
Model Calibration and Forward Uncertainty 
Quantification for Large-Eddy Simulation of Turbulent 

Flows

Myra Blaylock

Thermal/Fluid Sciences & Engineering Department 

Sandia National Laboratories

CRF Research Highlight Series

September 18, 2014

Special thanks to: Jeremy Templeton, Cosmin Safta, 

Stefan Domino, John Hewson

SAND2014-19999PE



Gas Turbine Challenges

Gas Turbine Engine 

Complex flow physics 
coupled with chemistry 
drives efficiency and 
pollutant emissions

RANS solutions and modeling
strategies are inadequate given 
the free flow and turbulence driven
by heat release

Gas Turbine Combustor Flow
Stanford ASCI Alliance Center



Motivation

Overprediction of turbulent kinetic energy, 
Templeton 2006

Re 6600 turbulent jet using 
SIERRA Fuego

Gas Turbine combustion 
processes offer such 
complexity that new 
approaches to enable high-
fidelity calculations are 
needed to enable next-
generation technology

High-Fidelity LES Advantages:
• Resolves many turbulent structures
• Less dependent on model form
• Verified predictivity for combustion
Engineering LES Challenges:
• Insufficient turbulence models 

Combustion models taken from RANS
• Complex interactions with mesh and 

models impacting mesh refinement
• Difficult to assess with UQ
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Breath of Study

• Cold Flow
– Comparison between engineering and high-fidelity LES

– Develop UQ strategies and calibrate turbulence model 
parameters using channel flow

– Application:  Jet-in-Crossflow

– Developed approaches and are applying them to:  k-SGS model 
calibration, wall-modeling, jet-in-crossflow

• Reacting Flow
– Implement industrial and advanced combustion models

– Infer combustion model parameters

– UQ of reacting jet-in-crossflow and complex geometry flow

– Currently implementing Burke-Schumann with mixture fraction 
table look up



UQ of Channel Flow



Calibrate Subgrid-Scale Kinetic Energy                
One-Equation LES Model

Model:

Production:

Dissipation:

Calibrate: and



Bayesian Calibration

Bayes formula:

posterior

priorlikelihood

evidence

• Data D based on DNS of Isotropic Turbulence

• Model parameters θ are the ksgs model constants

• The prior distribution P(θ) is set to MVN with diagonal covariance, 

centered around the current nominal values for θ.

• The likelihood P(D|θ) is assumes a Gaussian discrepancy between the 

data and the model

• The posterior distribution P(θ|D) is sampled via and adaptive Markov 

Chain Monte Carlo algorithm



Data

Bayes formula:

posterior

priorlikelihood

evidence

• Data D based on DNS of Isotropic Turbulence

• Model parameters θ are the ksgs model constants

• The prior distribution P(θ) is set to MVN with diagonal covariance, 

centered around the current nominal values for θ.

• The likelihood P(D|θ) is assumes a Gaussian discrepancy between the 

data and the model
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DNS-Informed Calibration

Filtered DNS ksgs (JHU)
Paramet er Est imat ion

Forward U Q
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Data is Filtered DNS to LES scale

3 Filter sizes: 

• ∆ = L/64

• ∆ = L/32

• ∆ = L/16

DNS ∆ = L/32



Bayes formula:

Bayesian Calibration: Likelihood

posterior

priorlikelihood

evidence

• Data D based on DNS of Isotropic Turbulence

• Model parameters θ are the ksgs model constants

• The prior distribution P(θ) is set to MVN with diagonal covariance, 

centered around the current nominal values for θ.

• The likelihood P(D|θ) is assumes a Gaussian discrepancy between the 

data and the model

• The posterior distribution P(θ|D) is sampled via and adaptive Markov 

Chain Monte Carlo algorithm



Likelihood

• Classical Approach

• Embedded Error (K. Sargsyan, H.N. Najm, and R. 
Ghanem - 2014)



Bayesian Calibration: Prior

Bayes formula:

posterior

priorlikelihood

evidence

• Data D based on DNS of Isotropic Turbulence

• Model parameters θ are the ksgs model constants

• The prior distribution P(θ) is set to MVN with diagonal covariance, 

centered around the current nominal values for θ.

