SAND2014- 19833C

Designing the Future: How Successful Codesign Helps
Shape Hardware and Software Development

Christian Trott

Unclassified, Unlimited release
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia

U.S. DEPARTMENT OF PNAT =Y Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of
@ ENERGY L‘_A:_,% Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

11/18/14

Programming model for hardware abstraction

- Memory abstraction: spaces, access traits, layouts

- Execution abstraction: spaces, policies

Design influenced by information about future architectures

- interaction with all vendors allows for future-safe general
applicable abstractions

- concepts in place to handle platforms in 2020

Post CNV

New technologi

Influence hardware design for better programmability
- what concepts work well for app developers
- which capabilities are missing in architectures

Influencing C++ standard to adopt successful concepts
Testbea. < - 2

Early Access Hardware S widae range or tiaelity
- cores . .struction level
- memory subsystem
- full system network
Modular design
- add new capabilities

11/18/14 p.

Testbeds: Shannon

* Primary GPU Testbed

e 32 Dual Sandy-Bridge nodes

* QDR Infiniband

* 128 GB Ram: experiment with RAMDisk
* November 2012: 64 K20x

* November 2013: K40s

* November 2014: 8 nodes with 2xK80s

Runtime

* K80 properties:
* mostly two K40s on a single board

* increased register count 2x MiniFE Lennard SNA
* increased L1/shared memory 2x Jones Potential
« power limit 150W per GPU = K40 mK80

11/18/14 3

A closer look at NVIDIAs K80

Power consumption:
e on previous GPUs most applications pull significantly less than TDP
e use that knowledge to design dual GPU with no performance penalty

Frequency Power Consumption
1000 200
RH 150
600
100
400
200 50
0 0
miniFE Lennard SNA miniFE Lennard SNA
Jones Potential Jones Potential
M Frequency K40 ® Frequency K80 M Power K40 ® Power K80

11/18/14 4

IBM Power 8 & NVIDIA K20x

8 nodes of dual socket Power 8

2x K20 per node

Cluster is running

CUDA 5.5 + GCC Toolchain works

A lot of other software expected on HPC platforms in early stages
-> e.g. no CUDA aware MPI

Getting CUDA applications to run relatively painless

Performance as expected (i.e. the same as on X86 based systems with K20x)
-> this is for apps running exclusively on GPUs

Goal: shake out problems with software stack now
-> ready for Power based system with NVLink in 2016

11/18/14 5

OpenACC and C++

C++ Situation 2013:

* no support for class member access

* not able to call class member functions inside kernels

* replace all members with temporaries / explicit inlining
e can’t copy up class instances

class SomeClass {
int a;
int *array;
et Temporaries needed since “this” pointer not
void compute() {
const int n_tmp = n;
constinta_tmp = a;
const int array_tmp = array
#pragma acc parallel loop pcopy(array_tmp[0:n_tmp])
for(inti=0; i<n_tmp ; i++) {
array_tmp[i] = a_tmp +i;
}
}

valid in kernel.

11/18/14 6

OpenACC and C++

C++ Situation now:

 worked with PGI to address issues

* possibility to “attach” arrays to classes

* class member access and inline functions work
* nested classes still problematic

class SomeClass {
int a;
int *array;
int n;
void compute() {
#pragma acc parallel loop pcopy(array[0:n])
for(inti=0; i< n;i++){
arrayfi] =a +i;
}
}

11/18/14 7

CUDA and C++11

Experimental, undocumented support in CUDA 6.5
« LAMBDA inside of Kernels

e auto, decltype

e variadic templates

e other misc stuff

Official support in CUDA 7.0

Enables simpler code, faster porting

I
11/18/14 8

Kokkos: hierarchical parallelism

cy<16>(n bins.8). Functor()):

parallel_for(TeamVectorPoli

struct Fu
KOKKO Launch 3-level parallel kernel
I - teams, threads, vector (n_bins x 16 x 8)

- on GPU: teams = blocks; threads = blockDim.y; vector = blockDim.x

auto item_i = load_itens
SRR [oop with threads in the team over a range

- chunk on CPUs; give consecutive indicies on GPUs
« - on GPU threads '*ith same threadldx.x get same |

parallel_fo
sum +=
},sum_i);

Do a vector loop

V:giﬂrnf{j‘,gﬁﬁff;]n? - normal loop with auto vectorization form compiler on CPUs
1); - Split range over threads in a warp with same threadldx.y

N
}
}

I
11/18/14 9

DO ¢

Questions and further discussion: crtrott@sandia.gov

