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Abstract

Four PV power plant variability simulation methods — no-smoothing, time average, Marcos, and
the wavelet variability model (WVM) — were compared to measured data from a 19MW PV
power plant to test the relative accuracy of each method. Errors (simulated vs. measured) were
quantified using five application-specific metrics: the largest down ramps, the largest up ramps,
the mean absolute error in matching the cumulative distribution of large ramps, the total energy
contained in down ramps over the entire period considered, total energy in down ramps on the
worst day. These errors we evaluated over timescales ranging from 1-second to 1-hour and over
plant sizes of 1 to 14MW and the total plant size of 19MWs to determine trends in model errors
as a function of timescale and plant size.

Overall, the WVM was found to most often have the smallest errors. The Marcos method also
often had small errors, including having the smallest errors of all methods at small PV plant sizes
(1 to 7MWs). The no-smoothing method had large errors and should not be used. The time
average method was an improvement over the no-smoothing method, but generally has larger
errors than the WVM and Marcos methods.
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Figure 1: Data availability. Black vertical lines indicate that both irradiance and plant power
output measurements were available. 9
Figure 2: Measured irradiance (left axis) and measured power (right axis) on January 16, 2012.10
Figure 3: Power output from individual 500kW inverters (different colored lines) over the whole
day (left) and zoomed in on the afternoon clear period (right). 10
Figure 4: Cumulative distributions of ramp rates at various timescales for measured and
simulated 19MW PV power plant output. The x-axis is the absolute value of the ramp rate, such
that both positive and negative ramps are included. The y-axis is zoomed in to show ramps that
occur 10% of the time or less to help illustrate the differences between the simulation models. 16
Figure 5: Errors (modeled minus measured) in the cumulative distributions of ramp rates for

measured and simulated 1I9MW PV power plant output. 17
Figure 6: Measured and simulated largest down ramps (top left) and up ramps (top right) at
various timescales. The bottom plots show the errors: modeled minus measured. 18
Figure 7: Mean absolute error in matching the measured cumulative distribution for ramp rates
larger than 10% of capacity. 19

Figure 8: Measured and simulated energy in down ramp rates greater than 10% per minute over
the whole time period of 349 days (top left) and on the single day with the most energy in the
down ramps (top right) at timescales of 1 to 60 seconds. The bottom plots show the errors:
modeled minus measured. 20
Figure 9: Plot showing the method with the smallest error for each metric and timescale. 21



Figure 10: Cumulative distributions of ramp rates over various plant sizes (MWs) for measured
and simulated 19MW PV power plant output. The x-axis is the absolute value of the ramp rate,
such that both positive and negative ramps are included. The y-axis is zoomed in to show ramps
that occur 10% of the time or less to help illustrate the differences between the simulation

models. 22
Figure 11: Errors (modeled minus measured) in the cumulative distributions of ramp rates for
measured and simulated PV power plant output at 60s over various PV plant sizes (MWs). 23
Figure 12: Measured and simulated largest down ramps (top left) and up ramps (top right) at
various plant sizes (MWs). The bottom plots show the errors: modeled minus measured. 24
Figure 13: Mean absolute error in matching the measured cumulative distribution for ramp rates
larger than 10% of capacity for various plant sizes (MWs). 25

Figure 14: Measured and simulated energy in down ramp rates greater than 10% per minute over
the whole time period of 349 days (top left) and on the single day with the most energy in the
down ramps (top right) over various plant sizes (MWs). The bottom plots show the errors:

modeled minus measured. 26
Figure 15: Plot showing the method with the smallest error for each metric and plant size
(MWs). All error metrics were computed based on 1-minute ramps. 27



1.  INTRODUCTION

As opposed to conventional generation sources such as coal or nuclear power plants, the output
from solar PV power plants is variable due the movement of the sun through the sky and clouds
obscuring the sun. This variability introduces new challenges to operation of the electric grid.

At short timescales, (seconds to minutes), quick changes in solar power output can cause
frequency or voltage to exceed allowable limits, which may cause additional tap change or
switching operations on transformers or capacitors that mean additional required maintenance or
early replacement of these devices. At longer timescales (minutes to hours), solar variability can
increase the amount of regulating and ramping reserves required to balance the transmission
system. Uncertainty about the magnitude of long-term (hours to days) solar fluctuations can
increase electricity production cost due to sub-optimal generation unit commitment and dispatch.

The variability of large solar PV power plants is particularly of concern since such fluctuations at
such plants can have a significant impact to the electric grid. This is especially important in small
balancing areas, such as islands. For example, concern over large PV plant variability in Puerto
Rico led the Puerto Rico Electric Power Authority (PREPA) [1] to institute strict regulations
requiring PV plant operators to limit changes in output to a rate of 10% per minute and to
provide frequency support. Large amounts of storage are required to comply with these
requirements, increasing project costs.

