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Abstract 
 

This report describes a simple, quasi-static, closed-form, parameterized model that 
predicts the contact forces acting between axially-engaging electrical contact 
receptacles and a pin.  This approach is useful for design studies and reduced-order 
mechanism modeling, where receptacle-pin insertion forces have traditionally been 
difficult to quantify without high-fidelity (e.g. rigid body dynamics, finite element 
analysis) simulations.  A Matlab implementation of the model is provided and is 
demonstrated for three receptacle geometries.  Results are compared to rigid body 
dynamics simulations for the first two geometries and experimental insertion force 
measurements for the third. 
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1. INTRODUCTION 
 
The operation of many mechanisms within the Sandia National Laboratories portfolio involves 
the closure of electrical circuits.  A common geometry used for electrical circuit closure is that of 
a bifurcated receptacle expanding over a pin as in Figure 1.  In the past, the forces associated 
with the receptacle-to-pin interface have been challenging to predict over the entirety of the 
stroke without direct use of the solid model geometry and contact algorithms in a full-fidelity 
rigid body dynamics (RBD) model or finite element model.  In lieu of this full-fidelity approach, 
this report describes a simple method for predicting the contact forces in closed-form, enabling 
the inclusion of greater fidelity in efficient, reduced-order modeling approaches.  Approaches 
such as ODE-based formulations of mechanisms in Matlab are valuable for early design studies 
or statistical performance characterization (e.g. Monte Carlo analysis and robust optimization). 
 
The receptacle-pin contact model is documented in this report with extensive detail.  The 
primary underlying assumption in the creation of this model is that the receptacle and pin remain 
in continuous contact.  This assumption implies that pin insertion must be effectively quasi-static 
such that the receptacle arms do not “bounce” or otherwise lose contact with the pin.  The model 
is fully parameterized to allow studies of sensitivity of forces to receptacle/pin geometry 
(including imperfection in the receptacle arms) and receptacle stiffness.  The entire mathematical 
approach is discussed in detail in Section 2.  The model is validated for test cases against RBD 
simulations and experimental measurements in Section 3.  A functionalized version of the model 
for use in Matlab and example input decks are provided in Appendix B. 
 

 
Figure 1.  Bifurcated receptacle engaging a pin. 
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2. CONTACT MODELING 
 
This section describes the receptacle-pin contact model in considerable detail.  The ultimate goal 
of the contact model is to enable determination of the contact forces acting on a receptacle (or 
pin) as insertion progresses.  In Section 2.1, the relationship between the contact forces, the 
receptacle stiffness, and receptacle deflection is established.  In Section 2.2, kinematic equations 
are derived based on a geometric parameterization of the receptacle and pin geometries.  Section 
2.3 addresses some issues of compatibility in the geometric parameterization, Section 2.4 makes 
some distinctions between modeling of an engaging receptacle vs. a disengaging receptacle, and 
Section 2.5 discusses important numerical considerations when using the model as part of a 
larger dynamic simulation.  
 

2.1. Forces 
This section discusses the relationship between the receptacle deflection and contact force.  A 
receptacle arm is essentially a cantilever beam whose deflection may be approximated via a 
pseudo-rigid body model (Howell, 2001) as 
 
 K Mθ = , (1.1) 
 
where M  is the applied moment, θ  is the rigid body rotation of the beam, and K  is its stiffness.  
This approach effectively places a torsional spring at the cantilever end of the beam that resists 
deflection due to an applied force (or equivalent moment).  Figure 2 shows a notional geometry 
with this approximation applied to the receptacle arm.  For quasi-static motion, the normal and 
tangential components nF  and tF , respectively, contribute to the applied moment M  as 
 
 n mn t mtFK L F Lθ = − , (1.2) 
 
where the moment arms mnL  and mtL  are the perpendicular distances from point O  to the line of 
action of nF  and tF , respectively.  For a particular receptacle and pin geometry, the values of θ , 

mnL , and mtL  may be determined from knowledge of the contact point and orientation of the 
contact surfaces.  Finding these variables from kinematic considerations is the purpose of Section 
2.2; for now, the goal is to determine expressions for the normal and tangential forces with the 
other variables taken as known.  First, a constitutive law (Coulomb friction) is used to relate the 
normal and tangential forces as 
 
 t nF Fµ= , (1.3)  
 
where µ  is the friction coefficient.  Substituting (1.3) into (1.2) and rearranging yields an 
equation for the normal force, 
 

 n
mn mt

F
L L

Kθ
m−

= . (1.4) 
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Equation (1.4) can be solved for the normal force and then the tangential force is easily found 
from (1.3).  The normal and tangential forces can then be decomposed into the x  and y  
coordinate directions (reference Figure 2) as 
 
 sin cosx n tF F Fα α= − −  (1.5) 
and 
 cos siny n tFF Fα α= − , (1.6) 
 
where α  is the angle of the outward pin surface normal relative to the y-axis (positive sense 
determined by right hand rule, see Figure 2).  The force xF  is often the primary quantity of 
interest and is known as the insertion force. 
 

 
Figure 2.  Simple example of receptacle-pin insertion. 

 
 

2.2. Kinematic Equations 
In this section, the kinematic equations for the receptacle deflection θ , the angle of the normal 
force α , and the moment arms mnL  and mtL  are derived.  The equations are derived via vector 
loops.  Typically, one loop is used to determine θ  (and α  if necessary) while a second loop is 
used to determine mnL  and mtL .  Equations are found in a piece-wise sense; that is, separate sets 
of equations are used for receptacle contact with the pin tip, cone, round, and barrel, respectively.  
Configurations of the receptacle and pin that occur at the transitions between equation sets (e.g. 
in the transition from pin cone to round or round to barrel) are called “critical values” and are 
determined as well. 
 
To add additional utility to the model, the kinematic equations throughout the following sub-
sections include initial angular imperfection in the receptacle arm, 0θ  (not shown in Figure 2).  
The total angular deflection from horizontal ( x -direction in Figure 2) is thus 
 
  *

0θ θ θ= + , (1.7) 
 
where 0θ  is the initial (unstressed) angular deflection from horizontal and θ  is the incremental 
angular deflection due to applied forces.  Because 0θ  describes an unstressed configuration, only 

nF  

tF  

O  

θ  

x  

y  

Direction of motion 
Velocity, v  

α  

x  
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the incremental deflection θ  appears in the normal force expression, (1.4).  For the pseudo-rigid 
body model to remain valid, it is a good rule of thumb that θ  must be sufficiently small to satisfy 
the small angle approximation. 
 

2.2.1. Receptacle on Pin Tip 
 
Figure 3 shows a simplified geometric diagram for a receptacle arm in contact with a pin tip 
(image is not to typical scale in order to show the different geometric features with clarity).  In 
this diagram, most dimensions are fixed geometric parameters, though some dimensions are 
variables associated with the motion of the receptacle arm (e.g. d , θ , mnL , and mtL ). 

 
Figure 3.  Geometric diagram for receptacle on pin tip. 

