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Gas Turbine combustion
processes offer such
complexity that new
approaches to enable high-
fidelity calculations are
needed to enable next-
generation technology
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High-Fidelity LES Advantages: 2sF 1\
» Resolves many turbulent structures
- Less dependent on model form
* Verified predictivity for combustion }1-5
Engineering LES Challenges: S -

» Insufficient turbulence models
Combustion models taken from RANS
» Complex interactions with mesh and ) A
) models impaCting mesh refinement Overprediction of turbulent kinetic energy,
f‘?ﬁ}’ - Difficult to assess with UQ Templeton 2006
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— Comparison between engineering and high-fidelity LES

— Develop UQ strategies and calibrate turbulence model
parameters using channel flow

— Application: Jet-in-Crossflow
— Developed approaches and are applying them to: k-SGS model
calibration, wall-modeling, jet-in-crossflow
 Reacting Flow
— Implement industrial and advanced combustion models
— Infer combustion model parameters
— UQ of reacting jet-in-crossflow and complex geometry flow

— Currently implementing Burke-Schumann with mixture fraction
table look up
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Calibrate Subgrid-Scale Kinetic Energy

gquation LES Model

Model:
(")[_)L'S.{]‘q —1.508 — Y /11 (r)l‘.sgs v 548 s5gs
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I‘_\;E?;._I},Chain Monte Carlo algorithm

likelihood prior

P(D|6)P(6)

P(9|D) = ——
7 P(D )\
posterior evidence

Data D based on DNS of Isotropic Turbulence

Model parameters 6 are the k9% model constants

The prior distribution P(6) is set to MVN with diagonal covariance,
centered around the current nominal values for 6.

The likelihood P(D|6) is assumes a Gaussian discrepancy between the
data and the model

The posterior distribution P(6|D) is sampled via and adaptive Markov

() sandia National Laboratoies




@%Chain Monte Carlo algorithm

likelihood prior

P(D|0)P()

P(6|D) =
posterior evidence

Data D based on DNS of Isotropic Turbulence

Model parameters 6 are the k9 model constants

The prior distribution P(6) is set to MVN with diagonal covariance,
centered around the current nominal values for 6.

The likelihood P(D|6) is assumes a Gaussian discrepancy between the
data and the model

The posterior distribution P(6|D) is sampled via and adaptive Markov
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M easurement M odel
2= g(6;7)* g+ e

Computational M odel
y= f(O;N)+ e
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3 Filter sizes:

A =L/64
A =L/32
A =L/16
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@%Chain Monte Carlo algorithm

ayes formula: likelihood orior

P(D|6)P()

P(6|D) =
posterior evidence

Data D based on DNS of Isotropic Turbulence

Model parameters 6 are the k9 model constants

The prior distribution P(6) is set to MVN with diagonal covariance,
centered around the current nominal values for 6.

The likelihood P(D|6) is assumes a Gaussian discrepancy between the
data and the model

The posterior distribution P(6|D) is sampled via and adaptive Markov
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) Likelihood

« Classical Approach

fr(t: A) = C-T#_Efp(f: A)—Cefp(t:A) + em + €q.

Nt 4 ™y A y
70 — 1 , (fri = Cu fpri+ Cefpi)?
p(0) =[] ——exp ( - =

« Embedded Error (K. Sargsyan, H.N. Najm, and R.
Ghanem - 2014)




@%Chain Monte Carlo algorithm

Ba esian Calibration: Prior

BayeS fOFmU'a likelihood @
y

~ P(D|o)P(0

P(6|D) =
posterior evidence

Data D based on DNS of Isotropic Turbulence

Model parameters 6 are the k9 model constants

The prior distribution P(6) is set to MVN with diagonal covariance,
centered around the current nominal values for 6.

