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Motivation

• All models are wrong, but some are useful [George Box]

• Models of physical systems rely on
• Presumed theoretical framework
• Mathematical formulation
• Simplifying assumptions, parameterizations
• Numerical discretization of governing equations
• Computational software & hardware

• Model error is frequently non-negligible
• Estimating model error is useful for
• Model validation
• Model comparison
• Scientific discovery and model improvement
• Reliable computational predictions
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• If the model has structural errors, more data does not help!
• We target model-vs-truth discrepancy
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State-of-the-art: Issues for physical models

yi = f (xi;λ) + δ(xi)︸ ︷︷ ︸
truth

+εd
i

• Explicit additive statistical model for model error δ(x)
Kennedy-O’Hagan (2001).

• Calibrated predictive model ymod(x) = f (x;λ) + δ(x)

• Potential violation of physical constraints
• e.g. incompressible flow: ∇ •v = 0

• Disambiguation of model error δ(xi) and data error εd
i

• Calibration of model error on measured observable does not
impact the quality of model predictions on other QoIs
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Model error embedding: key idea

• Ideally, modelers want predictive errorbars (PDF):
inserting randomness on the outputs has issues, so...

• Cast input parameters λ as a random variable Λ
Black-box yi = f (xi; Λ) + εd

i

• More generally, explore additional parameterizations,
Extra ‘physics’

yi = f̃ (xi;λ,Θ) + εd
i

• Calibration turns into density estimation
• Object of inference is PDF of Λ, not parameter λ

• Back to calibration: parameterize πΛ(·;α) and calibrate for α
• E.g. Multivariate Normal, or Polynomial Chaos
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Model error embedding: features

α

Prior p(α)
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Black-box
model

Likelihood D = {yi = g(xi) + εd
i }

Data
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• Embed model error in specific submodel phenomenology
• a modified transport or constitutive law
• a modified formulation for a material property

• Allows placement of model error term in locations where key
modeling assumptions and approximations are made
• as a correction or high-order term
• as a possible alternate phenomenology

• Naturally preserves model structure and physical constraints
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Model error embedding: Bayesian formulation

• Consider the simplest setting with no data noise, i.e. εd
i = 0.

• In the simplest setting, cast λ as a random variable Λ
Black-box yi = f (xi; Λ)

• Calibration turns into density estimation for the PDF of Λ

• Polynomial Chaos Λ =
∑K

k=0 αkΨk(ξ)

• Back to parameter estimation, now for α = (α0, . . . , αK)

• Bayesian setting p(α|D)︸ ︷︷ ︸
Posterior

∝ LD(α)︸ ︷︷ ︸
Likelihood

p(α)︸︷︷︸
Prior

• Likelihood LD(α) = p(D|α) = p(y1, . . . , yN |α)
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Approximate Bayesian Computation (ABC)

Employ a kernel density as a pseudo-likelihood to enforce select
constraints:

Uncertain prediction p(y|D) is centered on the data
With µi(α) = Eξ[f (xi, λ(ξ;α))]:

minimize ‖ µi(α)− ydata,i ‖2
2

The width of the distribution p(y|D) is consistent with the spread of
the data around the nominal model prediction

With σ2
i (α) = Vξ[f (xi, λ(ξ, α))]:

minimize ‖ σi(α)− γ|µi(α)− ydata,i| ‖2
2

γ is a factor that specifies the desired match between σi and the
discrepancy |µi(α)− ydata,i|, on average
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ABC Likelihood

With ρ(S) being a metric of the statistic S, use the kernel function as
an ABC likelihood:

LABC(α) =
1
ε

K
(
ρ(S)

ε

)
where ε controls the severity of the consistency control

Propose the Gaussian kernel density:

Lε(α) =
1

ε
√

2π

N∏
i=1

exp
(
−

(µi(α)− yd,i)
2 + (σi(α)− γ|µi(α)− yd,i|)2

2ε2

)
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Predictions account for model error: example 1