 
As the receptacle arm engages the pin (moves to the right), the separation distance, d , decreases.  
Letting the initial separation distance be denoted as 0d , the separation distance as a function of 
receptacle displacement x  from this initial configuration is 
 
 0d xd= − . (1.8) 
 
Referring to Figure 3, the vector loop equations are 
 
 ( ) * *sin sin cos 0t t bd R R LR α θ θ+ − + − − =  (1.9) 
and 
 ( ) * *cos cos sin 0t R b Lh R α θ θ−− + + + = . (1.10) 
 

x  

y  
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Here, d  (or rather x   via (1.8)) is the control parameter and both *θ   and α   are dependent on 
position.  Moving the terms containing α  to the right hand sides, squaring both equations (1.9) 
and (1.10), and then summing them gives 
 
 ( ) ( ) ( )2 22* * * *sin cos cos sint td R h Rb L b RLθ θ θ θ− − + − = +++ , (1.11) 
 
which after expansion and rearrangement yields 
 
 ( ) ( ) ( ) ( )2 22 2 2 * *cos 2 s n2 i 0t t t tL h R R Lb d R d dR bh Lh b Rθ θ+ − − + − = + + + + + + +      (1.12) 
 
which is in the form 
 * *cos s n 0iA CB θ θ++ =  (1.13) 
 
with 
 
 ( ) ( )2 22 2 2

t tA L h R Rb d R= + −+ + + +  , (1.14) 

 ( )2 tR d bB L h= +− +    , (1.15) 
and 
 ( )2 tC Lh b R d= − +    . (1.16) 
 
The solution of  (1.13) for *θ  via trigonometric manipulations and the quadratic equation is 
discussed in Appendix A-- see Equation (1.89) and (1.91).  With *θ  known from the solution of 
(1.12)/(1.13), the normal force angle α  can then be found from (1.10) as 
 

 
* *

1 sin coscos
t

h
R

L b
R

θ θα − − +
=

+
, (1.17) 

 
where 90α °=  for contact with the pin tip and α φ=   for contact at the tip-to-cone transition.   
 
The moment arms are found from the vector loop equations 
 
 ( )sin cos 0t t mt mnd R R L Lα α−+ − + =   (1.18) 
and 
 ( )cos sin 0t mt mnh R L Lα α+ −− =+  , (1.19) 
 
which when solved simultaneously give 
 
 ( )cos sinmn t d hL R α α= + −  (1.20) 
and 
 ( )sin cosmt t tdL h RR α α= + + −  . (1.21) 
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At the first critical value of d  and *θ , the receptacle contacts the very tip of the pin ( 90α °= ), 
which from (1.10) reveals 
 * *

,1 ,1cos sin 0cr crb Lh θ θ+ − =−  , (1.22) 
 
which is in the standard form with A h= −  , B b=  , and C L= −  .  With *

,1crθ   known, ,1crd   is 
found from (1.9) to be 
 * *

,1 ,1 ,1sin coscr cr crb Ld Rθ θ= + + .  (1.23) 
 
The transition from the pin tip to cone is the second critical transition.  Letting α φ=  in (1.10) 
gives 
 ( ) * *

,2 ,2cos cos sin 0t cr crRR Lh bφ θ θ−− ++ + =  (1.24)  
 
which is in the standard form with ( )cost RA h R φ+= − +  , B b=  , and C L= −  .  With *

,2crθ   
known from (1.24), ,2crd   is found from (1.9) to be 
 
 ( )* *

,2 ,2 ,2sin cos sincr cr cr t td R Rb L Rθ θ φ+ + −+= . (1.25) 
 
The equations in this section are valid for receptacle contact with the pin tip that causes the 
receptacle to deflect in the correct (whether positive or negative) sense.  For this to occur, it must 
be true that θ  takes the correct non-zero sign over some part of the range ,1 ,2cr crd d d≤ ≤ .  For 
example, in the geometry as drawn in Figure 3, 0θ >  indicates the pin causes the receptacle to 
deflect outward, while 0θ <  indicates the receptacle would have to bend inward to touch the pin.  
Therefore, in this case, the final value of  θ  utilized (call it fθ ) is the maximum of the value of 
θ  found from the equations of this section or zero.  To expand the robustness of the model to 
cases that don’t quite so closely resemble Figure 3, the selection criteria 
 
 ( ){ } ( )0 0sgn cos sgn cm x ,0 osafθ θ θ θ  =      (1.26) 

 
is recommended, where in this case θ  is the solution to (1.12) for ,2 ,1cr crd d d≤ ≤ .  This 
effectively selects positive θ  for 0cos 0θ >  (zero otherwise) and negative θ  for 0cos 0θ <  (zero 
otherwise) while retaining the sign, which accommodates problems, for example, where 

0 180θ = ± °  (see Section 3.1.2).  This expression breaks down at 0 90θ = ± °  (zero is always 
selected). 
 
If contact first occurs on the pin tip, i.e. over the range ,2 ,1cr crd d d≤ ≤ , then the receptacle-pin 
separation distance at contact, cd  , is 
 
 ( ) 0 0sin sin cosc t t cd R R b LR α θ θ+ += − + +  (1.27) 
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with 

 1 0 0sin coscosc
t

h
R

L b
R

θ θα − − +
=

+
. (1.28) 

 
2.2.2. Receptacle on Pin Cone 

 
Figure 4 shows the receptacle in contact with the pin cone.  As x  increases (the separation 
distance d  decreases), the contact point travels along the pin cone a distance cL . 

 
Figure 4.  Geometric diagram for receptacle on pin cone. 

 
Referring to Figure 4, the vector loop equations for finding *θ are 
 
 * *sin cos sin sin cos 0t t cd R L R b LR φ φ φ θ θ+ − − −+ =−  (1.29) 
and 
 * *sin cos cos sin 0c R ba L Lh φ φ θ θ+− + −+ =+ , (1.30) 
 
which are written for the x  and y  coordinate directions, respectively.  Solving the second 
equation for cL  gives 

 
* *cos cos sin

sinc
h a R bL Lφ θ θ

φ
− − − +

= . (1.31) 

Substituting (1.31) into (1.29) and regrouping into common terms of *θ gives 
 

 ( ) * *cossin cos sin 0
tan tan tant t

h a R b Ld R R R L bφφ θ θ
φ φ φ

     − −
+ − + + − + + − =    

     
, (1.32) 

 
 
with coefficients of 

 ( ) cossin
tant tA d R R R h a R φφ

φ
− −

++−= + , (1.33) 
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tan

B L b
φ

 
= − + 

 
, (1.34) 

and 

 
tan

L bC
φ

= − . (1.35) 

 
The moment arms mnL  and mtL  are found from the simultaneous solution of the second vector 
loop, with equations 
 sin cos sin cos 0t t c mt mnd R R LL Lφ φ φ φ− − −+ =+  (1.36) 
and 
 sin cos sin 0c mt mnLa L Lh φ φ φ+− + + − =  (1.37) 
 
written for the x  and y  coordinate directions, respectively.  The solutions are 
 

 
( )

( )
* *

sin cos ( )sin

cos cos sinsin cos ( )sin
sin

mn t t c

t t

L d R R h a L

h a R b Ld R R h a

φ φ φ

φ θ θφ φ φ
φ

= + − − − +

− − − +
+ −= − − +

 (1.38) 

and 
 ( ) ( )2sin cos cosmt t t tL R Rd R h aφ φ φ= + + −+ − . (1.39) 
 
 
The angle associated with the normal force is constant as long as contact is maintained with the 
pin cone.  It is simply 
 α φ= . (1.40) 
 
In summary, (1.32) for *θ  and (1.38)-(1.39) for mnL   and mtL   are valid for ,3 ,2cr crdd d≤ ≤  , 
where ,2crd   was given in (1.25) and ,3crd  is discussed in the next section.  If contact first occurs 
over this range of validity, then the receptacle-pin separation distance at contact, cd ,  is 
 
 ( )0 0 0sin cos sin sin cosc t t cd R R L R b Lφ θ φ φ θ θ= − −+ + + +  (1.41) 
 
where from (1.31), 

 ( ) 0 0
0

cos cos sin
sinc

h a R bL Lφ θ θθ
φ

− − − +
= . (1.42) 

 
2.2.3. Receptacle on Pin Round 

 
Figure 5 shows a geometric diagram for a receptacle arm in contact with a pin cone-to-barrel 
round.  While the pin round is traversed, the normal angle α  transitions from φ  to 0  from the 
pin cone to the pin barrel. 
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Figure 5.  Geometric diagram for receptacle on pin round. 