• The likelihood P(D|θ) is assumes a Gaussian discrepancy between the 

data and the model

• The posterior distribution P(θ|D) is sampled via and adaptive Markov 

Chain Monte Carlo algorithm



Independent Gaussian Priors

• Centered at values from the literature (Cμϵ, Cϵ)

• Range of Marginal Standard Deviations



Bayesian Calibration: Posterior

Bayes formula:

posterior

priorlikelihood

evidence

• Data D based on DNS of Isotropic Turbulence

• Model parameters θ are the ksgs model constants

• The prior distribution P(θ) is set to MVN with diagonal covariance, 

centered around the current nominal values for θ.

• The likelihood P(D|θ) is assumes a Gaussian discrepancy between the 

data and the model

• The posterior distribution P(θ|D) is sampled via and adaptive Markov 

Chain Monte Carlo algorithm



Sample Posterior Distributions

pdf(Cμϵ)

pdf(Cϵ)

pdf(σ)

CϵCμϵ σ



Effect of Filter Size and Prior

Posterior for Cμϵ Posterior for Cϵ



Forward UQ – Predictive Assessment 

Employ Polynomial Chaos (PC) Expansion to propagate uncertainties 
from input parameters to output Quantities of Interest 

Employ quadrature to compute PC coefficients



Sparse Quadrature to Construct PC 
Expansion for Model Output

Rosenblatt

Transformation



Fuego LES Simulations with Calibrated 
Parameters

• ksgs Turbulence Model with 
various Cϵ and Cμϵ corresponding 
to quadrature points

• Normalized Input Parameters

– ρ = 1.0

– μ = 1/Reτ = 1/590

• No slip walls at top and bottom

• Periodic in x and z

• Body force in x-direction to 
produce flow



Mesh

• Dimensions:

– Flow direction: x = 2π (periodic)

– Wall normal direction: y = 2

– Cross flow direction: z = π (periodic)

• Grid size: 

90 × 116 × 90 = 931500 points

• y+ ≈ 1.15 at walls

• Hyperbolic tan to same

spaceing as in z



Fuego LES Simulations



QoIs: Velocity and Mass Flux



QoI: RMS of Centerline Velocity

• text



Forward UQ – Predictive Assessment 

Employ Polynomial Chaos (PC) Expansion to propagate 
uncertainties from input parameters to output Quantities of 
Interest 

Evaluate weights with values from LES



Midline Average Velocity

• DNS = 21.26

• Solid = 

• Dashed = 

σ=0.4
σ=0.04

σ=0.2
σ=0.02



RMS of Centerline Velocity

• DNS = 2.7



Mean Mass Flux

• DNS = 117



Principal Component Analysis 
of Joint PDF’s



First Principal Component yields similar 
results to Joint PDF

• Solid – Joint PDF

• Dashed – 1st PC



Conclusions

• Used DNS isotropic turbulence to predict 
engineering LES channel flow QoI

• Production and dissipation terms for the ksgs

model are highly correlated 

• Discrepancy in QoI values from DNS
– Isentropic turbulence to channel flow

– “engineering level”

– Errors in ksgs



Path Forward in FY15

• Complete combustion model implementation in Nalu
– Coordinate reaction flow case with J. Oefelein et al

– Extra development effort from Blaylock & Hewson

• Calibrate combustion model coefficients

• Tie reacting flow simulation with ODT-informed PCE 
model to estimate probability of extinction

• UQ of reacting flow simulation

• UQ of wall model for channel flow and backward 
facing step

• Make UQ/calibration tools available through SNL git 
repository



Thank You

&

Questions



Effect of Filter Size and Prior



Posterior



Principal Component Analysis 
of Joint PDF’s



Wall-Model Calibration (in progress)

Calibrate boundary layer and bulk model parameters



Wall Model Results



Jet-in-Crossflow UQ (in progress)

Simulation capability implemented in Nalu
Validate against Su & Mungal Re 5K case

Collaborating with 
Ruiz, Lacaze, 
Oefelein,
“Assessing the 
accuracy of Large 
Eddy Simulation in 
a Jet In Cross Flow 
Configuration,” (in 
prep)



Combustion Model Implementation

Re ~25,000; Burke Schumann Methane Combustion

Mixture fraction iso-surfaces colored by 
temperature



Forward UQ

Joint PDF of Model Parameters Propagation in Turbulent Channel

Safta, Blaylock, Templeton, Domino,
“Parameter Uncertainty in LES of 
Channel Flow,” (in prep.)


