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Topics for discussion ) .

= Executive Summary

= Brief Model Background

= 1F1 best estimate case results
= 1F3 best estimate case results

" |mpact of uncertainty on results
= why is this important
= 1F1 and 1F3 example results

= Summary
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Executive Summary ) .

= 1F1 and 1F3 BSAF best estimate cases completed

= Accident signatures look similar to previous results; and to
most of the TEPCO data

= Event timings and values are different, but not markedly so
= ready to move forward to Phase Il source term analyses

" Accounting for uncertainty is important in forensic
analyses (locus of inputs) and predictive analyses
(locus of solutions)




Brief Model Background ) .

= SNL MELCOR Fukushima models are based the Peach
Bottom SOARCA model; reflects current MELCOR
BWR Mk-| best practices

= Models have been updated with the best-available
Fukushima inputs (e.g., TEPCO December 2011 data
set, [IEA November 2013 data set, BSAF BCs);
developed surrogate inputs where necessary




Brief Model Background
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1F1 Best Estimate (BE) Case ) .

= Revised decay heat/RN inventory input with results from SNL
SCALEG analyses

= |mplemented BSAF feedwater coastdown injection rate

= |Cimplementation includes efficiency as a function of RPV
pressure; carry-over from previous 1F1 analyses

= SRV gasket failure not implemented; MSL failure model
activated

= Did not implement wetwell stratification; not amenable
MELCOR lumped-parameter conceptual model nor with the
SPARC90 scrubbing model

= BSAF Water injection rates (2% of total) increased by 20x;
needed for drywell head lifting/leakage to occur
6




1F1 BE— RPV/DW/WW pressure
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MSL failure at ~6 hr
LH failure at ~12 hr

Containment pressure
increase at ~12 hr not
captured; likely due to
relatively “cold” particulate
debris (rather than “hot”
molten pool) ejection

late-time pressure changes
are related to changes in
water injection

ad hoc leakage model will
need to be implemented to
capture late-time leakage




1F1 BE — combustible gases
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sufficient mass of
combustible gases (H,, CO)
produced to support an
energetic event in the
refueling bay at ~25 hr

lumped-parameter codes
operate at too high a
granularity to really predict
gas composition time
evolution; requires detailed
analysis (i.e., CFD) to
quantify

= concentrations

= buoyancy effects

= steam condensation

= |eakage to/from
environment

* building heat transfer
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1F1 BE — energy balance ) .
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1F3 BE Case ) i,
= BSAF B.C.s included

=  Wetwell and drywell sprays; timing and flow rate

= Containment vents (via wetwell) and timing

= After-scram trip and coast-down curves: MSIVs, turbine stop valve, feedwater, fission
power, etc.

= BSAF B.C.s not included:
= RCIC and HPCI
= Freshwater and seawater injection rates
= |n-core tube failure (SRM, IRM, TIP)
=  Wetwell thermal stratification

= Non-BSAF B.C.s included

= RCICB.C. with a level controller — otherwise very comparable flow rates to the BSAF RCIC

= HPCI B.C. based on preliminary BSAF information — assumes degraded injection after ~30
hours due to low RPV pressure; HPCI tuned to facilitate in-core oxidation to get MSL failure
at the “correct” time

= MSL failure model
= Seawater injection rates adjusted to get lower head failure

= Recirculation pump leak added to obtain reasonable containment pressure since the wetwell

is only 1 node — ‘primes’ the containment pressure for the severe accident 10



1F3 BE— RPV pressure .
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1F3 BE— DW pressure
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general agreement with plant data

The largest containment pressure peak
(near 45 hours after the initial RPV
depressurization and first major
containment peak) may be caused by
core slumping into the lower plenum

This peak and subsequent peaks are
strongly dependent on the assumed
WW venting behavior,

= seawater injection magnitudes

] core/RPV degradation progression
too much injection (subcooling) AND
too little injection (no water to boil)
can suppress containment pressure
during certain time periods

the flatline after 80 hours is an
assumed WW gas leak that levels out
around 0.53 MPa (based on the
plateau around 65-68 hours in the
plant data)

some sort of leak assumption is
necessary to transport combustible
gas to the Rx building




1F3 BE-H, generation ) e
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But what about uncertainty? ).

= All of our best-estimate/best-practices cases are but one of a
locus of potential inputs and their results are but one of a
locus of potential solutions

= Uncertainty (in input parameters and models) will produce
significant variations the accident sequences

= The impact of this is that...

= “tweaks” made to fit the forensic data may not be valid over the
entire range of input parameter and model uncertainty

= The next accident may not be within the range of validity of the
“tweaks” and current “best-practices”




1F1 Example ) e
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1F1 Example )
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1F3 Example
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1F3 Example

" in-core H2 generation
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...and what does this all mean? ) o,

= “Tweaked” deterministic analyses are useful for
identifying/handling ill-defined phenomena that are
postulated to influence forensic results (e.g., 1F2 torus
cooling, venting, water injection)

= However, input and model uncertainty have the potential to
invalidate “tweaks” tied to forensic results, which can render
them invalid for predictive analyses

= Experience has shown that source term results have
significant variation; this will be important to handle for BSAF
Phase Il analyses




Summary )

= 1F1 and 1F3 best estimate accident signatures are similar to
those from older models/analyses; they match well enough
with the limited data

= Still looking at 1F1 initial ex-vessel behavior

= Accident signatures are very dependent on boundary
conditions (e.g., water injection rate, RPV depressurizations
mechanism, RCIC & HPCI| operation)

= Signatures can be sensitive to uncertainty in BCs and other
inputs (explicitly seen in these results and those in the
results of a separate 1F1 core-damage progression
uncertainty analysis)
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