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Proposed Research C) Sandia
National
Laboratodes

o Model the physics of electron transport through the earth's

atmosphere

• Numerically solve a transport equation governing this process

• Input would be an assumed electron distribution from a solar

event

• Output would contain:

• Rates for every modeled electron reaction
• Energy deposition in the atmosphere
(a Conservation of energy check

o Compare output of the solution to real atmospheric data
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Importance of the Aurora

Scientific perspective:

e Help understand
and interpret the

observed energetic
particle spectra

o Help explain the
interactions

between the
thermosphere,

ionosphere, and
magnetosphere

• Better understand

the heating

mechanism in the

upper atmosphere

http://en.wikipedia.org/wiki/Aurora
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Importance of the Aurora

Sandia's perspective:

• Sandia's missions include
monitoring the Limited
Test Ban Treaty of 1963

o Want to model the
emission of light from

the upper atmosphere for

a nuclear detonation
(NUDET)

• Some of the effects of
the aurora are the same

as those for a NUDET

Q

C) Sandia
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Definition of the Upper Atmosphere
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Calculated using codes MSIS-E-90 and IR

7/42



Outline

Physics of the Aurora
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Cause of the Aurora

co Solar event sends out charged particles

co Solar particles scatter off atmospheric particles

o Scattering imparts energy to atmospheric particles

• Atmospheric particles release energy in the form of light

:)Sandia
National
laboratofles

http://www.ecofriend .com / resea rchers-pl a n-to- ha rvest-solar-wi nds-for-renewa ble-energy. htm I
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Electron Motion and Scattering

• Electrons travel in helical

paths about the magnetic

field lines

• Electrons have a chance to

be scattered when they

encounter atmospheric

particles

• Scattering can:

• Change the direction B of
the incident electron

(I) Impart energy to the
atmospheric particle —
incident electron loses
energy

1pm.
1 0 atom

O Sandia
Nafional
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Atomic and Molecular States

• An atom or molecule has a
certain configuration of
electrons

o The configuration gives the
atom or molecule a specific
amount of internal energy

o An atom or molecule wants
to have the lowest internal
energy possible — the ground
state

o All other states are called
excited states

A

Energy

(2 Sandia
National
Laboratories

Excited States

Ground state

http://en.wikipedia.org/wiki/Energy_level
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An Illustration of Excitation Scattering 0 Sandia
National
laboratofles
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An Illustration of Excitation Scattering
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An Illustration of Excitation Scattering
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An Illustration of Excitation Scattering
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An Illustration of Excitation Scattering
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An Illustration of Excitation Scattering 0 Sandia
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Scattering is Governed by Cross Sections

• Scattering is a
probabilistic

event 10
-16

• Probabilities
c.)

are governed

by hypothetical 10 
•2 —18
t> 

areas called cf)
cross sections

o Cross sections '(:)"
10 

—20

depend on

incident

electron energy

Atomic Oxygen Channels

11:12 10° 102 1134
Energy (eV)
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Outline

Q Mathematical Model
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Electron Intensity and Transport Assumptions

• Electron intensity (cm-2 s-1 eV-1 sr-1) is a quantity that allows

us to calculate quantities of interest (scattering rates and

energy deposition)

o An equation for electron intensity can be derived from the

continuity equation

• Equation assumes:

• Steady state
(i) Atmosphere is horizontally stratified
() Earth's magnetic field is uniform and vertical
• Atmospheric particles are at rest
• Electron intensity is azimuthally isotropic about the magnetic

field lines

LaterataliesP6EmaiSanda



Electron Transport Equation

quation
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it.t
I 
— ne(z) (LI) = Q(z, E , — E rt(z)utet (E)I(z, E , it)

a

az aE
species

+ E fax Em f1 sn(z7 E, 7 iti)/(z,g, diidg7

species channel E±Weri 1
e

Boundary Conditions

I(ztop, E , < 0) = /top (E, < 0)

/(Zhottom, E , µ> 0) = 0

I (z , E > Emax, = 0

Domain

Zbottom < Z < Ztop

< E < Emax

—1 < < 1
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Electron Transport Equation

me (z) 0E(LI)

species

= Q(z, E, iL) —

channel
7/

species
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n,(z)ol't (E)1- (z, E,

f Eina. fl

JE+Tiq —1
E, Et, II, itt)I(z, Et, At) dptclEt
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Electron Transport Equation

OI
11,,Tz

0
rie(z) 0 E(LI)

species channel

= Q(z,E, it) — E
species

Emax f 1

fE+Viq —1 
A.51/

• Species = 0, N2, 02, etc.
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n(z)ol't(E)I(z, E,