 
Referring to Figure 5, the first set of vector loop equations are 
 
 ( ) * *sin sin cos 0rR R bd Lc α θ θ− −+ − + =  (1.43) 
and  
 ( ) * *cos cos sin 0rR R bh e Lα θ θ+− + −− + = . (1.44) 
 
Rearranging both equations, squaring both sides, and then adding yields 
 
 ( ) ( ) ( )2 22 * * * *sin cos sin cosr b L eR L bR c hd θ θ θ θ− − + − ++ ++ =  (1.45) 
 
Expanding the right hand side gives 
 
 
( ) ( ) ( ) ( )( ) ( )( )2 2 22 2 * * * *sin cos 2 sin cos2rR R L b h e d c b L bc e Ld hθ θ θ θ+ = ++ + + + + +− + −+

  (1.46) 
 
which can be rearranged into the standard form of (1.86), 
 
( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 22 2 * *cos 2 si 02 nr b h e d c b h e b d c L hR R L d c eL θ θ− + + + + + + − + = + − − + − +     
  (1.47) 
 
Equation (1.47) may be solved via (1.91) with coefficients 
 
 ( ) ( ) ( )2 2 22 2

r bA R R L c h ed= + − − + +−− , (1.48) 

 ( ) ( )2 2d c b eB hL= + + + , (1.49) 
and  
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 ( ) ( )2 2C b d c L h e= + − + . (1.50) 
 
The angle of the pin round normal at the contact point may be found from (1.44) as 
 

 
* *

1 sin coscos
r

L b h e
R R

θ θα − − + +
=

+
. (1.51) 

 
The moment arms are found from simultaneous solution of the vector loop equations 
 
 ( )sin cos 0r mt mnd c R L Lα α−+ − + =  (1.52) 

 ( )cos sin 0r mt mnh R Le Lα α−− − + =+ , (1.53) 
 
which when solved simultaneously yield the simple expressions 
 
 ( ) ( )cos sinmnL d c h eα α= + − +  (1.54) 
and 
 ( ) ( )sin cosmt rc RL d h eα α+ + −= + . (1.55) 
 
Note that in any of these equations, a consistent set of the variables d , θ , and α  must be used 
that satisfy (1.47) and (1.51). 
 
Validity of equations (1.43)-(1.55) is bounded by  0φ α≥ ≥  (points at which the pin cone meets 
the pin round and the pin round meets the pin barrel).  The condition α φ=  corresponds to the 
critical points *

,3crθ  and ,3crd  while the condition 0α =  corresponds to the critical points *
,4crθ  

and ,4crd .  Utilizing the former condition with (1.43) and (1.44) gives  
  
 ( ) * *

,3 ,3 ,3sin sin cos 0cr r cr crR R b Ld c φ θ θ+ − −+ =−  (1.56) 
and 
 ( ) ( ) * *

,3 ,3cos cos sin 0r cr crR R bh Le φ θ θ−− + ++ =+ . (1.57) 
 
Equation (1.57) is in the standard form for finding *

,3crθ  (or *
,3 ,3 0cr crθ θ θ−= ) via Equation (1.91)

with coefficients 
 
 ( ) ( )cosrR R eA hφ+ − += , (1.58) 
 B b= , (1.59) 
and 
 C L= − . (1.60) 
 
With *

,3crθ  known, (1.56) then gives the critical value of ,3crd  as 
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 ( ) * *
,3 ,3 ,3sin sin coscr r cr crR R b Ld c φ θ θ= + + +− + . (1.61) 

 
The second set of critical points at 0α =  is found similarly from equations (1.43) and (1.44), 
giving 
 * *

,4 ,4 ,4sin cos 0cr cr crLd c b θ θ−− =+  (1.62) 
 * *

,4 ,4cos sin 0p cr crR R Lh b θ θ+ + − =−  (1.63) 
 
where the substitution p rR eR= −  was made.  Equation (1.63) is in the standard form and can be 
solved for *

,4crθ  via Equation (1.91) and the coefficients 
 pA R hR= + − , (1.64) 
 B b= , (1.65) 
and 
 C L= − . (1.66) 
 
Equation (1.62) then gives the critical value ,4crd  as 
 
 * *

,4 ,4 ,4sin coscr cr crLd b cθ θ= + − . (1.67) 
 
In summary, Equations (1.43)-(1.55) are valid for ,4 ,3cr crd dd ≤ ≤ .  If contact first occurs over 
this range, then the separation distance between the receptacle and pin at contact is 
 
 ( ) 0 0sin sin cosc r cRd R b Lc α θ θ= − + + ++  (1.68) 
where 

 1 0 0sin coscosc
r

L b h e
R R

θ θα − − + +
=

+
. (1.69) 

 
2.2.4. Receptacle on Pin Barrel 

 
Figure 6 shows a geometric diagram for a receptacle arm in contact with a pin barrel.  From the 
geometry of the problem, it is clear that when contact is established with the pin barrel, the 
angles and moment arms remain constant.  Under the condition ,4crd d≥ , 
 
 * *

,4crθ θ=  (1.70) 
and 
 0α = . (1.71) 
 
The moment arms are easily found from vector loop equation as 
 
 * *cos sinmnL L bθ θ= +  (1.72) 
and 
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 mt pL h R= − . (1.73) 
 
In many situations, the receptacle stiffness is characterized via a finite element analysis in which 
the receptacle tip is flexed to a displacement commensurate with pin barrel contact.  In this case, 
the force is often known and the effective spring stiffness needs to be found.  To solve for the 
stiffness directly, (1.72) is substituted into (1.4), assuming static contact ( 0µ = ), and rearranged 
to get 
 

 ( )* *
,3 ,3*

,3

cos sinn
cr cr

cr

FK L bθ θ
θ

= + , (1.74) 

 
which can be approximated for small angles (using the first term of a series expansion) as 
 
 nK LF≈  (1.75) 
 
in units of force times length per radian. 

 
Figure 6.  Geometric diagram for receptacle on pin barrel. 

 
2.3. Geometric Compatibility 

A number of geometric parameters were utilized to define the pin geometry, not all of which can 
be taken as independent.  Based on the various geometric diagrams of Figure 3-Figure 6, some 
geometric compatibility equations can be found.  Assuming the most relevant geometric 
parameters to be taken as inputs for the pin geometry are those likely to appear on a mechanical 
drawing ( rR , pR , tR , and φ ), the geometric compatibility equations for the other parameters are 
 
 costa R φ= , (1.76) 
 r pe RR= − , (1.77) 

 ( )cos
sin

r
ctL

a eR φ
φ
− +

= , (1.78) 
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and 
 ( )sin cosrt t ctc R R R Lφ φ= −+ + . (1.79) 
  
where recall ctL  is the total cone length (along the cone). 
 

2.4. Engagement vs. Disengagement 
 
All equations presented thus far were derived for a receptacle moving in the + x  direction while 
engaging a pin.  In instances where the receptacles disengage (circuit opens) as the mechanism 
moves, the receptacle disengages with the pin while moving in the + x  direction.  In this case, 
shown in Figure 7, the bulk of the mathematical development remains unchanged but several 
equations must be modified. 

 
Figure 7.  Simple example of receptacle-pin insertion. 

