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Motivation

All models are wrong, but some are useful [George Box]

Models of physical systems rely on

Presumed theoretical framework
Mathematical formulation
Simplifying assumptions, parameterizations
Numerical discretization of governing equations
Computational software & hardware
Model error is frequently non-negligible
Estimating model error is useful for
Model validation
Model comparison
Scientific discovery and model improvement
Reliable computational predictions
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Motivation
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Motivation
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¢ If the model has structural errors, more data does not help!
o We target model-vs-truth discrepancy
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State-of-the-art: Issues for physical models

yi = f(xi; A) + 6(x;) +ef
N ———

truth

e Explicit additive statistical model for model error §(x)
Kennedy-O’Hagan (2001).

e Calibrated predictive model Ymod(x) = f(x; A) + 6(x)

¢ Potential violation of physical constraints
e.g. incompressible flow: Vev =0

e Disambiguation of model error §(x;) and data error ¢
o Calibration of model error on measured observable does not

impact the quality of model predictions on other Qols
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Model error embedding: key idea
o Ideally, modelers want predictive errorbars (PDF):
inserting randomness on the outputs has issues, so...

e Cast input parameters \ as a random variable A

e More generally, explore additional parameterizations,

Extra ‘physics’ -
phy y,-:f(x,-;)\,@)—Fe;1

e Calibration turns into density estimation
Object of inference is PDF of A, not parameter A

e Back to calibration: parameterize 75 (-; &) and calibrate for «
E.g. Multivariate Normal, or Polynomial Chaos
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Model error embedding: features

Black-box

model Data

/ A (@) \
AN ~

Probabilistic model for A

Posterior p(«|D)

o Embed model error in specific submodel phenomenology

a modified transport or constitutive law
a modified formulation for a material property

¢ Allows placement of model error term in locations where key
modeling assumptions and approximations are made

as a correction or high-order term
as a possible alternate phenomenology

o Naturally preserves model structure and physical constraints

K. Sargsyan (ksargsy@sandia.gov) AGU 2014 Dec 15, 2014

5/14



Model error embedding: Bayesian formulation

e Consider the simplest setting with no data noise, i.e. ¢! = 0.

¢ In the simplest setting, cast A as a random variable A
Black-box yi = f(xi; A)

e Calibration turns into density estimation for the PDF of A
e Polynomial Chaos A = 35, W (€)
e Back to parameter estimation, now for a = (ay, . . ., ak)

e Bayesian setting p(a|D) x Lp(a) p(a)
——

Posterior Likelihood Prior

Likelihood Lp(a) = p(D|a) = p(y1,. .., yn|a)
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Approximate Bayesian Computation (ABC)

Employ a kernel density as a pseudo-likelihood to enforce select
constraints:

@ Uncertain prediction p(y|D) is centered on the data
o With () = E¢[f(xi, M(&; )]
minimize || 4;(®) — Yaua,i ||3

@ The width of the distribution p(y|D) is consistent with the spread of
the data around the nominal model prediction

o With o7 () = Ve[f(xi, A&, ))]:
minimize || o;(r) — |i(@) — yaai] |2

e ~ is a factor that specifies the desired match between o; and the
discrepancy |u;(c) — yaua,i|, ON average
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ABC Likelihood

With p(S) being a metric of the statistic S, use the kernel function as

an ABC likelihood: | s
Lasc(a) = -K <P( ))

€

where e controls the severity of the consistency control

Propose the Gaussian kernel density:

gil\a) — o) — i 2
L %Hexp( “ud + (ee) ~lte) ydm))
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Predictions account for model error: example 1

Calibrating an exponential model f(x; Aj, \y) = ApeM* —2
with data from a hyperbolic tangent model g(x) = tanh(3(x — 0.3))

Additive Gaussian error

® o Data, N=5
--- Truth
— Model prediction

Embedded model error

® e Data, N=5

=== Truth
— Model prediction
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Predictions account for model error: example 1

Calibrating an exponential model f(x; Aj, \y) = ApeM* —2
with data from a hyperbolic tangent model g(x) = tanh(3(x — 0.3))

Additive Gaussian error Embedded model error
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Predictions account for model error: example 2

