNC shown on the
left half of the chart and that for the host SB on the right half. Some combination of MPI tasks
and OpenMP threads (1/240, 2/120, 4/60) on the KNC and (1/32, 2/16) on SB SEGFAULTED,
but possible causes for this have not been investigated.

GTC: NERSCtime;

Input with micell=mecell=10 and mstep=24

200
180
160
140
120
100
80
60
40 -

O' LI I R R | T

O 0O nO o & \»* VI W™ W™ VA0 D X VBN
\,\’1«@ q,\\?/ b‘\% cb\% ,@\\’ f>,°\ 60\00\’\?9\ ,»%Q\ '\,\q) ’1,\'\/ » q,\ '\/b\ ”;1'\

Time, secs

MPI Ranks / OMP Threads
Figure 12 GTC performance (NERSC Time) on KNC (left) and SB (right)

6.4.2 Vampir Profile to gauge coarse and fine grain parallelization effectiveness

A profile of GTC is needed to reveal various compute time components. The profile may be
strongly influenced by scale and input. The input data set used for this analysis is the
Trinity/NERSCS8 “single-node” benchmark as described at [5]. For GTC this data was gathered
using, 8 nodes, 64 MPI tasks and 2 OpenMP threads per task on Sandia’s TLCC2 system called
Chama with an mpiexec command as shown below:

mpiexec —n 64 —npersocket 4 —bind-to-core ./gtcomp
ScoreP and Vampir are the tools used to gather the desired trace information. For GTC the entire

code was instrumented with ScoreP. Figure 13 shows the function profile as percentage of the
run time.
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All Processes, Average Exclusive Time per Function
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From the run time fraction percentage we see that substantial fraction of the run time is in
OpenMP “for’ loops. On the MIC 30 MPI_tasks with 8 OpenMP threads gives a run time 80%
longer than the best seen on the host SB. This application demonstrated important performance

elements for MIC, like good thread level parallelism, vectorization effectiveness and low MPI
overhead.

6.4.3 Vectorization effectiveness
Using the same input used for gathering the comparative performance between SB and KNC
shown in Figure 12, picking the run with MPI tasks and OpenMP threads that yielded the best

performance, the performance gain with compiler generated auto-vectorization for the host SB
and the MIC measured on the Corner workstation is shown in Table 4.

Table 4 GTC compiler auto vectorization performance for SB and KNC
NERSC time (secs) with Auto | NERSC time (secs) with No

Processor

Vectorization

Auto Vectorization

Intel MIC (30 MPI tasks/8 39.735 46.869
threads)
Intel Sandy Bridge(16 MPI 21.969 30.677

tasks/2 threads)

Use of —vec-report3 compiler flag shows that the Intel ifort compiler was able to vectorize the
key compute loops in chargei, pushi and shifti functions From Table 4. We see that both on SB
18% gain and on KNC about 39% gain in performance with vectorization is measured. We
could measure the vectorization intensity with PMU counters as shown in the section on miniFE
for the compute intensive chargei and pushi functions. Initial attempts with TAU on Compton
led to run time failures only when the PAPI counters were turned on. This needs to be further
discussed with the TAU developers. We should also try VTune with the same PMU counters.
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6.5 MILC

The benchmark code MILC represents part of a set of codes written by the MIMD Lattice
Computation (MILC) collaboration used to study quantum chromodynamics (QCD), the theory
of the strong interactions of subatomic physics. It performs simulations of four dimensional
SU(3) lattice gauge theory on MIMD parallel machines. "Strong interactions™ are responsible for
binding quarks into protons and neutrons and holding them all together in the atomic nucleus.
The MILC collaboration has produced application codes to study several different QCD research
areas, only one of which, ks_dynamical simulations with conventional dynamical Kogut-
Susskind quarks, is used here. QCD discretizes space and evaluates field variables on sites and
links of a regular hypercube lattice in four-dimensional space time. Each link between nearest
neighbors in this lattice is associated with a 3-dimensional SU(3) complex matrix for a given
field. The version of MILC used here uses matrices ranging in size from 8* to 128",

6.5.1 Hybrid (OpenMP+MPI) code performance

As per the README file provided with this benchmark, OpenMP directives currently exist only
in source code in the generic_ks directory (specifically, in the files d_congrad5_fn.c and
dslash_fn2.c). Since these two functions did not appear to consume significant fraction of the
run time this benchmark is not well suited to investigate impact of a hybrid programming model.
Also noted in the README file, the inlined SSE instructions available in MILC have been
disabled as they have been observed to not always work between different compilers. So this
benchmark as set up is not suited for investigating vectorization.