 
First, the equation for separation distance, (1.8), becomes 
 
 0d xd= + , (1.80) 
 
because the separation distance increases from its initial value.  In addition, the normal force 
expression, (1.4), becomes 
 

 n
mn mtL

KF
L

θ
m

=
+

 (1.81) 

 
due to the direction the friction acts for + x  motion.  The resultant forces in the x - y  coordinate 
system are then expressed as 
 sin cosx n tFF Fα α= −  (1.82) 
and 
 cos siny n tFF Fα α= + . (1.83) 
 
Equations (1.80) -(1.83) are the only ones that require modification to account for disengagement 
rather than engagement of the pin and receptacle with + x  motion. 
 

nF  

tF  
O  

θ  

x  

y  

Direction of motion 
Velocity, v  

α  

x  
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2.5. Numerical Considerations 
 
When using the contact model described herein as part of a larger dynamic model (for example, 
as one sub-function in an ODE solution), reversal of the friction force direction must be handled 
with care.  A straightforward approach is the dynamic friction model (LMS, 2014), 
 

 tanh 2.5nom
t

v
v

mm
 

=  
 

, (1.84) 

 
where nomm  is the nominal coefficient of friction, v dx dt=  is the relative velocity between the 
receptacle and pin, and tv  is a parameter known as transition velocity.  The behavior of the anti-
symmetric function (1.84) is shown in Figure 8.  For a sufficiently small choice of tv  relative to 
typical velocities v , this model approximates static friction as well, with s nommm =  (numerically, 
the goal is to be sure the receptacle moves so slowly that it may as well be still).  Note that a 
similar approach is to let sgnnom vmm = , which is a piece-wise function defined as 
 

 
0

0n 0g
0

s
nom

nom

nom

v
v
v

v
m

mm
m

=
>
=
<

= 
−

. (1.85) 

 
However, the discontinuous behavior of (1.85) at 0v =  is not friendly to many numerical 
algorithms.  The approach of (1.84) is utilized in the Matlab code of Appendix B, with / tv v   
taken as an input. 

 
Figure 8.  Dynamic friction model. 
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3. VALIDATION 
 

3.1. Numerical 
 
In this section, the Matlab implementation of the receptacle-pin contact model (see Appendix B) 
is validated against rigid body dynamics (RBD) simulations using LMS Virtual.Lab Motion 
(R13) for two nominal receptacle-pin geometries.  In Section 3.1.1, the chosen geometry closely 
resembles the parameterized geometry used to develop the model (e.g. Figure 3-Figure 6).  Both 
a nominal case and several variants are validated for this geometry.  In Section 3.1.2, the 
robustness and flexibility of the contact model is demonstrated using a geometry that at first 
glance looks significantly different than the parameterized geometry 
 

3.1.1. Bifurcated Receptacle 
The RBD model for the nominal geometry under consideration is shown in Figure 9 in the un-
deformed configuration.  The overall RBD implementation is very similar to the analytical 
approach and utilizes many of the same assumptions.  In particular, the receptacle arms are 
separated and rejoined at their base using revolute joints (single rotational degree of freedom, 
represented as green circles in Figure 9) with an associated torsional spring (represented as a 
blue spiral shape in Figure 9).  The primary difference is that the contact is resolved directly 
from the solid geometry and that the simulation is dynamic (the arms possess inertia).  This 
validation activity is primarily intended to show that the mathematical development is correct 
and that the Matlab code is free of errors.  A more complete numerical validation exercise, for 
example using a finite element model with contact elements and an explicit-dynamic solution, is 
not pursued here.  Even in the RBD context, the validity of the quasi-static nature of this model 
was not probed; the RBD model was configured to proceed from 0” to 0.210” and back again 
over 20s, with a maximum rate of ~0.031 in/s.   
 

 
Figure 9.  RBD model of receptacle-pin contact. 

 
The nominal parameterized geometry used in the RBD model is shown in Figure 10.  Other 
variants are also considered.  Figure 10(a) shows the engaging side of the bifurcated receptacle 
and Figure 10 (b) shows the disengaging side (with +x motion).  Although these receptacle-pin 
combinations are shown separately in Figure 10, they are rigidly connected as in Figure 9 and 
thus all results are given combined in plots.  From the figure, the important parameters are 
extracted as given in Table 1.  Of these, the pin and receptacle parameters are identical on both 
sides except for the initial offset distance 0d .  Note also that the receptacle round center offset b  
is actually negative for this geometry because the round center is “above” the receptacle arm line 
(length L ); in the derivation, the receptacle round center was “below” the receptacle arm line.  A 
Matlab input deck consistent with Table 1 is found in Appendix B. 
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Figure 10.  Validation case geometry (a) engaging with +x; (b) disengaging with +x. 

 
Table 1.  Input parameters for validation geometry 1. 

Receptacle Arm Length, L   0.300” 
Receptacle Round Center Offset, b   -0.007” 
Receptacle Round Geometry, R   0.025” 
Receptacle Arm Height, h   0.026” 
Receptacle Arm Initial Angle, 0θ   0° 
Receptacle-Pin Initial Offset, 0d   0.429” 

Engaging, Figure 10(a) 
0.222” 

Disengaging, Figure 10(b) 
Receptacle Stiffness, K   0.004 lbf*in/deg 
Friction Coefficient, µ   0.020 
Pin Barrel Radius, pR  0.015” 
Pin Cone Angle, φ   15° 
Pin Cone to Barrel Round Radius, rR   0.060” 

Pin Tip Radius, tR   0.003” 
 

Figure 11 shows the receptacle rotation predicted by the analytical code (solid line) and the RBD 
simulation (dots).  The maximum rotation is ~1.336°.  Note that there is no hysteresis in the 
receptacle rotation angle because it is uniquely defined by the location of contact on the pin for a 
given receptacle and pin geometry.  Figure 12 shows the normal and tangential forces associated 
with the forward and reverse stroke, with excellent agreement between the analytical code and 
RBD.  All force results are for a single receptacle arm.  The dotted gray vertical lines represent 
the critical transitions.  Proceeding from the left, these transitions are for contact at pin barrel-to-
round and round-to-cone transitions (for the disengaging receptacle) and the cone-to-round and 
round-to-barrel transitions (for the engaging receptacle).  Note that there is some hysteresis 
between the forward (+x) and reverse (-x) stroke for the normal and tangential forces.  The 
magnitudes are slightly different depending on the direction of motion (the source of this is the 

(a) 

(b) 
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difference in denominator sign between (1.4) or (1.81)), but the hysteresis is driven by the 
change in direction of the force (see the tangential force tF ).  Figure 13 shows the x- and y-
direction forces associated with the forward and reverse strokes.  The x-direction force xF  is the 
insertion force and has the most interesting hysteretic behavior driven by the changing 
contributions of the normal and tangential forces as the receptacle negotiates the pin from cone 
to barrel.  For the full insertion force associated with the entire receptacle pictured in Figure 9, 
the insertion force plotted in Figure 13 can be multiplied by 2 (for two receptacle arms per side). 
Figure 14 shows the normal and tangential moment arms, mnL  and mtL  , respectively.  This plot 
is slightly different than the others in that the moment arms are shown even for displacement at 
which the receptacle would be required to bend toward the pin in order to make contact.  As 
expected, mnL L≈  and mt pL h R= −  when the receptacle is in contact with the pin barrel. 
 

 
 

Figure 11.  Receptacle arm rotation for nominal validation case. 
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Figure 12.  Normal and tangential forces for nominal validation case (single receptacle 

arm). 
 

  
Figure 13.  X- and Y-direction forces for nominal validation case (single receptacle arm). 
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Figure 14.  Normal and tangential moment arms. 

