

Model Calibration and Forward Uncertainty Quantification for Large-Eddy Simulation of Turbulent Flows

Myra Blaylock

Thermal/Fluid Sciences & Engineering Department

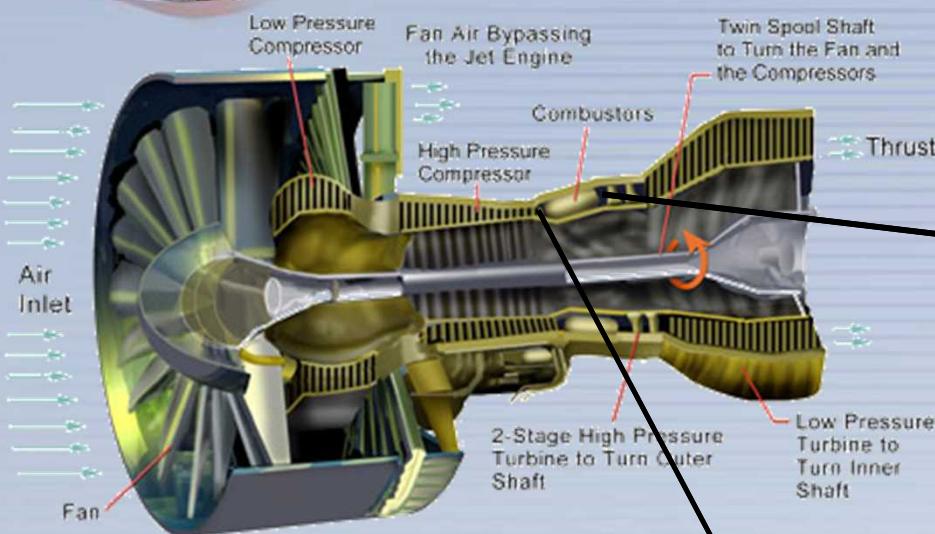
Sandia National Laboratories

CRF Research Highlight Series

September 18, 2014

Special thanks to: **Jeremy Templeton, Cosmin Safta,
Stefan Domino, John Hewson**

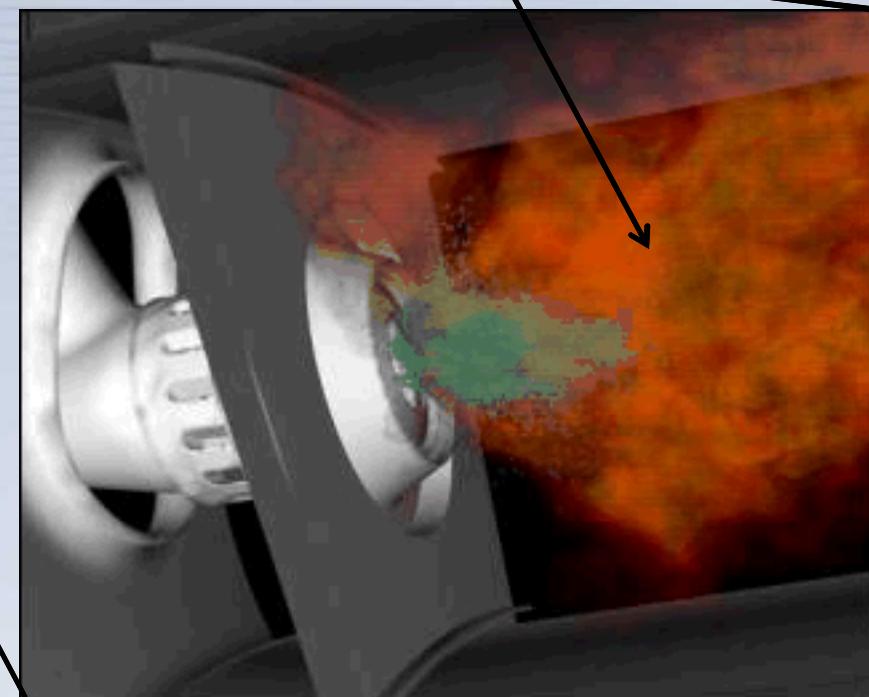
Gas Turbine Challenges



Gas Turbine Engine

Complex flow physics coupled with chemistry drives efficiency and pollutant emissions

