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Topics for discussion

 Executive Summary

 Brief Model Background

 1F1 best estimate case results

 1F3 best estimate case results

 Impact of uncertainty on results

 why is this important

 1F1 and 1F3 example results

 Summary
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Executive Summary

 1F1 and 1F3 BSAF best estimate cases completed

 Accident signatures look similar to previous results; and to 
most of the TEPCO data

 Event timings and values are different, but not markedly so

 ready to move forward to Phase II source term analyses

 Accounting for uncertainty is important in forensic 
analyses (locus of inputs) and predictive analyses 
(locus of solutions) 
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Brief Model Background

 SNL MELCOR Fukushima models are based the Peach 
Bottom SOARCA model; reflects current MELCOR 
BWR Mk-I best practices

 Models have been updated with the best-available 
Fukushima inputs (e.g., TEPCO December 2011 data 
set, IEA November 2013 data set, BSAF BCs); 
developed surrogate inputs where necessary
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Brief Model Background

5

containment CVH 
nodalization

(4 CVs)

RPV CVH
nodalization

(7 CVs)

Lower RPV COR/CVH
nodalization

wetwell

drywell

pedestal downcomers

• 5 active fuel rings, 10 active fuel axial levels
• 5 rings, 1 axial level above the active fuel
• 6 LP rings (lvls 2-4), 6 axial levels
• 5 ch x 5 byp CVs or 5 ch x 1 byp CVs



1F1 Best Estimate (BE) Case

 Revised decay heat/RN inventory input with results from SNL 
SCALE6 analyses

 Implemented BSAF feedwater coastdown injection rate

 IC implementation includes efficiency as a function of RPV 
pressure; carry-over from previous 1F1 analyses

 SRV gasket failure not implemented; MSL failure model 
activated

 Did not implement wetwell stratification; not amenable 
MELCOR lumped-parameter conceptual model nor with the 
SPARC90 scrubbing model

 BSAF Water injection rates (2% of total) increased by 20x; 
needed for drywell head lifting/leakage to occur
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1F1 BE– RPV/DW/WW pressure
 MSL failure at ~6 hr

 LH failure at ~12 hr

 Containment pressure 
increase at ~12 hr not 
captured; likely due to 
relatively “cold” particulate 
debris (rather than “hot” 
molten pool) ejection

 late-time pressure changes 
are related to changes in 
water injection 

 ad hoc leakage model will 
need to be implemented to 
capture late-time leakage
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1F1 BE – combustible gases

 sufficient mass of 
combustible gases (H2, CO) 
produced to support an 
energetic event in the 
refueling bay at ~25 hr

 lumped-parameter codes 
operate at too high a 
granularity to really predict 
gas composition time 
evolution; requires detailed 
analysis (i.e., CFD) to 
quantify

 concentrations

 buoyancy effects

 steam condensation

 leakage to/from 
environment 

 building heat transfer
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1F1 BE – energy balance

 Majority of core energy 
input rejected by 
convection to gas/water 
(green dashed line = blue 
line)

 Leads to “cold” 
particulate debris 
(instead of “hot” molten 
pool)

 Likely cause of lack of 
pressure spike at time of 
LH failure and need for 
20x BSAF water injection 
to lift drywell head

 This was identified in the 
MAAP/MELCOR 
Crosswalk study; path 
forward yet to be 
determined
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1F3 BE Case
 BSAF B.C.s included 

 Wetwell and drywell sprays; timing and flow rate

 Containment vents (via wetwell) and timing

 After-scram trip and coast-down curves: MSIVs, turbine stop valve, feedwater, fission 
power, etc.