In order to understand the impact of solar variability to the electric grid, and to correctly size
storage for ramp rate control, it is necessary to have an accurate understanding of PV plant
variability. However, in most cases grid integration studies are run to determine the effects of
many different hypothetical PV scenarios, or PV plant developers need to size their plant storage
before the plant is operational. Thus, PV power plant simulation methods must be used to model
the variability of yet-to-be-built PV power plants.

Since often irradiance measurements from a point sensor are available at the location of the PV
power plant to be simulated, in this work we consider PV power plant simulation methods that
start with a single irradiance point sensor and scale the output to simulate a large PV power
plant. These models have not previously been compared to one another using the same validation
data set and error metrics, making it difficult for grid integration studies and PV developers to
understand the relative errors in each method.

In a previous work [2], we compared the methods, data requirements, and ease of
implementation of a variety of PV plant simulation models. Here, we quantitatively compare the
simulated PV power variability to the measured PV power variability at a large PV power plant.
We compare model performance both as a function of timescale (1-second to 1-hour) and as a
function of PV plant size (IMW to 14MW) to determine the best models for each application.



2. PV POWER PLANT SIMULATION METHODS

Four different variability simulation methods were considered. Each method starts with the
measurements from an irradiance point sensor timeseries and then applies smoothing to the
timeseries to simulate the spatially-averaged irradiance over the footprint of a PV plant. All four
methods are described in detail in [2], but, briefly, are:

1) No smoothing: the irradiance point sensor timeseries was used directly.

2) Time averaging: the point sensor timeseries was smoothed by taking a moving average

JA

with time window €S, where A is the PV plant area and CS is the cloud speed.

3) Marcos: The method described in Marcos, et al. [3] of a low-pass filter where the cutoff
0.02

fC
frequency, VA
4) WVM: The wavelet variability model (WVM) [4], which applies different smoothing at
different timescales based on the distance across the plant and the cloud speed.

Additional PV plant simulation methods based on satellite-derived irradiance were described in
[2], but we were unable to obtain the required data to include these models in our analysis.

Since each method’s output is the plant-averaged irradiance, an irradiance to power model must
be used to allow for direct comparison to plant AC power measurements. For all simulation
methods, we used the Sandia Array Performance Model (SAPM) [5] to convert the plant-average
irradiance into plant-total DC power. Since module temperature measurements were also
available at the PV plant, both plant-average irradiance and module temperature were input to
the SAPM (module temperature was assumed constant across the whole plant. The plant DC
power was converted to plant AC power using a linear DC to AC derate (e.g., as used in [6]).
While a more advanced DC to AC model such as the Sandia Inverter Model [7]could have been
used, the inverter manufacturer was not known, and acceptable performance was achieved with
the linear model. If the simulated AC power exceeded the rated capacity, then it was set equal to
the rated capacity to simulate inverter clipping.






3. PV POWER PLANT DATA

For this analysis, we used data measured at a 19MW PV power plant in southern Colorado. The
plant uses monocrystalline silicon PV modules mounted on single-axis trackers. For this study,
total AC power output of the plant and measured irradiance from a point sensor mounted on one
of the trackers (i.e., POA irradiance) at 1-second intervals were used. The PV plant area A was
computed from the plant footprint using satellite imagery to be approximately 0.79 km?.

Data was available from September 2011 until October 2012, though intermittent days were
missing data, mainly due to communication issues with the irradiance sensor, which reported
through a wireless mesh network that was at times unreliable. Figure 1 shows the data
availability. Even with the intermittent outages, data was available for 349 days with no strong
seasonal bias, so should accurately represent annual trends.

data availability

T T T T T T
N oata: 349 days

[ _Inodata

1 | 1 1 1 1 | |

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Mov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct MNov Dec

2011 2012

Figure 1: Data availability. Black vertical lines indicate that both irradiance and plant power output
measurements were available.

All of the PV plant simulation methods considered here use the measured irradiance to simulate
the plant power output. This assumes that the measured irradiance is representative of the general
trends in irradiance received by the PV modules. Figure 2 plots the POA irradiance and power
output on one day to test this assumption. During the middle of the day (e.g., 0900 to 1500),
clear periods and cloudy periods are indeed generally well-correlated between the irradiance and
the power output. However, during clear periods in mornings and evenings, the measured power
was at times significantly less than the measured irradiance in a way that leads to large positive
or negative ramps in the power that did not exist in the irradiance.

While we originally suspected that this morning and evening “step” behavior might have been
caused by different turn on/off times of the inverters, Figure 3 plots the 500kW inverters
separately and shows that this is not the case. Rather, the separate inverters have similar
timeseries during the clear periods, including a notable ramp down around 15:45. We are unsure
of the cause of this behavior.