The code was compiled with Intel C compiler icc with compiler flags '-mmic -O3 -openmp' for
running on the Xeon Phi in the native mode. The same compiler was used for generating the
executable that was run on the host with the same compiler flags except the ‘—“mmic” option.
The process/thread affinity settings used KMP_AFFINITY=compact,granularity=fine and
|_MPI_PIN_DOMAIN=0mp.

The optimal combination of MPI tasks and OpenMP threads that gives the best performance was
investigated with this benchmark. Taking the smallest run time among three trials, Figure 14
shows the NERSC Time used as the metric for this benchmark. The data for KNC shown on the
left half of the chart and that for the host SB on the right half. Some combination of MPI tasks
and OpenMP threads (15/16, 30/8, 60/4) on the KNC produced an error message: “Can’t layout
lattice, not enough factors of 5”. Possible ways to go past this hurdle with modifications to the
input file was not pursued.
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Figure 14 MILC performance (NERSC Time) on KNC (left) and SB (right)
6.5.2 Vampir Profile to gauge coarse and fine grain parallelization effectiveness

A profile of MILC is needed to reveal various compute time components. The profile may be
strongly influenced by scale and input. The input data set used for this analysis is the
Trinity/NERSCS “single-node” benchmark as described at [5]. For MILC this data was gathered
using, 4 nodes, 24 MPI tasks and 2 OpenMP threads per task on Sandia’s TLCC2 system called
Chama with an mpiexec command as shown below:

mpiexec —n 64 —npersocket 3 —bind-to-core ./su3_rmd < n8_single.in

ScoreP and Vampir are the tools used to gather the desired trace information. For MILC the
code was instrumented using a scoreP filter file to limit the size of the trace file. In the filter file
all the regions were excluded from tracing, except functions: MPI, OMP, update, main,
update_h, f_meas_imp and load_ferm_link. Figure 15 shows the function profile as percentage
of the run time.
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From the run time fraction percentage we see that only a very small fraction of the run time is in
OpenMP ‘for’ loops. We need to investigate if the version of MILC provided as part of the
Trinity benchmarks is a version that has the latest development in introducing OpenMP
constructs. On the MIC, 8 MPI_tasks with 30 OpenMP threads gives a run time 2.6X the best
seen on the host SB. MILC because of its importance to physicists and because it consumes
large node-hours on number of NSF/University/DOE ASCR systems has a long history of
developments and performance enhancements. Further investigation of the port of MILC to MIC
should be pursued in collaboration with the domain scientists with deep knowledge of this
application.

6.6 SNAP

SNAP is a proxy application to model the performance of a modern discrete ordinates neutral
particle transport application. SNAP may be considered an update to Sweep3D, intended for
hybrid computing architectures. It is modeled on the Los Alamos National Laboratory code
PARTISn. PARTISnh solves the linear Boltzmann transport equation (TE), a governing equation
for determining the number of neutral particles (e.g., neutrons and gamma rays) in a
multidimensional phase space. SNAP itself is not a particle transport application; SNAP
incorporates no actual physics in its available data, nor does it use numerical operators
specifically designed for particle transport. Rather, SNAP mimics the computational workload,
memory requirements, and communication patterns of PARTISn. The equation it solves has
been composed to use the same number of operations, use the same data layout, and load
elements of the arrays in approximately the same order. Although the equation SNAP solves
looks similar to the TE, it has no real world relevance.
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6.6.1 Hybrid (OpenMP+MPI) code performance

The solution to the time-dependent TE is a "flux™ function of seven independent variables: three
spatial (3-D spatial mesh), two angular (set of discrete ordinates, directions in which particles
travel), one energy (particle speeds binned into "groups”), and one temporal. PARTISN, and
therefore SNAP, uses domain decomposition over these dimensions to coherently distribute the
data and the tasks associated with solving the equation. The parallelization strategy is expected
to be the most efficient compromise between computing resources and the iterative strategy
necessary to converge the flux.