 
Next, some parameter excursions from the nominal geometry are examined, with the focus on 
initial imperfection 0θ  , friction coefficient µ  , and pin angle φ  .  For each parameter sweep, the 
insertion force xF  is evaluated in both the analytical Matlab code and in the RBD model.  Figure 
15 shows the results when an initial imperfection 0θ  from -0.5° to 0.5°.  One result is that the 
displacement at which contact occurs moves (contact occurs over a larger portion of the stroke 
for negative 0θ  and a smaller portion of the stroke for positive 0θ ).  The peak contact forces also 
chane; they are larger for smaller 0θ  because the receptacle arm must effectively flex by the 
additional amount 0θ .  RBD simulation results are plotted for three of the cases (black dots) and 
agree very closely.  Figure 16 shows the results when the friction coefficient is varied, with 

{ }0,0.1,0.2,0.35,0.5µ = .  As µ   increases, the magnitude of the insertion force as well as the 
hysteresis increases substantially as expected.  RBD simulation results (black dots) are included 
for the { }0,0.2,0.5µ =  cases with excellent agreement.  Finally, pin geometries with 

{ }10 ,15 ,30φ = ° ° °  were simulated, with the pins depicted in Figure 17(a-c).  Because the pin 
cone-to-barrel transition round remained unchanged, the peak insertion force in Figure 18 was 
the same for each simulation, though the portion of the stroke over which contact occurred did 
change.  The RBD simulations again agreed extremely closely with the Matlab results. 
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Figure 15.  Analytical predictions of insertion force (Fx) for various initial imperfections 

(lines) compared to RBD results for the same (dots). 

 
Figure 16.  Analytical predictions of insertion force (Fx) for various friction coefficients 

(lines) compared to RBD results for the same (dots). 
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Figure 17.  Pin geometry study with 𝝓𝝓= (a) 10° ; (b) 15°; (c) 30°. 

 

 
Figure 18.  Analytical predictions of insertion force for various pin cone angles (lines) 

compared to RBD results for the same (dots). 
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3.1.2. Flexure and Round-Headed Pin 
The geometry under consideration in this section is shown in Figure 19 (screenshot from RBD 
with a revolute joint represented by a green circle and a torsion spring shown as a blue spiral).  
Here, a single blade flexure makes contact with a round-headed pin.  This geometry does not at 
first glance seem to resemble the parameterized geometry used in model development; in 
particular, the flexure contact area actually trails the pivot, and the pin has no “cone” feature.  It 
is shown in this section that the model is fully capable of predicting contact forces for this case. 
 

 
Figure 19. Flexure and round-headed pin. 

 
The key to determining the geometric parameters appropriate for this geometry is to make it 
appear like the geometry used in model development.  Figure 20 shows a sketch overlaying the 
flexure geometry and another version (toward the right) rotated 180° such that the contact circle 
is in the +x direction from the receptacle flexure point. Referencing this latter image makes it 
straightforward to determine the various geometric parameters and then the flexure may be 
specified in the correct orientation using 0 180θ = ± ° . Table 2 collects the model input parameters 
from Figure 20. Some particular dimensions to note are 𝑏𝑏 (negative because it extends away 
from the pin), 𝑑𝑑0 (negative because the receptacle rotation point is in the +x direction relative to 
the pin tip), and the fact that t r pR R R= =   with 45φ = ° .  This latter set of dimensions 
effectively splits the single pin tip radius (0.015”) between the original pin tip in the derivation   
( tR ) and the cone-to-barrel transition round ( rR ) while collapsing the length of the cone to zero 
at an arbitrary point ( 45φ = ° ) along the curve.  Note that the sub-mil decimal places found in 
some dimensions within Table 2 are not necessary for a good solution; they are just included for 
consistency with Figure 20.  A Matlab input deck consistent with Table 2 is found in Appendix 
B. 
 
Figure 21-Figure 24 collect the predicted receptacle arm rotation, normal/tangential forces, x- 
and y-direction forces, and moment arms, respectively.  Vertical gray dotted lines on the plots 
show critical values of the displacement, x .  These results are compared to the RBD model 
prediction for a dynamic simulation featuring an excursion from 0x =  to 0.2"x =  and back 
again over 10 s, with a transition velocity of 1e-3 in/s.  This shows the model (and Matlab 
implementation) are very flexible and robust. 
 

x  

y  
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Figure 20. Flexure and round-headed pin geometry parameterization. 
 

Table 2. Input parameters for single-sided receptacle geometry. 
Receptacle Arm Length, L   0.168” 
Receptacle Round Center Offset, b   -0.042447” 
Receptacle Round Geometry, R   0.035” 
Receptacle Arm Height, h   0.081447” 
Receptacle Arm Initial Angle, 0θ   ±180° (180° selected) 
Receptacle-Pin Initial Offset, 0d   -0.048” 
Receptacle Stiffness, K   0.00067 lbf*in/deg 
Friction Coefficient, µ   0.020 
Pin Barrel Radius, pR  0.015” 
Pin Cone Angle, φ   φ ∈(0°,90°); 45° selected 
Pin Cone to Barrel Round Radius, rR   0.015” 
Pin Tip Radius, tR   0.015” 
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Figure 21. Flexure rotation angle. 

 

 
Figure 22. Normal and tangential forces between the flexure and round-headed pin. 
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Figure 23. X- and Y-direction forces for the flexure and round-headed pin. 

 

 
Figure 24. Normal and tangential moment arms for the flexure and round-headed pin. 
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3.2. Experimental 
 
In 2011, an experimental study was conducted (Sena 2012) to determine the insertion force and 
contact resistance for the receptacle design nominally depicted in Figure 25 ( 0.316"L = , 

0.0375"h = , 0.0045"b = , and 0.025"R = ).  The pin geometry was the same as depicted in 
Figure 10(a).  The test setup featured a 25 gram load cell and precision stages to control 
alignment as well as to engage the receptacle with the pin. 

 

 
Figure 25.  Nominal receptacle arm geometry used in insertion force measurements. 

 
Using the nonlinear greybox modeling and parameter extraction capabilities of the Matlab 
System Identification Toolbox, the receptacle-pin contact model was tuned to a set of 
experimental data.  For simplicity, the free parameters were limited to the initial separation 
distance 0d , the receptacles stiffness K , and the friction coefficient µ  and those parameters 
were found to be 0.369”, 0.0116 lbf*in/deg, and 0.21, respectively.  Figure 26 shows the model 
overlaid with experimental data for five insertions of the receptacle onto the pin.  Ripples in the 
experimental data are of course not captured, but the shape of the forward and reverse stroke, as 
well as the magnitude of the force, agrees very well.  This shows that the receptacle-pin contact 
model is fundamentally valid for estimating the insertion force to acceptable accuracy. 

 
Figure 26.  Comparison of insertion force from experiment and simulation. 
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4. CONCLUSIONS 
 
A closed-form, quasi-static receptacle-pin contact model was developed with the primary goal 
being the determination of the insertion force associated with a bifurcated receptacle (or other 
related geometry) being engaged with a pin.  The model geometry and other inputs were 
parameterized to allow predictions of forces for different geometries, friction coefficients, 
receptacle stiffnesses, etc.  A receptacle angular imperfection parameter was also included. 
 
A Matlab implementation of the model is supplied in Appendix B, and was written so that it can 
be utilized as a sub-function in reduced-order, ODE-based models of mechanisms.  The model 
implementation was validated against a typical RBD model of a bifurcated receptacle negotiating 
a pin as well as a flexure arm in contact with a round-headed pin.  In addition, the model was 
compared to experimental measurements of insertion force for yet another receptacle design.  
The model agreed extremely closely with the RBD model results, showing the underlying 
mathematics and code implementation were approached correctly.  Agreement with experimental 
results was also very good, showing that the model does a good job capturing the characteristics 
of the insertion force.  Overall, the model is simple and efficient to use for electrical contact 
geometries similar to those demonstrated herein. 
 