, p,')I(z, E', dp'clE1
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Electron Transport Equation

OI
11,,Tz

0
rie(z) 0 E(LI)

species

= Q(z,E, µ) —

channel
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n(z)cr.tt(E)I(z, E,
species

f Eina. fl

JE+Tiq —1
E, Et, II, p,t)I(z, Et, At) dptclEt

o Species = 0, N2, 02,

o Channel = scattering reactions
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Electron Transport Equation

0I

z

species

9-4(z) - E,(LI) = Q(z, E, it) —

channel
7/

species

Laboratades—naisanda

ne(z)att (E)I(z , E,

SII(z E » til)I (z, g, dp,' clE'

e Species = 0, N2, 02, etc.

• Channel = scattering reactions

O Electron intensity directional derivative



Electron Transport Equation

aI

II z
rie(z) . , (LI)

species

= Q(z,E, it) —

channel

species

E max 1

LabrataliesP6EmaiSanda

rk(z)art(E)I(z, E, it)

71(z, E, E' , til)I(z, g, A') dp,'clg
E +14

o Species = 0, N2, 02, etc.

• Channel = scattering reactions

• Electron intensity directional derivative

• Continuous slowing down of solar electrons



Electron Transport Equation

Paz ne(z)-TE(LI)

>2,

species

= Q(z,E,µ,) —

channel
1/

C3Sandia
National
Laboratmies

n(z)o-rt (E)1-(z, E,
species

f Erna.

E+W —1
(z , E, E', it„ u,')I(z, 1,,i1) cl[tidg

• Species = O, N2, 02, etc.

• Channel = scattering reactions

• Electron intensity directional derivative

• Continuous slowing down of solar electrons

• Internal source of electrons (photoionization)
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Electron Transport Equation

al

P az
ne(z) 

a
(LI)

species

= Q(z, E, p) —

channel

species
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ik(z)atet (E)I(z, E, p)

[Erna),

57(z, E, E', p,, p')I(z,
JE+14q

, p,') dtildE1

o Species = 0, N2, 02, etc.

o Channel = scattering reactions

o Electron intensity directional derivative

o Continuous slowing down of solar electrons

o Internal source of electrons (photoionization)

0.74o Out-scattering Hot(E) _ z-,77 k
E))
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Electron Transport Equation

al

P az
ne(z) 

a
(LI)

species

= Q(z,E, it) —

channel

species
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ik(z)atet (E)I(z, E, it)

!Erna), f 1

.1E+14q
E, E', µ, 1(1)1 (z , E', d,u'clE1

o Species = 0, N2, 02, etc.

o Channel = scattering reactions

o Electron intensity directional derivative

o Continuous slowing down of solar ele trons

o Internal source of electrons (phot onization)

o Out-scattering (o- o-77(E))tet(E) =

o In-scattering
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Q

Boundary Conditions

• I (zthp, E , it) = Itop(E , —1 < il < 0

4) It,p(E , µ < 0) depends on a particular solar event
O Some downward distribution must be assumed

l(zbottorn, E, /-t) = 0 for 0 < ,tt < 1

O Zbottom is unknown (free boundary value problem)

O Part of the problem is to find Zbottom
CO Zbottom is a function of energy

• I (z, E , iL) = 0 for E > Erna,

O Ema. depends on a particular solar event
O Some maximum energy must be assumed

:)Sandia
National
laboratofles
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Outline

Past Solutions
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DISORT 0 SandN
National
Laboratories

o DISORT (DlScrete Ordinates Radiative Transfer) was
written in the 80's to solve photon transport problems

o It solves problems of the form

01-

[t,T
7
 =Q(7,P)+I(T,µ) w(T) j P(7, ft, dPi

where /(Ttop, < 0) = c and some reflectivity is specified for

I(Tbottom, µ > O)

o Program only gives two choices for Q(T, bt)
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Q

DISORT Applied to Electron Transport 0 Sandia
National
Laboratodes

o DISORT was modified in the 90's so that it could be used for
electron transport

• Electron transport terms not contained in DISORT's equation
become a part of Q(T , p)
Hold energy constant and invoke the modified DISORT
progra m

o Works well for high energy electrons (E > 5000 eV)

o Very poor for low energy electrons (E < 500 eV)
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Current Work
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Consider a Simplified Problem
o Consider a problem where