The iterative strategy is comprised of a set of two nested loops. These nested loops are
performed for each step of a time-dependent calculation, wherein any particular time step
requires information from the preceding one. No parallelization is performed over the temporal
domain. However, for time-dependent calculations two copies of the unknown flux must be
stored, each copy an array of the six remaining dimensions. The outer iterative loop involves
solving for the flux over the energy domain with updated information about coupling among the
energy groups. Typical calculations require tens to hundreds of groups, making the energy
domain suitable for threading with the nodes’ provided accelerator. The inner loop involves
sweeping across the entire spatial mesh along each discrete direction of the angular domain.
The spatial mesh may be immensely large. Therefore, SNAP spatially decomposes the
problem across nodes and communicates needed information according to the KBA method .
KBA is a transport-specific application of general parallel wavefront methods. Lastly, although
KBA efficiency is improved by pipelining operations according to the angle, current chipsets
operate best with vectorized operations. During a mesh sweep, SNAP operations are vectorized
over angles to take advantage of the modern hardware.

The code was compiled with Intel Fortran compiler ifort with compiler flags -mmic -O3 -
openmp' for running on the Xeon Phi in the native mode. The same compiler was used for
generating the executable that was run on the host with the same compiler flags except ‘—mmic’
option. The process/thread affinity settings used are:
KMP_AFFINITY=compact,granularity=fine and I|_MPI_PIN_DOMAIN=0omp.

The optimal combination of MPI tasks and OpenMP threads that gives the best performance was
investigated with this benchmark. Taking the smallest run time among three trials, Figure 16
shows the Solve Time used as the metric for this benchmark. The data for KNC shown on the
left half of the chart and that for the host SB on the right half.
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SNAP; Solve Time;
Input 16 Tasks:
nang=200,ng=32,npey=4,npez=4,nx,ny,nz=16,
ncels=4096
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Figure 16 SNAP performance (Solve Time) on KNC (left) and SB (right)

6.6.2 Vampir Profile to gauge coarse and fine grain parallelization effectiveness

A profile of SNAP is needed to reveal various compute time components. The profile may be
strongly influenced by scale and input. The input data set used for this analysis is the
Trinity/NERSCS “single-node” benchmark as described at [5]. For SNAP this data was gathered
using, 12 nodes, 48 MPI tasks and 4 OpenMP threads per task on Sandia’s TLCC2 system
called Chama with an mpiexec command as shown below:

mpiexec —loadbalance —n 48 ./snap ./small-4nodes-input ./small-4nodes.output
ScoreP and Vampir are the tools used to gather the desired trace information. For SNAP the

entire code was instrumented with ScoreP. Figure 17 shows the function profile as percentage of
the run time.
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All Processes, Average Exclusive Time per Function

50.0%% 40.0%% 3I0.0%% Z20.0%% 10.0%6 0.0 %%
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5.66% [ '$Somp parallel . ep.inputF90:93
3i61% [ !'$omp do @outerinputF90:241
3i48% [ 'Somp ordered .. _inputF20:200
5.492 [ geom_module param_calc_
2 73% [ '$omp do @outerinput FS0:140
2.38% E 'Somp do @innerinputF90: 219
2.36% [ '$omp do @sweep.inputF90:95
2. 25% E 'Somp do @dim.. . inputF20:136
1.58%% ! outer_module. otr_conw_
1.24% [] '$omp implicit .. wvinputF90:193
1.05% [] omp_set_lock

0.95% [] !$omp barrier ___inputF90:241
0.93% E 'Somp implicit ...rinput.F90:157
0.286%% n 'fomp do @transheinput.F20:150
0.71% [| MPI_Recw

0.71% [| 'Somp do @outerinputFe0:82
0.61% outer_module.outer_

0.53% 'Somp do @innerinputF90:80
0.39% sweep_module sweep_

0.38%% '$omp do @transhwinputF20:185
0.35% inner_module.inner_

0. 34% inner_module.inr_conw_

Figure 17 SNAP profile showing percentage run time fractions

For this particular analysis/input and run on Chama the large fraction of time spent in Allreduce
suggests that this benchmark may need careful study before it can run efficiently on the MIC.
The profile does show good use of OpenMP thread level parallelization in several functions.

6.6.3 Vectorization effectiveness

Using the same input used for gathering the comparative performance between SB and KNC
shown in Figure 15, picking the run with MPI tasks and OpenMP threads that yielded the best
performance, the performance gain with compiler generated auto-vectorization for the host SB
and the MIC measured on the Corner workstation is shown in Table 5. We see a 19.5%
improvement with vectorization on the MIC and a 13.2% improvement on the host SB.