Calibrating single-exponential models
with data from a double exponential model g(x) = e=03% 4 ¢~

Additive Gaussian error Linear-exponential f(x, \) = eM+X2x
[e o Data from truth model glz)
— Model f(z;)) for best value of A ® © Data from truth model g(z)
10° - — Model f(z;A(a)) for best value of a
10°
TN
N
N
N
‘\\:
‘\ ¢
10! \‘ . .
\ 10
107
N 5 102
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Predictions account for model error: example 2

Calibrating single-exponential models
with data from a double exponential model g(x) = e=03% 4 ¢~
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TransCom3 Experiment of CO, Flux Inversion

[Gurney et al., Tellus B, 2003]

e Observations d at N = 77 sites around the world

e Inverse problem: find fluxes s at M = 22 locations

e Linearized ‘response’ model R, such that d ~ Rs
Model R is never perfect thus contaminating the inversion
The inferred values of s compensate for model deficiencies
Synthetic study: assume data comes from a true model Ry
with exact flux values: d = RyueSexact

Additive Gaussian error

Flux value, p
o
13
°

@ o True fluxes

-1 @ ¢ Inferred fluxes, correct model R,,,

@ & Inferred fluxes, wrong model R

5 10
Flux Id
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TransCom3 Experiment of CO, Flux Inversion

[Gurney et al., Tellus B, 2003]

Flux value, p

e Observations d at N = 77 sites around the world
e Inverse problem: find fluxes s at M = 22 locations
e Linearized ‘response’ model R, such that d ~ Rs
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Model R is never perfect thus contaminating the inversion
The inferred values of s compensate for model deficiencies
Synthetic study: assume data comes from a true model Ry
with exact flux values: d = RyueSexact
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Consider 14 different response models R

GISS.prather . .prather3 JMA-CDTM.maki
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Infer fluxes s, given measurements d to satisfy d ~ Rs

e Conventional additive Gaussian error (least-squares): d=Rs+ ¢
e Embed probabilistic model for fluxes s: d = R(ps + Cs8)
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Consider 14 different response models R
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Inferred fluxes show less variability across models
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Inferred fluxes show less variability across models
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Inferred fluxes show less variability across models
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Inferred fluxes show less variability across models
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Inferred fluxes show less variability across models
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Inferred fluxes show less variability across models
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Inferred fluxes show less variability across models
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Inferred fluxes show less variability across models
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Region ocn02
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Inferred fluxes show less variability across models
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Inferred fluxes show less variability across models
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Region ocn04
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Region ocn07
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Inferred fluxes show less variability across models
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Region ocnll

Inferred fluxes show less variability across models
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Summary

@ A method for dealing with model discrepancy error that is targeted
at physical models

@ Reformulate the calibration as a density estimation problem
@ Bayesian machinery to find parameters of the PDFs

@ Approximate Bayesian Computation (ABC) targets constraints of
interest to the modeler

@ Model-to-model calibration
@ (in progress) Extension to include data noise

e K. Sargsyan, H. Najm, and R. Ghanem. “On the Statistical
Calibration of Physical Models”. International Journal for
Chemical Kinetics, in review.

Thank You
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Model error embedding: Bayesian formulation

e Consider the simplest setting with no data noise, i.e. ¢! = 0.

¢ In the simplest setting, cast A as a random variable A
Black-box yi = f(xi; A)

e Calibration turns into density estimation for the PDF of A
e Polynomial Chaos A = 35, W (€)

e Back to parameter estimation, now for a = (ay, ..., ak)
e Bayesian setting p(a|D) x Lp(a) p(a)

N——

Posterior Likelihood Prior

Likelihood Lp(a) = p(D|a) = p(y1,. .., yn|a)



Data-Model-Truth

e Measurements data truth data error
yi = glxi) +¢f
o Model
truth model model error
glxi) =f(xzA) + 6(x)
e Total error budget
yi = f(xi; A) 4 6(x;) +¢€
~—_——
truth g(x;)
Statistical modeling of errors in calibrating f(x; \)
Data Error: el ~ N(0,0?)

Model Error: d(x) ~ GP(u(x), C(x,x'))

Estimate model parameters \ along with those of §(x), €