Similar morning and evening ramps in power were observed on most other days with clear
morning or evening periods. Since these ramps are not related to cloud-caused variability but
rather seem to be a feature of this specific PV plant, we do not feel that they represent
predictable variability that the models could reasonably simulate, so we chose to eliminate times
before 0900 and after 1500 on all days to eliminate this irradiance to power mismatch.
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Figure 2: Measured irradiance (left axis) and measured power (right axis) on January 16, 2012.
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Figure 3: Power output from individual 500kW inverters (different colored lines) over the whole day
(left) and zoomed in on the afternoon clear period (right).
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4. QUANTIFICATION OF ERRORS

Since all of the methods start with only a single irradiance point sensor, the simulation methods
will not be able to exactly match the power output timeseries as the onset timing of clouds on the
point sensor may not exactly match the onset timing of cloud fronts covering a significant
amount of the PV modules leading to reduced plant power output. However, in this study we
evaluate the PV plant simulation models’ accuracy at matching the true PV plant power
variability. Thus, an accurate description of the changes in power output, rather than an exact
timeseries match, is desired.

The simulation models are likely to be used to understand the typical range of fluctuations to
advise grid operations (e.g., reserve requirements), and to determine storage capacity and control
needs to comply with ramp rate restrictions (e.g., as imposed in Puerto Rico). Thus, it is
important for the simulations to accurately match the distribution of power ramps and ramp rates,
and so our evaluation focuses on comparing the simulated distributions of PV plant power ramps
to the measured distributions of PV plant power ramps at various timescales. We use the metrics
described in the sections below to quantify the model performance.

4.1. Largest up and down ramps

The largest up and down ramps relate to the amount of reserves that must be carried on the grid
to ensure that electric service can be maintained when the PV ramps. If the magnitudes of the
largest ramps are over-predicted by the simulation models, excessive reserves may be procured
by the utility, increasing system operating cost. Conversely, if the magnitudes are under-
predicted, the lack of sufficient reserves may lead to a system imbalance.

The largest down ramp is also important to storage applications, as the ramp rate relates to the
rate at which the storage must inject power. Overestimating the largest ramp would lead to
inefficient control strategies and underestimating could lead to unintended ramp rate violations.

Ramp rates for each timescale were computed as:
t+lt-1

1 L
RR(t,E)=E Z P(t) - P(t - ©),
t'=t

where t increases in increments of ': t=1+n't where n is a positive integer.

The largest down ramp is computed as:

LDR(t) = min[I(RR(t)),
where ' is the timescale and RR('t) is the ramp rate timeseries, and negative values in RR('t)
indicate down ramps. Similarly, the largest up ramp is:

LUR(¥) = max (RR([t))).
Both LDR and LUR retain the RR units of power per timescale (e.g., watts per second). Note
that in Figures 6 and 12, the y-axis units are the generic units “% per timescale” to allow for easy
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comparison between timescales. If normalized to the same units (e.g., % of capacity per second),
the short-timescale ramp rates would be much larger than the long-timescale ramp rates.

4.2. Mean absolute error in matching the cumulative distribution of
ramps with magnitude larger than 10% of capacity

In addition to matching the maximum up and down ramp rates, it is also important to match the
cumulative distribution of all large ramps to give an accurate description of not just the worst
case but also the more common, large ramp rates. While this comparison can be done separately
at distinct intervals by e.g., testing the simulated number of down ramps larger than 10% of
capacity, then the simulated number of down ramps larger than 20% of capacity, etc, we instead
compute the difference between the cumulative distribution of measured versus simulated ramp
rates for ramps larger than 10% of capacity.

We intend this metric to apply to balancing reserve decisions which are concerned with large
changes in power output. Thus, we focus on large magnitude ramps at all timescales and evaluate
the mean absolute error in matching the cumulative distribution of ramps larger than 10% of
capacity. This is distinct from the metric described in the Section 4.3, which focused on the ramp
rates. We define ramps as changes in power output:

ramp(t, t') = ' RR(t,t))

such that, for example, a 10% per min ramp rate and a 10% per second ramp rate are both
equivalently a 10% ramp.

The error, €, in matching the distribution of ramps at each ramp magnitude, M, is given by:
e(M,lt) = P(‘rampsim(t,@)‘ > M) - P(jramp . (t, /)] > M)

For example, if the simulated probability of a 1-minute ramp larger than 15% of capacity was
1.5% and the measured probability of a 1-minute ramp larger 15% of capacity was 2%, then:
e(15% of capacity, 1min) =2% - 1.5% = 0.5%,
The mean absolute error in matching the cumulative distribution of ramps larger than 10% of
capacity is then:
M = maximum ramp

MAE™™ > 10%(i¢) = Z e(M, )
M = 10% of capacity

ramp > 10% . . .. . . . .
MAE™ear " is unitless since it is the difference in the frequency of occurrence (i.e., the unitless

probability) of ramps. It is expressed as a percentage of occurrence during daytime in Figures 7
and 13.

