* Lithium ion batteries are widely used 1in consumer electronics,
and 1ncreased reliability and safety would enable electric vehicle
or power grid applications.

* Degradation mechanisms link to nanoscale materials changes:
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TEM imugé of LiFe}PO4 pu;ticles
on liquid cell electrodes.

Detrimental effects accompany Li
movement during electrochemical cycling.

Imaging nanoscale structures during electrochemical cycling
in a transmission electron microscope (TEM) shows battery
degradation mechanisms and informs mitigation strategies.

\° Lithiation of 3D, 2D, 1D, and 0D structures demonstrated here. /

Top chip —>
Bottom chip ——>

* High-resolution TEM i1maging of materials in standard, volatile
liquid electrolytes enabled by a microfabricated, sealed liquid cell

with electron-transparent membranes:
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* Quantitative current/voltage control at pA-levels links 1mages to
electrochemical signatures.

* Liquid cell amenable to post-processing and lithography to place
a wide variety of materials on the electrodes.

Liquid cell priorities: thin electrolyte layer for high resolution,
quantitative electrochemistry capability, ability to add active
materials, and multiple electrodes for multiple experiments.
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* Metallic L1 1s an 1deal battery negative electrode, but high-

surface-area dendrites cause degradation and safety issues.

 TEM liquid cell enables unprecedented visualization of dendrite

initiation conditions and electrodeposition/dissolution dynamics.

* Plate and strip in typical electrolyte (1:1 EC:DMC / 1 M LiPFy)

at typical Li-battery current density: 1, 10, and 25 mA/cm?.

Experiment:
e Apply galvanostatic current to 0.26-pym? Ti working
electrode to induce Li deposition
» Counter / reference elecirodes are 750-ym? Ti circles
« Take first image haltway through electrodeposition.
* Image periodically through deposition and stripping.
Low-density Li appears light in Brightfield STEM images.

Electrode before plating:
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During electrochemical stripping, dissolution initiates from discrete weak points in surface film rather than uniformly.

Higher current density leads to pronounced dendrite formation:
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* Electron beam can induce celectrolyte radiolysis and create

surface films beyond the naturally-formed solid electrolyte

interphase (“SEI”):
Consequence: L1 morphology

different when plated under
constant e beam exposure:
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Imaging dose rate: 10 e nm2 s for 55s.
Dose rate in small square: 3,750 e nm? s,

500 nm .

Li plating at 10 mA/cm?, images taken every 15 s.

L1 dendrite initiation visible in TEM liquid cell. Both
electrodeposition and stripping influenced by presence of a
passivating surface film from electrolyte breakdown.
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Propagation of phase changes in Li-alloying materials can cause
nonuniformities and localized stress.

TEM shows nucleation and growth of heterogeneous domains 1n
thin film electrodes during lithium insertion and extraction.

« Electron-beam lithography used to pattern thin
film (50-100 nm) of active material on inert,
passivated W electrode.

« Liquid cell filled with ECDMC / LiPF, electrolyte
and galvanostatic current applied to lithiate and
delithiate electrodes.

Electrolyte

Tungsten electrode

e Amorphous Si lithiation uniform and reversible
e (rystalline Au pulverizes due to nonuniform

phase change propagation

1D and 0 sruciureexamples: i vire, LFePO,porides

Pick-and-place manipulation possible for single-nanowire testing.

Si nanowire on manipulator Si wire placed: Ni contacts
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Lithiated and imaged /n-sifv in TEM
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« Liquid cell immersed in LiFePO, nanoparticle
suspension

* ACvoltage applied between starred electrodes
resulted in assembly near fips

«  Experiments ongoing in TEM and STXM on
nanoparficle assemblies

Summary
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* CINT TEM liquid cell platform enables visualization of
challenging Li plating, alloying processes in volatile liquids.

* Small exposed electrode area allows quantitative
electrochemical measurements, linking observed nanoscale
phenomena to bulk electrochemistry.

* Needle-like L1 dendrites visible in TEM, more pronounced at
higher current density, influenced by surface films.

* Incorporation of thin films, nanowires, and nanoparticles
possible to 1mage structure change upon lithiation.
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