Table 5 SNAP compiler auto vectorization performance for SB and KNC

Processor Solve time (secs) with Auto Solve time (secs) with No
Vectorization Auto Vectorization

Intel MIC (60 MPI tasks/4 3.4377e01 4.1082e01

threads)

Intel Sandy Bridge(16 MPI 1.5965e01 1.8086e01

tasks/2 threads)

We measured performance gain with vectorization of 18% on SB and about 39% on KNC. We
could measure the vectorization intensity with PMU counters as shown in the section on miniFE
for the compute intensive chargei and pushi functions. Initial attempts with TAU on Compton
led to run time failures only when the PAPI counters were turned on. This needs to be further
discussed with the TAU developers.

6.7 miniDFT

MiniDFT is a plane-wave density functional theory (DFT) mini-app for modeling materials.
Given a set of atomic coordinates and pseudopotentials, MiniDFT computes self-consistent
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solutions of the Kohn-Sham equations using either the LDA or PBE exchange-correlation
functionals. For each iteration of the self-consistent field cycle, the Fock matrix is constructed
and then diagonalized. To build the Fock matrix, Fast Fourier Transforms are used to transform
orbitals from the plane wave basis (where the kinetic energy is most readily competed ) to real
space (where the potential is evaluated ) and back. Davidson diagonalization is used to compute
the orbital energies and update the orbital coefficients.

6.7.1 Hybrid (OpenMP+MPI) code performance

The code was compiled with Intel Fortran compiler ifort with compiler flags -mmic -O3 -
openmp' for running on the Xeon Phi in the native mode. The same compiler was used for
generating the executable that was run on the host with the same compiler flags except ‘—mmic’
option. The process/thread affinity settings used are:
KMP_AFFINITY=compact,granularity=fine and I_MPI_PIN_DOMAIN=0mp.

A special input file called Mg0442.in was constructed after discussions with the author of
miniDFT at NERSC. This was because the input files provided with the trinity benchmark could
not be easily modified to permit runs within the 8GB GDDR5 on the MIC. It is also not quite
straight forward to construct weak-scaling-study inputs, as the computational complexity of the
key compute kernels (FFT, solver) has non-linear dependence on key input parameters. With
the Mg0442.in as input, the optimal combination of MP1 tasks and OpenMP threads that gives
the best performance was investigated with this benchmark. Taking the smallest run time among
three trials, Figure 17 shows the Benchmark_Time reported on output as the metric for this
benchmark. The data for KNC shown on the left half of the chart and that for the host SB on the
right half. Some combination of MPI tasks and OpenMP threads (1/240, 2/120, 4/60,
8/30,15/16,30/8) on the MIC led to run time failures with the MKL Cholesky solver aborting the
run. This needs to be investigated with the Intel development team.

miniDFT; input: Mg0442.in; lattice
dims: 4,4,2; ecut=100
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Figure 18 miniDFT performance (Benchmark Wall time) on KNC (left) and SB (right)

6.7.2 Vampir Profile to gauge coarse and fine grain parallelization effectiveness

A profile of miniDFT is needed to reveal various compute time components. The profile may be
strongly influenced by scale and input. The input data set used for this analysis is the
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Trinity/NERSCS “single-node” benchmark with input titania_3_120.in as described at [5]. For
miniDFT this data was gathered using, 3 nodes, 24 MPI tasks and 2 OpenMP threads per task
on Sandia’s TLCC2 system called Chama with an mpiexec command as shown below:

mpiexec —n 24 —npersocket 4 —npernode 8 ./mini_dft —in titania_3_120.in

ScoreP and Vampir are the tools used to gather the desired trace information. For miniDFT the
entire code was instrumented with ScoreP. Figure 19 shows the function profile as percentage of
the run time. From the figure it is clear that OpenMP paralleized loops constitute a small
fraction of the run time for miniDFT. However as miniDFT calls MKL math kernels like
ZGEMM and FFT it takes advantage of fine grain parallelism in MKL.
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Figure 19 miniDFT profile showing percentage run time fractions

6.7.3 Vectorization effectiveness

Using the same input used for gathering the comparative performance between SB and KNC
shown in Figure 18, picking the run with MPI tasks and OpenMP threads that yielded the best
performance, the performance gain with compiler generated auto-vectorization for the host SB
was measured on the Corner workstation and is shown in Table 6. We see a small 2%
improvement with vectorization on the host SB node. However this result is misleading in view
of the percentage of the peak FLOPS achieved in this benchmark that is discussed in the
following section 7. miniDFT computations are dominated by highly tuned library functions like
matrix multiply (ZGEMM) and FFT. This approach of gauging vectorization by comparing
performance with and without the compiler flag “-no-vec” affects only loops in the source code

that get vectorized and therefore highly optimized and vectorized library routines, which
dominate miniDFT are unaffected by this compiler flag.

