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Why IlI-N’s?

D S I1I-N Ternaries
e
) T = 300K
Wurtzite
AN _
6.0 -
40 - » AlGaN/GaN transistors for RF electronics
350 nm o > AlGaN/GaN and GaN for next-gen power electronics
| * 6H SiC
20
750 nm
| “InN
00 - l l '
3.0 3.3 3.6

Lattice Constant, a [A]

aarmstr@sandia.gov



Why I1I-N’s?

[Bi/’]d tap Engrgy I1I-N Ternaries
e
T = 300K
Wurtzite
AIN _
6.0 | '
40 > AlGaN/GaN transistors for RF electronics
350 nm .. > AIGaN/GaN and GaN for next-gen power electronics
« 6H SiC " i "
> InGaN/GaN LEDs for solid-state lighting
20 F
750 nm
N
OO h J

3.0 3.3 3.6
Lattice Constant, a [A]

aarmstr@sandia.gov



Why I1I-N’s?
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» Persistent IlI-N challenges: doping and defects
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Importance of defects for llI-Nitride materials

Defects incorporate with large density in lIl-N's ~ Vis-Matched epltaxy and strain

» Highly mis-matched epitaxy (7, IE?:ONOC) )
» Non-ideal heterostructure growth conditions
> Facile defect formation: N, ~ exp(E,/kT)

(1,~ 1000 C°)
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Challenges to studying defects in llI-Nitrides

Quantitative defect spectroscopy is difficult for wide bandgap semiconductors
» Thermal emission techniques limited to ~ 1 eV of band edge
» Luminescence insensitive to non-radiative centers and not usually quantitative

AIN (6.2 eV) Si(1.1eV)

Compensating centers

D LOS Recombination centers

Scattering centers

DOS

Solution: Deep Level Optical Spectroscopy (DLOS)
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Deep Level Optical Spectroscopy

Deep Level Optical Spectroscopy (DLOS)?

» Electrical measurement of optical absorption by deep level defects
» Photocapacitance technique

» Sub-band gap optical stimulation to photoionize defect levels
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Deep Level Optical Spectroscopy

Deep Level Optical Spectroscopy (DLOS)?
> Deep level defect optical cross-section: o° = e°/¢= /N,
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Deep Level Optical Spectroscopy

Deep Level Optical Spectroscopy (DLOS)?
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Deep Level Optical Spectroscopy

Deep Level Optical Spectroscopy (DLOS)?
> Deep level defect optical cross-section: o° = e°/¢= /N,
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Deep Level Optical Spectroscopy

Deep Level Optical Spectroscopy (DLOS)?
> Deep level defect optical cross-section: o° = e°/¢= /N,
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Deep Level Optical Spectroscopy

Deep Level Optical Spectroscopy (DLOS)?
> Deep level defect optical cross-section: o° = e°/¢= /N,
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Deep Level Optical Spectroscopy

Deep Level Optical Spectroscopy (DLOS)?
> Deep level defect optical cross-section: o° = e°/¢= /N,
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Deep Level Optical Spectroscopy

Deep Level Optical Spectroscopy (DLOS)*
> Determine deep level energy E, from lineshape of o°(hv)
» Discuss defect density later...

Optical analog of Arrhenius plot
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Interpretation of DLOS spectra

DLOS of GaN:Si:C
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Interpretation of DLOS spectra

DLOS of GaN:Si:C
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Interpretation of DLOS spectra
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Interpretation of DLOS spectra
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Interpretation of DLOS spectra

DLOS of GaN:Si:C
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Vibronic motion

Quantify E° for sharp and broad defect absorption spectra
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Ultra-wide band gaps: Next frontier of power electronics

Post-SiC, Post-GaN Power Electronics
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» Ultra-wide band gap (UWBG) semiconductors (E, > 4 eV) have potential for
dramatic increase in breakdown voltage (V,,)

» Must understand fundamental relationship between UWBG doping and defects

" 26
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Theory: UWBGs self-compensate by native defect formation

GaN defect formation

Formation Energy (eV)

E V)

Appl. Phys. Rev.. C. G. \ian de Walle and J. Neugebauer

» Compensating defects become more favorable with increasing E,
» Carrier capture reduces defect formation energy by ~ E,
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Theory: UWBGs self-compensate by vacancy formation

AIN defect formation

GaN defect formation  _ .
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» Vacancy formation energy becomes negligibly small for UWBGs
» Defect formation pins E; and completely compensates dopants



Theory: UWBGs self-compensate by vacancy formation

AIN defect formation

GaN defect formation

Appl. Phys. Rev.. C. G. Van de Walle and J. Neugebauer

E. (eV)

C. Stampfl’ and C. G. Van de Walle®
PHYSICAL REVIEW B, VOLUME 65, 155212

» Do compensating defects limit n-type doping in Al-rich AIGaN?
> If so, what are the physical origin of the defects?
» How can they be controlled?