4.3. Power in down ramp rates greater than 10% of capacity per
minute

The power in down ramps at a rate faster than 10% of rated capacity per minute is a proxy for the
amount of storage required to comply with the Puerto Rico regulation that ramps must not

exceed a rate of 10% per minute. We assume that up ramps can be controlled through other
means (e.g., inverter control), but that down ramps will have to be mitigated with energy storage.
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Although it is expected that the Puerto Rico ramp restriction will be enforced at 2-second
intervals (e.g., 0.33% per 2-seconds), we evaluate the energy in down ramps (with rate faster
than 10% per minute) at a variety of timescales.

The power in down ramps PDR is computed as:

0%
0, RR(t,[t) >- —
PDR(L, ) = o mmuteH
RR(t,t)) + — x It else
minute

When the ramp rate is not less than 10% per minute down, the PDR is zero. For a down ramp
faster than 10% per minute, the PDR is the amount of power by which the ramp exceeds the 10%

per minute rate. Thus, the magnitude of PDR is amount by which the down ramp exceeds a rate
1.9OMW

of 10% per minute. For example, a 1.9MW per 30-second down ramp, 30sec | at the
19MW PV plant (i.e., a 20% per minute ramp rate) would be calculated to have a down ramp
power

-1.9MW  1.9MW - 0.95MW
+— * 30sec = ———— * 30sec =- 0.95SMW
30sec minute 30sec .

PDR =

By definition, PDR is always negative (indicating a loss of power due to a down ramp). In
Figures 8 and 14, [PDR| is plotted to give a positive sign, and thus corresponds to the power that
must be injected by storage to reduce the ramp to a rate of 10% of capacity per minute.

We apply two metrics based on the power in the down ramps: (1) the average daily power in
down ramps over the whole time period, relating to the total amount of power required to be
injected by the energy storage, and (2) the most energy in down ramps on a single day, which,
assuming that the storage can be recharged overnight, will relate to the capacity of storage
required.

The power in down ramp rates greater than 10% per minute over all days is

1
PDR fy=— Z PDR(4,t),
ave. per day( ) number of days (®€)

all days
On the worst day:
PDR, 1 gay (1) = Z PDR(t, 1)
worst day

Since the PV output cannot be perfectly predicted, and due to battery state of charge limitations,
the actual required storage will be larger than, but related to, these calculated values for power in
fast down ramp rates.
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5. RESULTS

Two separate analyses were undertaken to (a) quantify the models’ performance as a function of
timescale, and (b) quantify the models’ performance as a function of PV plant size.

5.1. Model Performance by Timescale

In this section, we test model performance by timescale. In all cases, the total PV plant output
(19MW rated capacity) was compared to the simulated output using the four plant simulation
models. Each model was run to simulate the I9MW PV power plant, creating a simulated power
output timeseries over the whole period of record.

5.1.1. Qualitative Analysis as a Function of Timescale

As a precursor to computing the quantitative metrics described in Section 4, we first calculated
the cumulative distributions of ramp rates at timescales ranging from 1-second to 1-hour for each
simulated timeseries, as well as for the measured power output timeseries. The comparison of the
cumulative distributions at 1-second to 15-minute timescales is shown in Figure 4, and can be
used to qualitatively compare the modeled variability to the measured variability.

In Figure 4, the x-axis is the absolute value of the ramp rate, meaning that both positive and
negative ramps were combined. In general, both positive and negative ramps will occur with
equal probability, so combining the ramps using the absolute value is common. For specific
applications such as determining energy storage requirements, it may be of interest to separate
the up and down ramps, as we present later in some of the quantitative metrics. The y-axis in
Figure 4 is the percentage of ramps during the 0900 to 1500 interval on all 361 days that
exceeded the ramp magnitude on the x-axis. For example, the measured cumulative distribution
shows that approximately 4% of all ramp rates were larger than 10% of capacity per minute,
such that there were approximately 5200 such ramps over the 349 day period.

It can be seen in Figure 4 that the no smoothing case overestimated the probabilities of large
ramps. This overestimation occurs because the no smoothing case does not account for the
spatial smoothing that occurs across the 19MW PV plant. At longer timescales, the effect of
spatial smoothing across the plant is small, and all four methods converge to have close
agreement with the measured cumulative distribution. Beyond these general observations,
though, it is difficult to differentiate between the models based on Figure 4.
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Figure 4: Cumulative distributions of ramp rates at various timescales for measured and simulated
19MW PV power plant output. The x-axis is the absolute value of the ramp rate, such that both positive
and negative ramps are included. The y-axis is zoomed in to show ramps that occur 10% of the time or
less to help illustrate the differences between the simulation models.