RANS solutions and modeling strategies are inadequate given the free flow and turbulence driven by heat release



Gas Turbine Combustor Flow
Stanford ASCI Alliance Center

Motivation

Re 6600 turbulent jet using
SIERRA Fuego

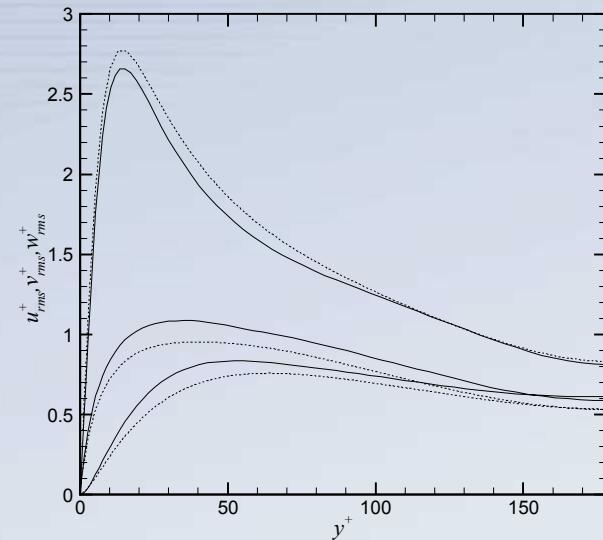
High-Fidelity LES Advantages:

- Resolves many turbulent structures
- Less dependent on model form
- Verified predictivity for combustion

Engineering LES Challenges:

- Insufficient turbulence models
Combustion models taken from RANS
- Complex interactions with mesh and
models impacting mesh refinement
- Difficult to assess with UQ

Gas Turbine combustion processes offer such complexity that new approaches to enable high-fidelity calculations are needed to enable next-generation technology



Overprediction of turbulent kinetic energy,
Templeton 2006

Breath of Study

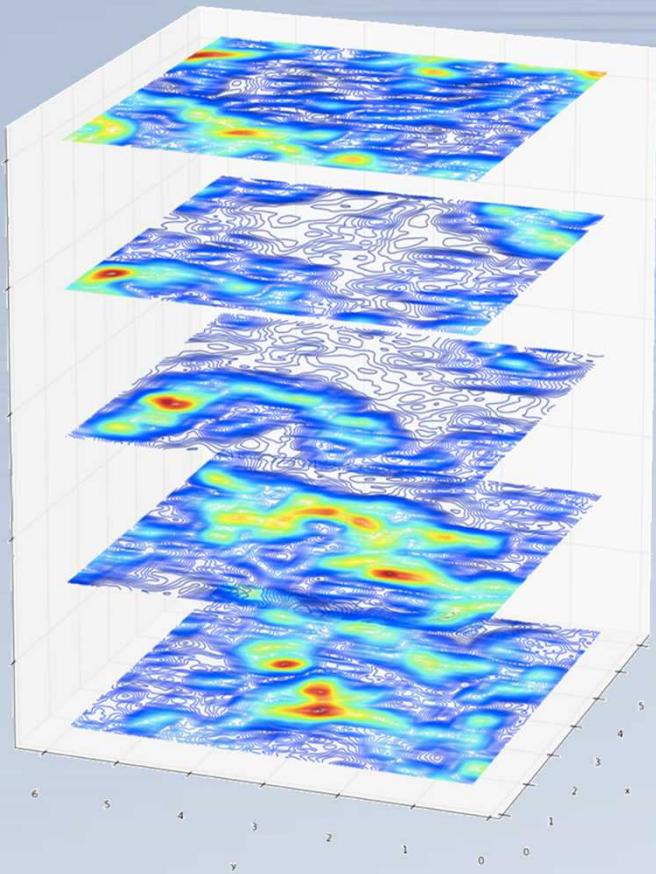
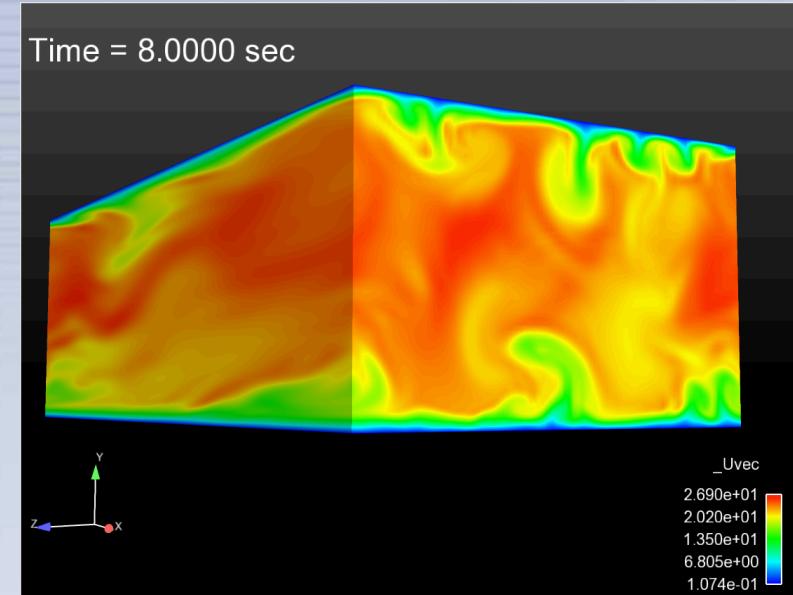
- **Cold Flow**