Table 6 miniDFT compiler auto vectorization performance for SB and KNC

Processor Benchmark Wall time (secs) Benchmark Wall time (secs)
with Auto Vectorization with No Auto Vectorization
Intel Sandy Bridge(8MPI 48.19 49.21
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| tasks/4 threads)

6.8 NPB

NPB is used as a sanity check to gain confidence in understanding hybrid code performance and
tools for analysis. NPB BT-MZ solves a discretized version of unsteady, compressible Navier-
Stokes equations in three spatial dimensions. BT (Block Tri-diagonal) solves three sets of
uncoupled systems of equations, first in the X dimension, then in the Y dimension, and finally in
the Z dimension; these systems are block tri-diagonal with 5x5 blocks. The benchmark performs
200 time steps on a regular 3 dimensional grid. The code is implemented in 20 or so Fortran77
source modules. Multi-zone versions of NPB (NPB-M2Z) are designed to exploit multiple levels
of parallelism in applications and to test the effectiveness of multi-level and hybrid
parallelization paradigms and tools.

Taking the smallest run time among three trials, Figure 20 shows the Benchmark Time, reported
on output as a metric for this benchmark. The data for KNC shown on the left half of the chart
and that for the host SB on the right half. NPB has both good coarse grain and fine grain
parallelism. The best performance on MIC is just 1.3X slower than best on SB node.

NPB-MZ; CLASS B
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Figure 20 NPB BT-MZ performance (Wall Time) on KNC left and SB right
6.8.2 Vampir Profile to gauge coarse and fine grain parallelization effectiveness
A profile of NPB-MZ is needed to reveal various compute time components. The profile may be
strongly influenced by scale and input. The input data set used for this analysis is the CLASS B
benchmark. For NPB this data was gathered using, 1 node, 8 MP1 tasks and 2 OpenMP threads

per task on Sandia’s TLCC2 system called Chama with an mpiexec command as shown below:

mpiexec —n 8 ./bt-mz.B.8
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ScoreP and Vampir are the tools used to gather the desired trace information. For restricting the
size of the trace file generated by scoreP the code was modified to do only 20 time steps instead
of 200. For NPB the entire code was instrumented with ScoreP. Figure 21 shows the function
profile as percentage of the run time.

All Processes, Average Exclusive Time per Function
59.9% S0.0%  40.0% 30.0% 20.0% 10.0% 0.0%

g g g g g i MPI_Barrier

7.55% = MPI_Waitall
m 'Yomp do @initialize.input. F50
2.83% D 'Yomp do @z_solve.input.F52
12.7% D 'Jomp do @y_solve.input.F:52
;2.61% D "Yomp do @x_solve.input. 54
;2.11% D 'Yomp do @exact_rhs.input.F247
1.91% D "Yomp do @exact_rhs.input.F4&
1.74% E 'qomp do @exact_rhs. input.F147
0.82% r domp implicit barri.. itialize.input. F167
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0.37% | '$omp implicit barr...y_solve.input. F406
0,32 | '$omp implicit barr...<_solve.input. F407
0.21% | '4omp implicit barr... z_solve.input. F428

: 0.2% | '$omp do @exact_rhs.input.F31

! 0.13% | '$ompdo @rhs.input.F191

0.13% | '4omp do @rhs.input.F80

0.07% | 'Yomp do @rhs.input. 201

0.07% | '4omp implicit barri.. act_rhs input. 241

P 0.07% | '$omp do @initialize.input. F174

Figuré 21 NPB BT-MZ p'rofile éhowirig percentage run time fractions

6.8.3 Vectorization effectiveness

Using the same input used for gathering the comparative performance between SB and KNC
shown in Figure 20, picking the run with MPI tasks and OpenMP threads that yielded the best
performance, the performance gain with compiler generated auto-vectorization for the host SB
and the MIC measured on the Corner workstation is shown in Table 7. We see a 7% poorer
performance with vectorization on the MIC and a 6.2% improvement on the host SB. Cause for

the poorer performance on the MIC may be related to the large (16) threads per MPI task, but
needs to be investigated further.