Calibrating an exponential model f (x;λ1, λ2) = λ2eλ1x − 2
with data from a hyperbolic tangent model g(x) = tanh(3(x− 0.3))

Additive Gaussian error
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Predictions account for model error: example 2

Calibrating single-exponential models
with data from a double exponential model g(x) = e−0.5x + e−2x

Additive Gaussian error
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TransCom3 Experiment of CO2 Flux Inversion
[Gurney et al., Tellus B, 2003]

• Observations d at N = 77 sites around the world
• Inverse problem: find fluxes s at M = 22 locations
• Linearized ‘response’ model R, such that d ≈ Rs
• Model R is never perfect thus contaminating the inversion
• The inferred values of s compensate for model deficiencies
• Synthetic study: assume data comes from a true model Rtrue

with exact flux values: d = Rtruesexact
Additive Gaussian error

5 10 15 20
Flux Id

−1.0

−0.5

0.0

0.5

1.0

F
lu

x 
va

lu
e
, 
µ

True fluxes

Inferred fluxes, correct model Rtrue

Inferred fluxes, wrong model R

Embedded model error

10 20 30 40 50 60 70
Measurement Id

−5

0

5

C
o
n

ce
n

tr
a
ti

o
n

Observed data

Prediction, correct model Rtrue

Prediction, wrong model R

K. Sargsyan (ksargsy@sandia.gov) AGU 2014 Dec 15, 2014 11 / 14



TransCom3 Experiment of CO2 Flux Inversion
[Gurney et al., Tellus B, 2003]

• Observations d at N = 77 sites around the world
• Inverse problem: find fluxes s at M = 22 locations
• Linearized ‘response’ model R, such that d ≈ Rs
• Model R is never perfect thus contaminating the inversion
• The inferred values of s compensate for model deficiencies
• Synthetic study: assume data comes from a true model Rtrue

with exact flux values: d = Rtruesexact
Additive Gaussian error

5 10 15 20
Flux Id

−1.0

−0.5

0.0

0.5

1.0

F
lu

x 
va

lu
e
, 
µ

True fluxes

Inferred fluxes, correct model Rtrue

Inferred fluxes, wrong model R

Embedded model error

10 20 30 40 50 60 70
Measurement Id

−5

0

5

C
o
n

ce
n

tr
a
ti

o
n

Observed data

Prediction, correct model Rtrue

Prediction, wrong model R

K. Sargsyan (ksargsy@sandia.gov) AGU 2014 Dec 15, 2014 11 / 14



Consider 14 different response models R
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Infer fluxes s, given measurements d to satisfy d ≈ Rs

• Conventional additive Gaussian error (least-squares): d = Rs + ξ

• Embed probabilistic model for fluxes s: d = R(µs + Csξ)