• The atmosphere is entirely atomic oxygen
• Only two channels exist — elastic scattering and scattering to

the first excited state 1 D2
• There are no ambient electrons
• Photoionization does not take place
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Simplified Electron Transport Equation c:) Sandia
National
Laboratories

o For an elastic collision, no energy is transferred from the solar
electron

• For an excitation collision, assume the solar electron is not
deflected

• For an excitation collision, the energy transfer is exactly W

Simplified Equation

/

Oz 
= — n(z)o-t0t (E)1-(z, E,

▪ n(z)o-ei(E)1 P(E, IY)T(z, E, p!)
—1

▪ {n(z)o-ex(E + W)I(z, E + W, E + W < Emax

0, E W > Emax
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The Phase Function Causes Difficulty

• P(E, bt,µ') is sharply

peaked at p, = p,' for
large energies

• Causes quadrature

approximation to
require a prohibitively
large number of
points

o In practice we replace

P(E, pi) by an
expansion in a delta

function and
Legendre polynomials

104

10
2

10
4

Solid Lines: E = 100,000 eV
Dashed Lines: E = 1,000 eV

:)Sandia
National
laboratofles

—0.5 0.5

31/42



Numerical Procedure

• Approximate the integral by a quadrature sum

• Discretize energy Ei for i = 0, 1, . . . , M such that E0 = Emax
and Em = 0

• Evaluate the equation at E = E,

o Approximate I (z , W, it) by a linear interpolation in E

Ei+W

Ei • • • Ei+1 Ej

• Starting at i = 0, solve the boundary value problem using a

2-stage, 4th order implicit Runge-Kutta method

o Increment i and work downward in energy

LabrataliesP6EmaiSanda
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Free Boundary
Q CJ LaterataliesP6EmaiSanda

o Physically, I(z, E, p,) must be non-negative

• Recall the boundary condition /(zbotton„E, µ> 0) = 0

o Picking Zbottom too low will result in the numerical solution

going negative

Picking Zbottom too high will result in an inaccurate solution

• Both cause the numerical solution to go to unstable as E

decreases to 0

• My current work uses brute force to find Zbottom

33/42 6.=111:1=ER



Outline

Sample Calculation
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An Assumed Downward Boundary Condition

o Test transport
algorithm with

a sample
problem

• Assume some
downward

distribution at

the top of the
atmosphere

o Assume
downward

incident

intensity to be
isotropic in
pitch angle

(".3 Sandia
National
Laboratories

Downward Incident Intensity It„,)(E, µ< 0)
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Energy (eV)
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Show Movie of Solution

A V
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Oxygen Excitation

o 00D2) decays to either 0(3P2) or 0(3P1)

• This gives the auroral "red doublet" with light at 630.2 nm

and 636.6 nm

The Electromagnetic Spectrum
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https://www.science3d.org/content/basic-
principles x ray tomography-x-rays
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Excitation Rate Comparison
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• Calculated excitation rate is qualitatively similar to excitation
rates from a Monte Carlo simulation for a more realistic
problem Q

Excitation of Atomic Oxygen State ID2
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[S. C. Solomon, Geophys. Res. Lett., 20, 186, 1993]
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Conservation of Energy Check

o There are two ways to calculate total energy deposition

o One way gives Etot = 1.1785 x 1010 eV/cm2 s

• The other way gives Etot = 1.1759 x 1010 eV/cm2 s

o The difference between the two is about 0.22%

0 Sandia
National
Laboratories

ztop Emax l

Etot = 27r W
j f f

I) rq(z)o-?(E)I(z, E, dp, dE dz
zbottom vi7"1 I —1species channel

fo-Erna. fl

= 27r /(ztop, E,[)1-tEd dE
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Outline

Q Future Work
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Work That Needs to be Done

Q

C) Sandia
National
Laboratodes

• Single species problem

€11 Derive a numerical method that includes a solution of the free
boundary value problem

• Full problem

I) Include principal reaction channels
6) Include principal atmospheric species
el Include electron-electron interactions

• Auroral data

I) Obtain auroral (electron intensity) data from rocket
measurements

(I) Use measured intensity to supply boundary conditions
(a Compare computed solution to the remainder of the measured

intensity
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Appendix: Quantities of Interest

o Excitation/ionization rates (cm-3 s-1)

Emax f 1

(z) = 27rri(z) q(E)I(z, E, p) dµ dE
wn

Q• Energy deposition rate (eV cm-3 s-1)
E (z) = (z)

species channel

o Total energy deposition (eV cm-2 s-1)

f

,Z 

Ztop

etot — E (z) dz =
bottom

LEmax fl

J-1
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National
laboratofles

I (ztop, E, [)P E d,u,dE
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