Table 7 miniDFT compiler auto vectorization performance for SB and KNC

Processor

Benchmark Wall time (secs)
with Auto Vectorization

Benchmark Wall time (secs)
with No Auto Vectorization

Intel MIC (15 MPI tasks/16 23.73 22.16
threads)
Intel Sandy Bridge(16 MPI 17.47 18.56

tasks/2 threads)

7. FLOPS PERFORMANCE

A recent white paper by Leland et.al [5] investigates a response to a question raised in briefing to
Dr. John Holdren, the President’s Science Advisor, on the National Strategic Computing
Initiative being developed within the Office of Science and Technology Policy. The question,
raised in implicit form, was whether we should focus on improving the efficiency of
supercomputing systems and their use rather than on building, larger and ostensibly more
capable systems that are used at low efficiency. In that context one of the metrics often
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considered is the percentage of the peak FLOPS. This is motivated by the increasing gap
between sustained and peak performance and is quite relevant to an investigation on Intel MIC as
it is the first X86-64 TFLOPS processor. While the motivation for the above question was the
behavior of applications at very large scale, increasingly with the new generations of many-core
processor nodes often with a hardware FLOPS accelerator, achieving a good fraction of the peak
node performance is hugely important. Data gathered with the Trinity “single-node” benchmarks
sheds some light on this question. This data was gathered on Cielo using the CrayPat tool.
Figure 21 shows the measured performance as a percentage of the peak.

Trinity Benchmark Applications % of Peak
FLOP/s

MILC
SNAP

UMT
miniGHOST
miniFE
miniDFT
GTC

AMG

0.0% 10.0% 20.0% 30.0% 40.0% 50.0%
Figure 22 Trinity “single node” benchmarks FLOPS performance on Cielo

These results while signifying the need for significant performance optimization for the Trinity
benchmarks, should be viewed in the light of percentage of peak floating point performance (5%
— 20% and averages approximately 15%.) for highly tuned representative applications run on
the NSF Blue Waters system at the NCSA [7].

8. CONCLUSIONS AND FUTURE WORK
The data from the sections above may be summarized comparing the ratio of the run time taking
the best performance measured on MIC and the best performance on the host Sandy Bridge node.
Table 8 provides such a summary.

Table 8 Wall clock run time ratio Knights Corner / Sandy Bridge node

Benchmark | miniFE AMG SNAP UMT GTC MILC miniDFT
Best KNC/ 0.8 2.01 2.95 1.38 1.95 2.32 3.30
Best SB

From the data in Table 8, Figure 21, and, the vectorization effectiveness investigated for the
applications, a conclusion that emerges is that much effort is required to fully exploit the
architectural features of MIC to bring the performance in par with what Sandia users are used to
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seeing on the TLCC2 clusters like Chama. We do recognize that the current targeted use of
Xeon Phi is predominantly as a node accelerator to boost performance of compute intensive
kernels. In other words native mode is not the intended usage model for Knights Corner.
Publications in the literature [8], that show case 2X performance on the Knights Corner over
Sandy Bridge based nodes for certain classes of applications and algorithms is encouraging as it
attest to the potential of this architecture for applications that can exploit the many-cores/thread
architecture and also benefit from the 512 bit vector units. Based on our experience with the
Trinity benchmarks documented here, we may draw some conclusions in the light of our interest
in the Knights Landing processor targeted for Trinity.

1)

2)

3)

4)

5)

6)

The analysis procedures laid out here to evaluate hybrid programming models, namely
investigations to find the right balance between MPI tasks and threads at a node would be
a necessary step before looking to scale an application to 10,000 or so nodes. The
objective is to have as few MPI tasks as possible in a node to minimize data flow through
the high speed inter node network.

Performance profile as shown in the applications sections to identify time spent in the
application kernels, OpenMP or other thread parallel compute loops, OpenMP or
threading overheads, MP1 and MPI overheads is essential to optimally map applications
to these many-core architectures.

Effective vectorization and procedures to measure it will be very important to close the
gap between peak and sustained performance. Working with Intel to expose PMU
counters that help us measure various vector and memory usage performance metrics will
be very fruitful.

High performance thread level parallel MKL routines for the math kernels of interest to
Sandia like sparse matrix-vector operations will facilitate rapid port of applications.

A simple model of the observed miniFE KNC to Dual SB time ratio of 0.8 is:
(threads_SB/threads_ KNC)*(BW-per-Th_SB / BW-per-Th_KNC) ; i.e. greater
parallelism helps when MPI & OpenMP overheads are very small

For the other apps we are not seeing a performance improvement over dual SB due to
different reasons: higher MPI /OMP overhead with greater parallelism, compiler did not
take advantage of 512 bit SIMD, lower MKL performance , higher serial fraction &
poorer core performance
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