K. Sargsyan (ksargsy@sandia.gov) AGU 2014 Dec 15, 2014 12 / 14



Consider 14 different response models R

0 5 10 15 20
Sources

0

10

20

30

40

50

60

70

M
e
a
su
re
m
e
n
ts

MATCH.bruhwiler

1.6

2.4

3.2

4.0

4.8

5.6

6.4

0 5 10 15 20
Sources

0

10

20

30

40

50

60

70
M
e
a
su
re
m
e
n
ts

MATCH.chen

1.6

2.4

3.2

4.0

4.8

5.6

6.4

0 5 10 15 20
Sources

0

10

20

30

40

50

60

70

M
e
a
su
re
m
e
n
ts

MATCH.law

1.6

2.4

3.2

4.0

4.8

5.6

6.4

0 5 10 15 20
Sources

0

10

20

30

40

50

60

70

M
e
a
su
re
m
e
n
ts

NIES.maksyutov

1.6

2.4

3.2

4.0

4.8

5.6

6.4

0 5 10 15 20
Sources

0

10

20

30

40

50

60

70

M
e
a
su
re
m
e
n
ts

NIRE.taguchi

1.6

2.4

3.2

4.0

4.8

5.6

6.4

0 5 10 15 20
Sources

0

10

20

30

40

50

60

70

M
e
a
su
re
m
e
n
ts

RPN.yuen

1.6

2.4

3.2

4.0

4.8

5.6

6.4

0 5 10 15 20
Sources

0

10

20

30

40

50

60

70

M
e
a
su
re
m
e
n
ts

SKYHI.fan

1.6

2.4

3.2

4.0

4.8

5.6

6.4

Infer fluxes s, given measurements d to satisfy d ≈ Rs

• Conventional additive Gaussian error (least-squares): d = Rs + ξ

• Embed probabilistic model for fluxes s: d = R(µs + Csξ)
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Inferred fluxes show less variability across models
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Inferred fluxes show less variability across models
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Inferred fluxes show less variability across models
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Inferred fluxes show less variability across models
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Inferred fluxes show less variability across models
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Inferred fluxes show less variability across models
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Inferred fluxes show less variability across models
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Inferred fluxes show less variability across models
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Inferred fluxes show less variability across models
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Inferred fluxes show less variability across models

P
ri

o
r

C
S

U
.g

u
rn

e
y

G
C

T
M

.b
a
k
e
r

G
IS

S
.f

u
n

g

G
IS

S
.p

ra
th

e
r

G
IS

S
.p

ra
th

e
r2

G
IS

S
.p

ra
th

e
r3

JM
A

-C
D

T
M

.m
a
k
i

M
A

T
C

H
.b

ru
h

w
il

e
r

M
A

T
C

H
.c

h
e
n

M
A

T
C

H
.l

a
w

N
IE

S
.m

a
k
sy

u
to

v

N
IR

E
.t

a
g

u
ch

i

R
P

N
.y

u
e
n

S
K

Y
H

I.
fa

n−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

F
lu

x

Region lnd10

K. Sargsyan (ksargsy@sandia.gov) AGU 2014 Dec 15, 2014 13 / 14



Inferred fluxes show less variability across models
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Inferred fluxes show less variability across models
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Inferred fluxes show less variability across models
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Inferred fluxes show less variability across models
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Inferred fluxes show less variability across models
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Inferred fluxes show less variability across models
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Inferred fluxes show less variability across models
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Inferred fluxes show less variability across models
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Inferred fluxes show less variability across models
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Inferred fluxes show less variability across models
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Inferred fluxes show less variability across models
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Inferred fluxes show less variability across models
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Summary

A method for dealing with model discrepancy error that is targeted
at physical models
Reformulate the calibration as a density estimation problem
Bayesian machinery to find parameters of the PDFs
Approximate Bayesian Computation (ABC) targets constraints of
interest to the modeler
Model-to-model calibration
(in progress) Extension to include data noise

• K. Sargsyan, H. Najm, and R. Ghanem. “On the Statistical
Calibration of Physical Models”. International Journal for
Chemical Kinetics, in review.
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Model error embedding: Bayesian formulation

• Consider the simplest setting with no data noise, i.e. εd
i = 0.

• In the simplest setting, cast λ as a random variable Λ
Black-box yi = f (xi; Λ)

• Calibration turns into density estimation for the PDF of Λ

• Polynomial Chaos Λ =
∑K

k=0 αkΨk(ξ)

• Back to parameter estimation, now for α = (α0, . . . , αK)

• Bayesian setting p(α|D)︸ ︷︷ ︸
Posterior

∝ LD(α)︸ ︷︷ ︸
Likelihood

p(α)︸︷︷︸
Prior

• Likelihood LD(α) = p(D|α) = p(y1, . . . , yN |α)



Data-Model-Truth
• Measurements data truth data error

yi = g(xi) + εd
i

• Model
truth

g(xi) =
model

f (xi;λ) +
model error
δ(xi)

• Total error budget

yi = f (xi;λ) + δ(xi)︸ ︷︷ ︸
truth g(xi)

+εd
i

Statistical modeling of errors in calibrating f (x;λ)

Data Error: εd
i ∼ N(0, σ2)

Model Error: δ(x) ∼ GP(µ(x),C(x, x′))

Estimate model parameters λ along with those of δ(x), εd
i