To more directly compare these differences in modeled versus measured cumulative
distributions, Figure 5 shows the errors of each model in matching the cumulative distributions
of ramp rates. The error was computed as the simulated probabilities of ramp rates minus the
measured probabilities of ramp rates. In this way, positive y-axis values in Figure 5 indicate the
model overestimated the ramp probability for the ramp magnitude listed on the y-axis, and
conversely negative values mean the ramp probability was underestimated. For example, the no-
smoothing case had a 2% error at predicting 10% per minute ramps, meaning that it estimated
2% more ramps than actually occurred in the power output.

As seen in the cumulative distributions directly (Figure 4), the no smoothing case always has
positive errors, meaning that it always overestimates the ramp rate probabilities. The time
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average method was similarly found to overestimate the probability of large ramps (e.g., greater
than 10% of capacity) at all timescales, likely due to its simplistic spatial smoothing model.

The Marcos and WVM models had less consistent behavior across the various timescales. Both
methods typically had the smallest errors at each timescales. The WVM method had negative
errors at small ramp magnitudes at all timescales. The Marcos method similarly had negative
errors at shorter timescales, though these errors turned positive at the longest timescales (>10-
minutes).
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Figure 5: Errors (modeled minus measured) in the cumulative distributions of ramp rates for measured
and simulated 1I9MW PV power plant output.

5.1.2. Quantitative Analysis as a Function of Timescale

To quantify our observations from the cumulative distribution comparisons in section 5.1.1, we
applied the quantitative metrics defined in section 4. The largest down ramps (LDRs) and largest
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down ramps (LURSs) for the measured AC power and the simulated AC powers are shown in
Figure 6. Note that down ramps are plotted as negative values, such that the ramps largest
magnitude ramps are plotted at the bottom of the largest down ramps plot. In general, the largest
ramps (both up and down) increase in magnitude as the timescale increases, since the longer time
allows for further deviation from the previous value (note the ramp rates generally decrease with
increasing timescale). The time average, Marcos, and WVM simulation methods all capture the
increasing ramp magnitude with increasing timescale behavior. The no smoothing simulation
method, however, predicts roughly constant largest ramp magnitudes at all timescales. At the
longest timescales (~300-seconds and longer), all simulation methods converge to have similar
accuracy.
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Figure 6: Measured and simulated largest down ramps (top left) and up ramps (top right) at various
timescales. The bottom plots show the errors: modeled minus measured.

The simulation methods are most different at short timescales. Spatial smoothing has the biggest
effect at the 1-second timescale; such that the 1I9MW plant measured largest ramp rates are much
smaller than the no-smoothing simulated ramp rates. However, the other 3 simulation methods
do a good job of modeling the spatial smoothing, and have small errors at the 1-second
timescale. As the timescale increases, the no-smoothing simulated largest ramps gradually
approach the measured largest ramps. The Marcos method under predicts the largest ramp
magnitudes at timescales of 10-seconds to 2-minutes. The time-average method over predicts the
largest ramp magnitudes at these same timescales, but with smaller magnitude errors than the
Marcos method. The WVM has the smallest magnitude errors at these mid-range timescales, and
most often over predicts the largest ramp magnitudes. At timescales of 5-minutes and longer, all
methods have similar performance.

18



While the largest ramps have direct applications to reserves and storage, they describe only a a
single point in the distribution of ramp rates. To account for all large ramps, Figure 7 shows the
mean absolute error in matching the measured cumulative distribution of ramps larger than 10%

. ramp > 10%
of capacity (MAE odf ),

0.6
no smoothing
time avg.
057 Marcos
— WM

[%]
o
i
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Figure 7: Mean absolute error in matching the measured cumulative distribution for ramp rates larger
than 10% of capacity.

The no smoothing method has the largest errors at matching the cumulative distribution of large
ramps at timescales of 30-minutes and shorter; at 1-hour all methods have similar performance.
p > 10%

The MAE™ " for the no-smoothing method follows a parabolic shape: errors are highest at

mid-timescales (maximum error at the 60-second timescale) and lowest at the shortest and
longest timescales. While the no smoothing method most overestimates the magnitudes or ramps

at the shortest timescales (as seen in Figure 6), the short-timescale ramp magnitudes are small,
. . ramp > 10%
meaning there are few ramps greater than 10% of capacity and MAE™ s is small. As the

timescale increases, the ramp magnitudes increase while the error in the no smoothing method is

still substantial, leading to large errors at mid-timescales. At the longer timescales, the errors in
. ramp > 10% .
the no-smoothing method decrease, and MAE™ st becomes small again.