29



Study interplay of defects and doping in n-Al, ;Ga, ;N

9 nm Ni Schottk
n-Al,,Ga, 3N:Si (V1 um)

UID-Al,,Ga, ;N (300 nm)

UID-AIN (1.5um)

Sapphire ( c- miscut 0.15° toward m-)

> Al,,Ga, ;N grown by metal-organic vapor phase epitaxy (MOVPE)
» TDD~1-3x10°%cm™

» Growth temperature (7,) of 1160 °C or 1060 °C

» Increased TMGa flux (2x) to maintain x,, = 0.7

» Growth rate (zm/hr): 0.25 (1160 °C), 0.38 (1060 °C)

30
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Al ;Gag 3N dopant efficacy depends stronglyon T,

Si Doping Al, ;Gag ;N vs. Growth Temp.
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» ~4x decrease in free carrier concentration with increasing T,
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Al ;Gag 3N dopant efficacy depends stronglyon T,

Si Doping Al, ;Gag ;N vs. Growth Temp.
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» Agreement of Hall and C-V confirms Si dopant remains shallow

» Carrier concentration decreases due to compensation by defects
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Al ;Gag 3N dopant efficacy depends stronglyon T,

Si Doping Al, ;Gag ;N vs. Growth Temp.
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» Use deep level optical spectroscopy (DLOS) to understand how T,
mediates defects and doping in n-Al,,Ga, ;N
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DLOS identifies Al, ,Ga, ;N deep levels

DLOS of n-Al, ;Ga, 5N for T, =1160 °C
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» Observe three deep level defects

> DLOS spectra does not convey defect density information
34



Lighted Capacitance-Voltage identifies compensators

LCV of n-Al, ;Ga, 3N for T, = 1160 °C
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> Lighted Capacitance-Voltage (LCV) measures defect density (N,)
» N, = A(N,— N,) measured by CV under sub-gap, monochromatic illumination

aarmstr@sandia.gov

200

35



Lighted Capacitance-Voltage identifies compensators

LCV for VNA4153A
DLOS of n-Al, ;Ga, 3N for T, = 1160 °C 20 — |
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> E_—2.38 eV level is not a strong compensation center
36
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Lighted Capacitance-Voltage identifies compensators

log(c’) (r. u.)
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Lighted Capacitance-Voltage identifies compensators

LCV for VNA4153A
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» E.—3.39 eV and E.—4.74 eV defects are dominate compensating centers
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Identify physical origin from DLOS alloying study

DLOS of (Al)GaN vs. Al mole fraction

4 LI I L I LI I LI ] I LI ]

- GaN GaN -

2 - C- or Mg-related!

;_\ = -
s oo V,-related? B
E - -

o

2 Ll / 3
4 - -

L1 1 1 I L1 1 1 I L1 1 1 I L1 1 1 I L1 1 1
1 2 3 4 5 6

Photon energy (eV)

1. Hierro et al. APL 76 3064 2000
2. Hierro et al. APL 77 1499 2000

T. A. Henry, A. Armstrong,® A. A. Allerman, and M. H. Crawford
AFPLIED PHYSICS LETTERS 100, (43509 (2012)



Identify physical origin from DLOS alloying study

DLOS of (Al)GaN vs. Al mole fraction
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> Deep level evolution with alloying suggests similar defect origins
> Attribute E_—4.74 eV level to C or Mg impurities
> Attribute E_—3.39 eV level to Vrelated defect

T. A Henry, A Armstrong, A. A. Allerman, and M. H. Crawford
AFPPLIED PHYSICS LETTERS 100, 043509 (2012) 40



Lower Al, ;Ga, 3N T, suppresses defect formation

n-Al, ;Ga, ;N DLOS spectra vs. T,
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» V-related E. - 3.39 eV deep level defect weakly evident for 7, = 1060 °C

» Qualitative evidence for reduced defect density .



Lower Al, ;Ga, 3N T, suppresses defect formation

T,=1060°C T,=1160°C

w. W

1060 °C 1160 °C
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» Net 10x reduction in V,, and impurity defects with lower T, Unexpected

> Lower T, may inhibit the very strong thermodynamic drive to form
compensating point defects in UWBGs

» Complex tradespace among structural and electrical quality general to

UWBG film epitaxy not encountered in conventional semiconductors
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