For future work, a similar overall approach could be used to include imperfection in the pin 
orientation, though the mathematics would be significantly more difficult.  Another extension 
that could add value would be linearization of many of the equations herein about 0θ θ= , which 
could potentially eliminate the need to utilize the quadratic equation to find θ .  With the 
quadratic equation no longer required, the nuances of choosing the correct solution would also be 
eliminated.  This route was not taken because the Matlab code in its current form was shown to 
work well for a variety of receptacle and pin geometries.    
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APPENDIX A:  CLOSED-FORM SOLUTION TO TRIG EQUATION 
 
Equations in this report were frequently put in the form 
 
 * *cos sin 0A CB θ θ+ =+ , (1.86) 
 
which may be solved in closed-form.  Using well-known trig identities 
 

 

*
2

*
*

2

1 tan
2cos

1 tan
2

θ

θ
θ

−
=

+
 (1.87) 

and 

 

*

*
*

2
s

2 tan
2

1 tan
2

in

θ

θ
θ

=
+

, (1.88) 

the solution to this equation can be found as 
 

 
( )2 2 2*

tan
2

C C A B

A B
θ − ± − −

=
−

. (1.89) 

 
Clearly, for a real root to exist, 
 ( )2 2 2C A B≥ − . (1.90) 
 
The solution for θ , utilizing (1.7), is then 
 

 
( )2 2 2

1
02 tan

C C A B

A B
θ θ−

 
 
  
 

− ± − −
= −

−
. (1.91) 

The two solutions correspond to the one of interest (in which the receptacle arm has displaced 
slightly from its free position) and one in which the receptacle arm has rotated approximately 
180º.  Following some investigation, the best indicator for selecting the correct root was found to 
be the sign of C  and 0cosθ  .  Letting 
 ( )0sgn cosn C θ= , (1.92) 
 
the final equation  that selects the correct root is then 
 

 
( )2 2 2

1
02 tan

C n C A B

A B
θ θ−

 
 
  
 

− + − −
= −

−
. (1.93)  
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APPENDIX B:  MATLAB CODES 
 
Main Function: rec_pin_contact.m 
 
function [Fx,Fy,Fn,Ft,theta,Lmn,Lmt, dcr,thetacr,xcr,dc,xc]=... 

rec_pin_contact(x,params,vnorm,dir,d0); 
% [Fx,Fy,Fn,Ft]=rec_pin_contact(x,params,vnorm,dir) returns the 
% various forces associated with a single receptacle arm to pin contact. Fx 
% is the force in the x-direction (direction of motion), Fy is the force 
% perpendicular to Fx, Fn is the normal force, and Ft is the tangential 
% (friction) force. The force vectors satisfy the relationship 
% norm([Fx,Fy])=norm([Fn,Ft]) since the magnitude must remain the same 
% regardless of coordinate system. The inputs are the displacement of the 
% piston (x, which may be an array), parameters associated with the pin and 
% contact (params), the normalized velocity (velocity divided by transition 
% velocity, which must be the same size as x), and dir is either 
% 'engage' (or +1) or 'disengage' (or -1) depending on which behavior 
% occurs with +x motion.  List of fields that must be included within the 
% input params, where [L] and [F] denote arbitrary consistent length and 
% force units, respectively: 
% 
%   Rr = Pin cone-to-barrel round radius [L] 
%   Rp = Pin barrel radius [L] 
%   phi = Pin cone angle (relative to axis) [deg] 
%   Rt = Pin tip radius [L] 
% 
%   h = Height from pin axis to receptacle rotation point [L] 
%   R = Receptacle contact radius [L] 
%   L = Receptacle arm length [L] 
%   b = Perpendicular distance from receptacle arm to R center [L] 
%   K = Angular stiffness [F*L/deg] 
%   mu = Friction coefficient [-] 
%   d0 = Initial separation distance from receptacle pivot to pin tip [L] 
%   theta0 = Imperfection angle [deg] 
% 
% [Fx,Fy,Fn,Ft,theta,Lmn,Lmt,dcr,thetacr,xcr,dc,xc]=rec_pin_contact(...); 
% yields additiona outputs: 
%   theta = Receptacle rotation angle [rad] 
%   Lmn = Normal force moment arm [L] 
%   Lmt = Tangential force moment arm [L] 
%   dcr = Critical separation distances [L] 
%   thetacr = Critical receptacle arm rotations [rad] 
%   xcr = Critical displacements [L] 
%   dc = Separation distance at first contact [L] 
%   xc = Displacement at first contact [L] 
% 
% [...]=rec_pin_contact(x,params,vnorm,dir,d0) ignores any value given in 
% params.d0 and uses the final input argument d0 instead.  This mode is 
% useful if a set of engaging and disengaging receptacles and pins are 
% geometrically the same, enabling a single structure params to be used 
% with two function calls.  Giving vnorm=[] and/or dir=[] reverts to 
% defaults for those inputs. 
 
%% Inputs %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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% Defaults 
if nargin<5 % If d0 not given explicitly, use value in params 
   d0=params.d0; 
end % Otherwise d0 is as given 
if nargin<4|isempty(dir) % If dir not given or given as empty 
    try 
        dir=params.dir; % Look for value stored in params 
    catch 
        dir=1; % Default to +1 (same as 'engage') otherwise 
    end 
end 
if nargin<3|isempty(vnorm) % If vnorm not given or given as empty 
    vnorm=10*ones(size(x)); % Default to 10 for all values of x 
end 
 
% Pin Parameters 
Rr=params.Rr; % Pin round (ramp to barrel) [L] 
Rp=params.Rp; % Pin barrel radius [L] 
phi=params.phi*pi/180; % Pin cone angle: Given in [deg], converted to [rad] 
Rt=params.Rt; % Pin tip radius [in] 
 
% Contact parameters 
h=params.h; % Height from pin axis to receptacle rotation point [L] 
R=params.R; % Round of receptacle contact [L] 
b=params.b; % Perpendicular distance from receptacle arm end to R center [L] 
L=params.L; % Receptacle arm length [L] 
K=params.K*180/pi; % Angular stiffness [F*L/deg] to [F*L/rad] 
mu=params.mu; % Friction coefficient [-] 
theta0=params.theta0*pi/180; % Receptacle imperfection [deg] to [rad] 
 
%% Calculate Additional Pin Geometric Parameters %%%%%%%%%%%%%%%%%%%%%%%%%% 
a=Rt*cos(phi); % Pin tip "flat" dimension [in] 
e=Rr-Rp; % Equation (1.77), [in] 
Lct=(Rr*cos(phi)-(a+e))/sin(phi); % Equation (1.78) 
c=Rt+(Rr-Rt)*sin(phi)+Lct*cos(phi); % Equation (1.79) 
 
%% Solution Frame %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% Calculate Critical Points % 
% The following code calculates critical transition points for both the 
% receptacle rotation (thetacr [rad]) and piston displacement (dcr 
% [in]). 
% Index 1 : Tip 
% Index 2 : Tip to ramp 
% Index 3 : Ramp to round 
% Index 4 : Round to barrel 
 
A=-h; B=b; C=-L; 
thetacr(1)=eqnsol(A,B,C,theta0); % Equation (1.22) 
 
A=-h+(Rt+R)*cos(phi); B=b; C=-L; 
thetacr(2)=eqnsol(A,B,C,theta0); % Equation (1.24) 
 