MAE™™P > 10% . . )
The odf  values for the other three simulation methods show less pattern. The time

averaging and Marcos methods have a weak parabolic shape (with maximums at 5-minutes and

. . . . . ramp > 10% . .
10-minutes, repectively), while the WVM method increases in MAE™ e with Increasing

timescale. The WVM and Marcos methods have comparable performance at short timescales (1
to 60-seconds), while the WVM has better performance at longer timescales (5-minutes to 15-
minutes). At the longest timescales (30-minutes and 1-hour), all four methods have similar

ramp > 10%
MAE™Zear  values.
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To test the simulation methods’ accuracies at matching the down ramps frequency and
magnitudes, Figure 8 shows the power in down ramp rates larger than 10% of capacity per
minute. Both the power in down ramps over whole time period (349 days) and on the single
worst day are shown.
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Figure 8: Measured and simulated power in down ramp rates (PDR) at a rate faster than 10% per minute
averaged over the whole time period of 349 days (top left) and on the single day with the most energy in
the down ramps (top right) at timescales of 1 to 60 seconds. The bottom plots show the errors: modeled
minus measured.

The magnitude of power in measured down ramps, both over the whole time period and over the
single day, decreases slightly with increasing timescale. This occurs because ramp rates faster
than 10% at short timescales may be canceled out by ramps the other direction such that at
longer timescales they do not exceed 10% of capacity. For example, a 1-second down ramp of
20% of capacity followed by 9 1-second up ramps of 2% would have some PDR at the 1-second
timescale but zero PDR at the 10-second timescale (since the 10-second ramp would be only -
2%). All four methods correctly predict this decrease, but with varying levels of accuracy. The
no smoothing method overestimates the energy in down ramps at all timescales, much more so
than the other methods. This would lead to an expensive oversizing of storage!

The time average, Marcos, and WVM methods all predicted down ramp power values much
better than the no-smoothing method. The time averaging method overestimated the magnitude
of power in the down ramps, while the Marcos method underestimated this power. The WVM
slightly overestimated the magnitude of power in down ramps, but generally had the best
performance of the four models.
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To summarize the results, Figure 9 shows the method with the smallest error for each timescale
and error metric pair. In general, the WVM is found to have the smallest errors at mid-timescales
(e.g., 20 to 60-seconds). Although other trends may exist in Figure 9, such as the time averaging
method best matching the LDR and LUR at the shortest timescales (1-second and 10-seconds),
and the Marcos method best matching the LDR and LUR at long timescales (e.g., >5-minutes),
the error magnitudes at these shortest and longest timescales were generally of similar magnitude
among the time average, Marcos, and WVM methods.
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Figure 9: Plot showing the method with the smallest error for each metric and timescale.

5.2. Model Performance by Plant Size

The analysis in section 5.1 showed the models’ performance as a function of timescale at
matching the total I9MW PV plant output. Since inverter-level PV plant output data was also
available at the same plant, in this section we test the model performance as a function of plant
size. This granular inverter data was only available from 28 500kW inverters at the plant (rather
than the full 38), limiting the plant size analysis to a maximum of 14MW. Thus, we analyze each
model’s performance at matching the 60-second ramp rates for plant sizes ranging from 1MW to
14MWs.

5.2.1. Qualitative Analysis as a Function of Plant Size

Figure 10 shows the cumulative distribution of ramp rates at a selection of the plant sizes
considered. The ramp rates on the x-axis in Figure 10 are shown as a percent of plant capacity to
better allow for comparison between plant sizes. We term these ramps as a percent of capacity
“relative” ramps. For the measured distributions, the probabilities of large relative ramps always
decrease with increasing plant size. It is important to remember, though, that the magnitude of
ramps (in MW) will increase as the plant size increases.

At small plant sizes, all four methods closely match the cumulative distribution of ramp rates.
Small plant sizes have small amounts of smoothing, analogous to the long timescales section 5.1,

21



which leads to this similar performance among all models. As the plant size increases, the no-
smoothing method becomes worse at matching the measured distribution, always overestimating
the probability of large ramps. The no-smoothing method produces a nearly identical distribution
of relative ramp rates at every plant size since, since by definition it doesn’t account for
smoothing across the plant. The time averaging method closer matches the distributions of larger
plant sizes than the no-smoothing method, but still overestimates the ramp probabilities. The
Marcos and WVM methods both underestimate the large ramp probabilities for large plant sizes.
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Figure 10: Cumulative distributions of ramp rates over various plant sizes (MWs) for measured and
simulated 19MW PV power plant output. The x-axis is the absolute value of the ramp rate, such that both
positive and negative ramps are included. The y-axis is zoomed in to show ramps that occur 10% of the
time or less to help illustrate the differences between the simulation models.