 BSAF B.C.s not included:
 RCIC and HPCI 

 Freshwater and seawater injection rates 

 In-core tube failure (SRM, IRM, TIP)

 Wetwell thermal stratification

 Non-BSAF B.C.s included
 RCIC B.C. with a level controller – otherwise very comparable flow rates to the BSAF RCIC

 HPCI B.C. based on preliminary BSAF information – assumes degraded injection after ~30 
hours due to low RPV pressure; HPCI tuned to facilitate in-core oxidation to get MSL failure 
at the “correct” time

 MSL failure model

 Seawater injection rates adjusted to get lower head failure

 Recirculation pump leak added to obtain reasonable containment pressure since the wetwell
is only 1 node – ‘primes’ the containment pressure for the severe accident
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1F3 BE– RPV pressure
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 RCIC and HPCI B.C.s 
based on initial BSAF 
information; allowed for 
general agreement with 
plant data

 Sets up the severe 
accident portion of the 
sequence

 MSL failure calculated to 
occur around 42 hr

RCIC operation HPCI operation

MSL failure



1F3 BE– DW pressure
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 general agreement with plant data 

 The largest containment pressure peak  
(near 45 hours after the initial RPV 
depressurization and first major 
containment peak) may be caused by 
core slumping into the lower plenum 

 This peak and subsequent peaks are 
strongly dependent on the assumed 
WW venting behavior, 
 seawater injection magnitudes

 core/RPV degradation progression

 too much injection (subcooling) AND 
too little injection (no water to boil) 
can suppress containment pressure 
during certain time periods

 the flatline after 80 hours is an 
assumed WW gas leak that levels out 
around 0.53 MPa (based on the 
plateau around 65-68 hours in the 
plant data)

 some sort of leak assumption is 
necessary to transport combustible 
gas to the Rx building

Implemented a recirculation pump leak rate of 1.6 
kg/s to “prepare” the containment pressure for the 
severe accident phase of the transient



1F3 BE– H2 generation
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 Rapid oxidation begins 
about 5 hr after water 
level drops below TAF



But what about uncertainty?

 All of our best-estimate/best-practices cases are but one of a 
locus of potential inputs and their results are but one of a 
locus of potential solutions

 Uncertainty (in input parameters and models) will produce 
significant variations the accident sequences

 The impact of this is that…
 “tweaks” made to fit the forensic data may not be valid over the 

entire range of input parameter and model uncertainty

 The next accident may not be within the range of validity of the 
“tweaks” and current “best-practices”
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1F1 Example
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 100 realizations with random 
sampling from the distribution of 
decay heat curves

 decay heat characterized by 
combining the ANS-5.1 decay heat 
uncertainties on primary fissile 
nuclides with SCALE best-estimate 
calculations

 Yields variation in 

 MSL failure time

 LH failure time

 RPV/containment pressure

MSL failure

LH failure

RPV

DW
pressure
variation



different 
possible 
final core 
degradation 
states

1F1 Example
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 H2 in-core production results have 
variation in initiation time and 
late-time value

 These results and those for RPV 
and containment pressure 
(previous slide) are due to 
variation in core melt progress
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1F3 Example
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 100 realizations that vary 
 wetwell vent opening fraction

 water injection rate

 quench parameters

 Some realizations capture 
the timing, some capture 
the peak

 There is not a single 
solution; several different 
combinations of uncertain 
variables can reproduce the 
data trend



1F3 Example
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 in-core H2 generation 
begins to deviate due to 
variation in core melt 
progression

enough H2 
to support 
an energetic 
event



…and what does this all mean?

 “Tweaked” deterministic analyses are useful for 
identifying/handling ill-defined phenomena that are 
postulated to influence forensic results (e.g., 1F2 torus 
cooling, venting, water injection)

 However, input and model uncertainty have the potential to 
invalidate “tweaks” tied to forensic results, which can render 
them invalid for predictive analyses

 Experience has shown that source term results have 
significant variation; this will be important to handle for BSAF 
Phase II analyses
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Summary
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 1F1 and 1F3 best estimate accident signatures are similar to 
those from older models/analyses; they match well enough 
with the limited data

 Still looking at 1F1 initial ex-vessel behavior

 Accident signatures are very dependent on boundary 
conditions (e.g., water injection rate, RPV depressurizations 
mechanism, RCIC & HPCI operation)

 Signatures can be sensitive to uncertainty in BCs and other 
inputs (explicitly seen in these results and those in the 
results of a separate 1F1 core-damage progression 
uncertainty analysis)