A=(R+Rr)*cos(phi)-(h+e); B=b; C=-L; % Equations (1.58)-(1.60) 
thetacr(2)=eqnsol(A,B,C,theta0); % Solution of Equation (1.57) 
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A=R+Rp-h; B=b; C=-L; % Equations (1.64)-(1.66) 
thetacr(4)=eqnsol(A,B,C,theta0); % Solution of (1.63) 
 
alphacr=[pi/2,phi]; 
dcr(1:2)=-Rt+(R+Rt)*sin(alphacr)+b*sin(thetacr(1:2)+theta0)+ ... 
    L*cos(thetacr(1:2)+theta0); % Equation (1.9) in lieu of (1.23) & (1.25) 
alphacr=[phi,0]; 
dcr(3:4)=(L*cos(thetacr(3:4)+theta0)+b*sin(thetacr(3:4)+theta0) ... 
    +(R+Rr)*sin(alphacr)-c); % Equation (1.43) in lieu of (1.61) & (1.62) 
  
% Find separation distance at contact 
dc(1)=-Rt+(Rt+R)*sin(acos((L*sin(theta0)-b*cos(theta0)+h)/(Rt+R)))+ ... 
    b*sin(theta0)+L*cos(theta0); % Equations (1.27) and (1.28) 
dc(2)=-Rt+Rt*sin(phi)-(h-a-R*cos(phi)-b*cos(theta0)+L*sin(theta0))/... 
    sin(phi)*cos(phi)+R*sin(phi)+b*sin(theta0)+... 
    L*cos(theta0); % Equations (1.41) & (1.42) 
dc(3)=-c+(R+Rr)*sin(acos((L*sin(theta0)-b*cos(theta0)+h+e)/(R+Rr)))+ ... 
    b*sin(theta0)+L*cos(theta0); % Equations (1.68) and (1.69) 
dm=[dcr(1),dcr(2),dcr(3); 
    dcr(2),dcr(3),dcr(4)]; 
dc=dc(dc<dm(1,:)&dc>=dm(2,:)); % Choose single correct dc value 
 
% The relationship between displacement (x) and initial separation (d0) is 
% different depending on if the receptacle is engaging or disengaging w/ +x 
% motion. 
switch dir 
    case {'engage',1} 
        d=d0-x; % Equation (1.8) 
        xcr=d0-dcr; % Critical displacements via form of Equation (1.8)  
        xc=d0-dc; % Displacement at contact via form of Equation (1.8) 
    case {'disengage',-1} 
        d=d0+x; % Equation (1.80) 
        xcr=dcr-d0; % Critical displacements via form of Equation (1.80) 
        xc=dc-d0; % Displacement at contact via form of Equation (1.80) 
end 
 
% Initializations % 
theta=zeros(size(x)); % Initialize receptacle arm rotation [rad] 
alpha=zeros(size(x)); % Initialize pin surface normal angle [rad] 
Lmn=inf*ones(size(x)); % Initialize normal force moment arm [in] 
Lmt=inf*ones(size(x)); % Initialize friction force moment arm [in] 
m=sign(cos(theta0)); % Used in forms of Equation (1.26) 
 
% Calculations % 
% Now calculate moment arms, contact angles, receptacle rotation, etc. for 
% every value of x (d). 
 
% On Tip % 
I=d<=dcr(1)&d>dcr(2); 
A=L^2+b^2+h^2+(Rt+d(I)).^2-(Rt+R)^2; % Equation (1.14) 
B=-2*(L*(Rt+d(I))+b*h); % Equation (1.15) 
C=2*(L*h-b*(Rt+d(I))); % Equation (1.16) 
th=eqnsol(A,B,C,theta0); % Solve Equation (1.12) 
al=acos((L*sin(th+theta0)-b*cos(th+theta0)+h)/(Rt+R)); % Equation (1.17) 
Lmn(I)=(Rt+d(I)).*cos(al)-h*sin(al); % Equation (1.20) 
Lmt(I)=(Rt+d(I)).*sin(al)+h*cos(al)-Rt; % Equation (1.21) 
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theta(I)=max(theta(I),m*th)*m; % Equation (1.26) to select 0 or th 
alpha(I)=al; 
 
% On Ramp % 
I=d<=dcr(2)&d>dcr(3); 
A=d(I)+Rt-(Rt+R)*sin(phi)+((h-a)-R*cos(phi))/tan(phi); % Equation (1.33) 
B=-b/tan(phi)-L; % Equation (1.34) 
C=L/tan(phi)-b; % Equation (1.35) 
th=eqnsol(A,B,C,theta0); % Solution to Equation (1.32) 
Lc=(-b*cos(th+theta0)+L*sin(th+theta0)-R*cos(phi)+(h-a))/... 
    sin(phi); % Equation (1.31) 
Lmn(I)= (d(I)+Rt-Rt*sin(phi))*cos(phi)-(h-a)*sin(phi) + Lc; % Equation (1.38) 
Lmt(I)= (d(I)+Rt)*sin(phi)+(h-a)*cos(phi) + Rt*cos(phi)^2-Rt; % Eq. (1.39)  
theta(I)=max(theta(I),th*m)*m; % Equation (1.26) to select 0 or th 
alpha(I)=phi; % Equation (1.40) 
 
% On Round % 
I=d<=dcr(3)&d>dcr(4); 
A=(R+Rr)^2-L^2-b^2-(d(I)+c).^2-(h+e)^2; % Equation (1.48) 
B=2*L*(d(I)+c)+2*b*(h+e); % Equation (1.49) 
C=2*b*(d(I)+c)-2*L*(h+e); % Equation (1.50) 
th=eqnsol(A,B,C,theta0); % Solve equation (1.47) 
al=acos((-b*cos(th+theta0)+L*sin(th+theta0)+(h+e))/(R+Rr)); % Equation (1.51) 
Lmn(I)=(d(I)+c).*cos(al)-(h+e).*sin(al); % Equation (1.54) 
Lmt(I)=(d(I)+c).*sin(al)+(h+e).*cos(al)-Rr; % Equation (1.55) 
theta(I)=max(theta(I),th*m)*m; % Equation (1.26) to select 0 or th 
alpha(I)=al; 
 
% On Barrel % 
I=d<=dcr(4); 
theta(I)=max(theta(I),thetacr(4)*m)*m; % Eq. (1.26) to select 0 or Eq. (1.70) 
alpha(I)=0; % Equation (1.71) 
Lmn(I)=L*cos(theta(I)+theta0)+b*sin(theta(I)+theta0); % Equation (1.72) 
Lmt(I)=h-Rp; % Equation (1.73) 
 
% Forces % 
% Dynamic friction coefficient (98% of +/-mu at vnorm=+/-1), Equation (1.84) 
mud=mu*tanh(2.5*vnorm);  
% Directionality of friction affects everything starting from the magnitude 
% of Fn and propagating through to Fx and Fy. The switch as well as the 
% dynamic friction coefficient (mud) below accounts for this. 
switch dir 
    case {'engage',1} 

  Fn=K*theta./(Lmn-mud.*Lmt); % Equation (1.4) 
  Fn(isinf(Lmn))=0; 
  Ft=mud.*Fn; % Equation (1.3) 
  Fx=-Fn.*(sin(alpha)+mud.*cos(alpha)); % Equation (1.5) 
  Fy=Fn.*(cos(alpha)-mud.*sin(alpha)); % Equation (1.6) 

    case {'disengage',-1} 
  Fn=K*theta./(Lmn+mud.*Lmt); % Equation (1.81) 
  Fn(isinf(Lmn))=0; 
  Ft=mud.*Fn; % Equation (1.3) 
  Fx=Fn.*(sin(alpha)-mud.*cos(alpha)); % Equation (1.82) 
  Fy=Fn.*(cos(alpha)+mud.*sin(alpha)); % Equation (1.83) 

end 
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function val=eqnsol(A,B,C,theta0) 
% Solve Equation (1.86) and select correct root 
n=sign(C)*sign(cos(theta0)); % Equation (1.92) 
val=wrap(2*atan((-C+n.*sqrt(C.^2-(A.^2-B.^2)))./ ... 
    (A-B))-theta0); % Equation (1.93) 
  
function val=wrap(valin); 
% Wrap to [-pi,pi] interval 
val=mod(valin,2*pi); 
j=val>pi; val(j)=val(j)-2*pi; 
j=val<-pi; val(j)=val(j)+2*pi; 
 