Figure 11 shows the errors at matching the cumulative distributions of ramp rates. As in the
timescale analysis, the no smoothing method has the largest errors, and its errors tend to peak at
ramp rates of around 10% of capacity per minute. The other three methods typically under
predict the occurrence of small and medium ramp rates; the upper threshold for this over

22



prediction changes by model and by plant size. At the largest plant sizes, the Marcos and WVM
methods both under predict the occurrence of nearly all relative ramp rates. This is consistent
with the 19MW total plant analysis in section 5.1, except that for the I9MW plant the WVM was
found to have slightly positive errors at relative ramp rates above approximately 20% of capacity
per minute.
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Figure 11: Errors (modeled minus measured) in the cumulative distributions of ramp rates for measured
and simulated PV power plant output at 60s over various PV plant sizes (MWs).

5.2.2. Quantitative Analysis as a Function of Plant Size

The largest down ramps (LDR) and largest up ramps (LUR) are plotted in Figure 12 as relative
ramp rates. The measured relative ramp rates roughly follow a trend of decreasing as capacity
increases, as expected due to the increase spatial smoothing across larger plants. This trend is not
linear, though, as the largest relative ramps decrease significantly from 1MW to 3MW, then level
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off and have little decrease from 3MW to 14MWs. This behavior may due to the order in which
inverters were added to create plants larger than 3MWs. The 3MW plant consisted of six
inverters which combined spanned the total east-west extent of the 199MW PV plant. Additional
inverters south of these six were added to create larger plant sizes, increasing the north-south
diversity but leaving the east-west diversity unchanged.

Consistent with section 5.1, the Marcos method always underestimates the largest relative ramps,
while the other three methods always overestimate the magnitudes of these largest relative
ramps. At the IMW plant size, the Marcos and WVM methods overestimate the largest ramp
magnitudes; the time average and no-smoothing methods closer match the measured largest
ramps at this smallest plant size. As the plant size increases, the WVM generally matches the
largest ramps best.
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Figure 12: Measured and simulated largest down ramps (top left) and up ramps (top right) at various
plant sizes (MWs). The bottom plots show the errors: modeled minus measured.

The mean absolute errors in matching the ramps larger than 10% of capacity are shown in Figure
13. The no-smoothing method’s errors become larger as the plant size (and spatial smoothing)
increases. The error increases approximately linearly with increasing plant size for plant sizes

. . ramp > 10%
between 3MW and 14MW. The time average method, conversely, has decreasing MAE™ ear ™ in

this 3SMW to 14MW range. The Marcos and WVM methods have similar small errors at small
plant sizes (1 to 7MWs), though the Marcos method error increases to larger than the time

. . . M AEramp> 10% .
averaging method at larger plant sizes. This (Marcos edf  Jarger than time average

ramp > 10%_ : . - .
MAE™ ot ) is not consistent with the 19MW analysis in section 5.1, where the Marcos method

had smaller error than the time average method, suggesting that the Marcos error may reduce and
the time average error may increase as the plant size is further increased. The WVM has
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ramp > 10%

consistently small MAE™ Zear (less than 0.07%) at all considered plant sizes, and these values

. . ramp > 10% . i
are consistent with the MAE™ "ear ~ value found for the I9MW plant in section 5.1.
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Figure 13: Mean absolute error in matching the measured cumulative distribution for ramp rates larger
than 10% of capacity for various plant sizes (MWs).

Figure 14 shows the measured and simulated power in the down ramp rates faster than 10% per

PDR

minute averaged per day over the 349 days ("~ awe perday(@)), and for the worst day (

PDR o1 day(m)). The no-smoothing method predicts identical power in down ramps for all plant
sizes since it does not account for spatial smoothing. The very slight deviation in predicted
energy across the different plant sizes is due to missing data: when data was not available for a
certain inverter, all plant sizes that required that inverter were removed from the analysis for that
day. This is the cause of the slight step between 13MW and 14MW in the no smoothing average
daily PDR shown in the top left of Figure 14.

The measured PDR decreases as plant size increase. All methods besides the no smoothing
method correctly capture this behavior. For the average over the whole time period, the time
average, Marcos, and WVM methods all have similar magnitudes of errors, though the Marcos
method is slightly better at matching small plant (1-5SMW) PDRs than the other methods. For the
worst day, the WVM most closely captures the shape of the measured PDR. The time average
method always over predicts the PDR by a approximately the same amount at each plant size,
while the Marcos method always under predicts the PDR, especially at large plant sizes.
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Figure 14: Measured and simulated power in down ramp rates greater than 10% per minute average per
day over the whole time period of 349 days (top left) and on the single day with the most energy in the
down ramps (top right) over various plant sizes (MWSs). The bottom plots show the errors: modeled minus

measured.