The likelihood P(D|6) is assumes a Gaussian discrepancy between the
data and the model

The posterior distribution P(6|D) is sampled via and adaptive Markov
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2%¢E Independent Gaussian Priors

* Centered at values from the literature (C,., C,)

pe’

i7" =(0.0845,0.85)  p5 = (0.07,1.05)
 Range of Marginal Standard Deviations

o7 = (0.04,0.4), o8 = (0.02.0.2), o&" = (0.01,0.1)




@%Chain Monte Carlo algorithm

Posterior

likelihood prior

P(6|D) = P(D|0)P()

)
P(D)____
evidence

Data D based on DNS of Isotropic Turbulence

Model parameters 6 are the k9 model constants

The prior distribution P(6) is set to MVN with diagonal covariance,
centered around the current nominal values for 6.

The likelihood P(D|6) is assumes a Gaussian discrepancy between the
data and the model

The posterior distribution P(6|D) is sampled via and adaptive Markov
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Employ Polynomial Chaos (PC) Expansion to propagate uncertainties
from input parameters to output Quantities of Interest

])

Employ quadrature to compute PC coefficients

(M (Ce, Cu) Wi (£1,82))
)

Cp. = ; ‘
L (W% (&4, &0)
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ks9s Turbulence Model with
various C_and C,. corresponding
to quadrature points

Normalized Input Parameters

- p=1.0

— u=1/Re, = 1/590
No slip walls at top and bottom
Periodic in x and z

Body force in x-direction to
produce flow




— Flow direction: x = 2r (periodic)

— Wall normal direction: y = 2

— Cross flow direction: z = r (periodic)
« Grid size:

90 x 116 x 90 = 931500 points

- y*=1.15 at walls
* Hyperbolic tan to same _

spaceing as in z $ e




Time = 4.0007 sec

_Uvec
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Mass Flux

- ref — 43

Mean X-Velocity at the Centerline

Mean X Vel at Centerline
Mass Flux
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Evaluate weights with values from LES

(-\l ((1( . ('[lc ) \Ijk (tl . &2)>
)

Cp. = . ‘
" (W7 (&1, &2)

Employ Polynomial Chaos (PC) Expansion to propagate
uncertainties from input parameters to output Quantities of
Interest

I)
M (C,C) =Y a0 (61,8)

k=0




dline Average Velocity

 DNS = 21.26

» Solid = ,/]" = (0.0845,0.85)
* Dashed = ;2" — (0.07,1.05)
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=2 Principal Component Analysis
¥o5 of Joint PDF’s
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» First Principal Component yields similar

.,: ' ) results to Joint PDF

« Solid - Joint PDF
« Dashed - 1stPC
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Iiwag Conclusions

« Used DNS isotropic turbulence to predict
engineering LES channel flow Qol

+ Production and dissipation terms for the kg
model are highly correlated

« Discrepancy in Qol values from DNS
— Isentropic turbulence to channel flow
— “engineering level”
— Errors in kg

Fras




. 'Complete combustion model implementation in Nalu
— Coordinate reaction flow case with J. Oefelein et al
— Extra development effort from Blaylock & Hewson

 Calibrate combustion model coefficients

* Tie reacting flow simulation with ODT-informed PCE
model to estimate probability of extinction

* UQ of reacting flow simulation

« UQ of wall model for channel flow and backward
facing step

« Make UQ/calibration tools available through SNL git
repository

oAb




Thank You
&
Questions
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of Joint PDF’s
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Boundary Layer of 10 y+

Boundary Layer of 30 y+

Mean X Vel at Centerline
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Jet-in-Crossflow UQ (in progress)

Simulation capability implemented in Nalu
Validate against Su & Mungal Re 5K case

Edge (L) Elem (R)
Time: 0.017156 2nd crder; hylb = 0; alpha = 2/3

o e Collaborating with
e o SRt Ruiz, Lacaze,
! ! Oefelein,
ok | : “Assessing the
accuracy of Large
Eddy Simulation in
a Jet In Cross Flow
Configuration,” (in
™ NaluEdge; Ksgs; 2nd order nostab prep )
Sandia National Laboratores
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“Joint PD:I; of Model Parameters Propagation in Turbulent Channel
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