Input Deck: Bifurcated Receptacle 
%% Bifurcated Receptacle 
close all 
clear all 
  
%% Define Pin and Receptacle Geometry 
params.Rr=0.06; % Pin round (ramp to barrel) [in] 
params.Rp=0.015; % Pin barrel radius [in] 
params.phi=15; % Pin ramp angle (pin axis to ramp) [deg] 
params.Rt=.003; % Pin tip radius [in] 
  
params.h=0.026; % Height from pin axis to receptacle rotation point [in] 
params.R=0.025; % Round of receptacle contact [in] 
params.b=-0.007; % Receptacle arm end to R center (perpendicular) [in] 
params.L=0.300; % Receptacle arm length [in] 
params.K=0.004*453.592; % Angular stiffness [lbf*in/deg] to [grf*in/deg] 
params.mu=0.20; % Friction coefficient [-] 
params.theta0=0; % Initial imperfection in receptacle arm [deg] 
  
d0=[.429;.222]; % Engaging separation and disengaging separation 
dir=[1,-1]; % Same as {'engage','disengage'} 
  
%% Solve for forces with respect to stroke 
xl=[0,.21]; % Motion limits 
x=[linspace(xl(1),xl(2),500),linspace(xl(2),xl(1),500)]; % Displacement [in] 
vnorm=10*[ones(1,500),-ones(1,500)]; % Normalized velocity 
  
% Get engaging (ii=1) and disengaging (ii=2) contacts via loop 
for ii=1:2 
    [Fx(ii,:),Fy(ii,:),Fn(ii,:),Ft(ii,:),theta(ii,:),Lmn(ii,:),... 
        Lmt(ii,:),dcr(ii,:),thetacr(ii,:),xcr(ii,:),dc(ii),xc(ii)]=... 
                           rec_pin_contact(x,params,vnorm,dir(ii),d0(ii)); 
end 
  
%% Post-process 
  
% Forces 
fh(1)=figure; 
ph1=plot(x,sum(Fx,1),'k-',x,sum(Fy,1),'b--',... 
    reshape(xcr,1,[]),0*reshape(xcr,1,[]),'r.',xc,0*xc,'ro') 
ylabel('Force [grf]'); 
xlabel('Displacement, x [in]') 
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xlim(xl); 
legend(ph1,'F_x','F_y','x_{cr}','x_c','location','north'); 
legend boxoff 
box off 
  
fh(2)=figure; 
ph2=plot(x,sum(Fn,1),'k-',x,sum(Ft,1),'b--',... 
    reshape(xcr,1,[]),0*reshape(xcr,1,[]),'r.',xc,0*xc,'ro') 
ylabel('Force [grf]'); 
xlabel('Displacement, x [in]') 
xlim(xl); 
legend(ph2,'F_n','F_t','x_{cr}','x_c','location','north'); 
legend boxoff 
box off 
  
% Other outputs (receptacle arm rotation, moment arms) 
fh(3)=figure; 
ph3=plot(x,sum(theta,1)*180/pi,... 
    reshape(xcr,1,[]),0*reshape(xcr,1,[]),'r.',xc,0*xc,'ro') 
ylabel('Receptacle Rotation, \theta [deg]') 
xlabel('Displacement, x [in]') 
xlim(xl); 
legend(ph3,'\theta','x_{cr}','x_c','location','north'); 
legend boxoff 
box off 
  
fh(4)=figure; 
ph4=plot(x,Lmn,'k-',x,Lmt,'b--',... 
    reshape(xcr,1,[]),0*reshape(xcr,1,[]),'r.',xc,0*xc,'ro') 
legend(ph4([1,3]),'L_{mn}','L_{mt}','x_{cr}','x_c','location','west'); 
legend boxoff 
ylabel('Moment Arm [in]') 
xlabel('Displacement, x [in]') 
xlim(xl); 
box off 
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Input Deck: Flexure and Round-Headed Pin 
%% Flexure and Round-Headed Pin 
close all 
clear all 
  
%% Define pin and receptacle geometry 
  
params.Rr=0.015; % Pin round (ramp to barrel) [in] 
params.Rp=0.015; % Pin barrel radius [in] 
params.phi=45; % Pin ramp angle (pin axis to ramp) [deg] 
params.Rt=0.015; % Pin tip radius [in] 
  
params.h=0.081447; % Height from pin axis to receptacle rotation point [in] 
params.R=0.035; % Round of receptacle contact [in] 
params.b=-0.042447; % Receptecle arm end to R center (perpendicular) [in] 
params.L=0.168; % Receptacle arm length [in] 
params.K=0.00067*453.592; % Angular stiffness [lbf*in/deg] to [grf*in/deg] 
params.mu=0.20; % Friction coefficient [-] 
params.theta0=180; % Initial imperfection in receptacle arm [deg] 
params.d0=-.048; % Initial separation from receptacle pivot to pin tip 
params.dir='engage'; % Equivalent to 1, means engages with +x motion 
  
%% Solve for forces with respect to stroke 
xl=[0,0.2]; 
x=[linspace(xl(1),xl(2),500),linspace(xl(2),xl(1),500)]; % Displacement [in] 
vnorm=10*[ones(1,500),-ones(1,500)]; % Normalized velocity 
  
[Fx,Fy,Fn,Ft,theta,Lmn,Lmt,dcr,thetacr,xcr,dc,xc]=... 
                                  rec_pin_contact(x,params,vnorm); 
  
%% Post-process 
  
% Forces 
fh(1)=figure; 
ph1=plot(x,Fx,'k-',x,Fy,'b--',xcr,0*xcr,'r.',xc,0*xc,'ro') 
ylabel('Force [grf]'); 
xlabel('Displacement, x [in]') 
xlim(xl); 
legend(ph1,'F_x','F_y','x_{cr}','x_c','location','northwest'); 
legend boxoff 
box off 
  
fh(2)=figure; 
ph2=plot(x,Fn,'k-',x,Ft,'b--',xcr,0*xcr,'r.',xc,0*xc,'ro') 
ylabel('Force [grf]'); 
xlabel('Displacement, x [in]') 
xlim(xl); 
legend(ph2,'F_n','F_t','x_{cr}','x_c','location','northwest'); 
legend boxoff 
box off 
  
% Other outputs (receptacle arm rotation, moment arms) 
fh(3)=figure; 
ph3=plot(x,theta*180/pi,xcr,0*xcr,'r.',xc,0*xc,'ro') 
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ylabel('Receptacle Rotation, \theta [deg]') 
xlabel('Displacement, x [in]') 
xlim(xl); 
legend(ph3,'\theta','x_{cr}','x_c','location','northwest'); 
legend boxoff 
box off 
  
fh(4)=figure; 
ph4=plot(x,Lmn,'k-',x,Lmt,'b--',xcr,0*xcr,'r.',xc,0*xc,'ro') 
legend(ph4,'L_{mn}','L_{mt}','x_{cr}','x_c','location','west'); 
legend boxoff 
ylabel('Moment Arm [in]') 
xlabel('Displacement, x [in]') 
xlim(xl); 
box off 
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