Finally, Figure 15 displays the best performing method for each plant size and error metric
combination. It is generally observed that the Marcos method most often has the smallest error
for small plant sizes (1-6MW), while the WVM most often has the smallest errors for larger
plant sizes (7-14MW). This is consistent with the 1I9MW total plant comparison in section 5.1,
where the WVM was mostly found to have the smallest errors at the 1-minute timescale. The
Marcos method was developed using data from PV plants sized between 0.1IMW and 9.5MW
[3]; this may be why it performs best at the smaller plant sizes. Similarly, the WVM was
primarily validated at a 48MW PV plant [4], which may explain its best performance at the

larger plants.
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Figure 15: Plot showing the method with the smallest error for each metric and plant size (MWs). All
error metrics were computed based on 1-minute ramps.
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6. CONCLUSIONS

Errors in four PV power plant variability simulation methods — no-smoothing, time average,
Marcos, and WVM — were analyzed as both a function of timescale and as a function of PV plant
size. Five application-specific error metrics were created to test the performance of each method
at matching the measured power variability.

The no-smoothing method was found to have the largest errors at nearly all timescales and plant
sizes since it does not account for the spatial smoothing of irradiance across the plant and so
always overestimated the magnitude and frequency of large ramps. The no-smoothing errors
were the largest at short timescales and large PV plant sizes, when spatial smoothing has the
strongest effect on plant power variability.

The time average method had reduced errors compared to the no-smoothing method, since the
time averaging method accounts for spatial smoothing. However, the time average method still
typically overestimated the probability and frequency of large ramps. Especially, at mid-
timescales (30-seconds to 10-minutes) and small plant sizes (1-9MWs), the time average method
had larger errors than both the Marcos and WVM methods.

The time average method assumes that clouds travel linearly across the length of the PV plant at
a fixed speed without distortion; in reality clouds do not travel in such fixed patterns. Thus, the
time average method likely overestimates the correlations between locations within the PV plant
and, hence, overestimates the ramp rates.

The Marcos method underestimated the magnitude of the largest down and up ramps at short and
mid-timescales (1-second to 2-minutes), and at all plant sizes (1 to 14MWs, 19MWs). However,
for small plant sizes (1 to 6MWs), the Marcos method had the smallest mean absolute error in
matching the cumulative distribution of large ramps. The Marcos method also had the smallest
error in estimating the average daily power in large down ramps for small plant sizes (1 to
6MWs), and had the smallest error in estimating the worst daily power in large ramps for very
small plant sizes (1 to 3MW).

The Marcos method uses a low pass filter defined from a cutoff frequency seen in a Fourier
Transform to smooth fluctuations. While using a cutoff frequency in this manner appears to
appropriately smooth the total variability, it also appears to overly smooth the largest ramps,
leading to the Marcos model’s poor performance at simulating the largest ramps. We also note
that the Marcos method also applies the same amount of smoothing each day, since the
smoothing is based on the cutoff frequency which depends on the plant size but not the daily
cloud speed. This will cause the Marcos method to have different performance in locations with
different cloud speeds. For example, slow clouds speeds in locations such as Hawaii lead to more
spatial smoothing than locations with fast cloud speeds. The Marcos method may underestimate
the smoothing (and hence, overestimate the ramp magnitudes and frequencies) in such slow
cloud speed locations. The Marcos method was developed using data from small PV plants
(0.IMW to 9.5MW [3]), which explain its better performance for small PV plants.
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The WVM method most often had the smallest errors. Across all timescales for the I9MW plant,
the WVM had errors that were the smallest, or comparable to the smallest errors, for all error
metrics. Similarly, for plant sizes of 7MW to 14MWs, the WVM had the smallest errors for all
metrics

The WVM simulates correlations between PV modules within the PV plant as a decaying
function of distance and timescales: as distance between modules increases or timescale
decreases, pairs of modules within the plant become less correlated. The average correlation
among all module pairs in the PV plant is inversely related to the amount of smoothing. For
consistency among all simulation methods, we only input the plant size, not the plant shape, to
the simulation methods. The exponential shape of the decay of total energy in down ramps
simulated by the WVM occurs since the smoothing increases exponentially as the plant size
increases. However, the measured total energy in down ramps takes a less continuous form
which may be due to order in which inverters were added to create the larger plant sizes: the
3MW plant size consisted of six inverters which covered the total east-west extent of the 19MW
plant, larger plant sizes were created by adding inverters which were south of these original six.

The WVM is the only method considered that can account for the plant shape, but it was not
tested in this way to allow for equal comparison between the simulation models. It is possible
that better WVM model performance could be obtained by accounting for the plant shape.
Further improvement may also be achieved through an anisotropic correlation model (such as
[8]) which accounts for the cloud motion direction relative to the PV plant.

Overall, among the models tested, the WVM most often had the smallest errors both with
varying timescale and with varying PV plant size. The Marcos method also typically had small
errors, and especially had small errors at small PV plant sizes (1 to 6MWs). The no-smoothing
method should only be used as a rough approximation for very small plants or at very long
timescales. The time average method is an improvement over the no-smoothing method, and is
easy to implement, but generally has larger errors than the WVM and Marcos methods.
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