- Comparison between engineering and high-fidelity LES
- Develop UQ strategies and calibrate turbulence model parameters using channel flow
- Application: Jet-in-Crossflow
- *Developed approaches and are applying them to: k-SGS model calibration, wall-modeling, jet-in-crossflow*

- **Reacting Flow**

- Implement industrial and advanced combustion models
- Infer combustion model parameters
- UQ of reacting jet-in-crossflow and complex geometry flow
- *Currently implementing Burke-Schumann with mixture fraction table look up*

UQ of Channel Flow



Calibrate Subgrid-Scale Kinetic Energy One-Equation LES Model

Model:

$$\int \frac{\partial \bar{\rho} k^{sgs}}{\partial t} dv + \int \bar{\rho} k^{sgs} \bar{u}_j n_j dS = \int \frac{\mu_t}{\sigma_k} \frac{\partial k^{sgs}}{\partial x_j} n_j dS + \int (P_k^{sgs} - D_k^{sgs}) dv$$

Production: $P_k^{sgs} = \left[2\mu_t \left(\tilde{S}_{ij} - \frac{1}{3} \tilde{S}_{kk} \delta_{ij} \right) - \frac{2}{3} \bar{\rho} k^{sgs} \delta_{ij} \right] \frac{\partial \tilde{u}_i}{\partial x_j}$

$$\mu_t = C_{\mu_t} \Delta \sqrt{k^{sgs}}$$

Dissipation: $D_k^{sgs} = C_{\epsilon} \frac{\sqrt{(k^{sgs})^3}}{\Delta}$

Calibrate: C_{ϵ} and C_{μ_t}

Bayesian Calibration

Bayes formula:

$$P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)}$$

Diagram illustrating the Bayes formula:

- posterior** (blue arrow pointing to $P(\theta|D)$)
- likelihood** (green arrow pointing to $P(D|\theta)$)
- prior** (blue arrow pointing to $P(\theta)$)
- evidence** (blue arrow pointing to $P(D)$)

- Data D based on DNS of Isotropic Turbulence
- Model parameters θ are the k^{sgs} model constants
- The **prior distribution** $P(\theta)$ is set to MVN with diagonal covariance, centered around the current nominal values for θ .
- The **likelihood** $P(D|\theta)$ is assumes a Gaussian discrepancy between the data and the model
- The **posterior distribution** $P(\theta|D)$ is sampled via and adaptive Markov Chain Monte Carlo algorithm

Data

Bayes formula:

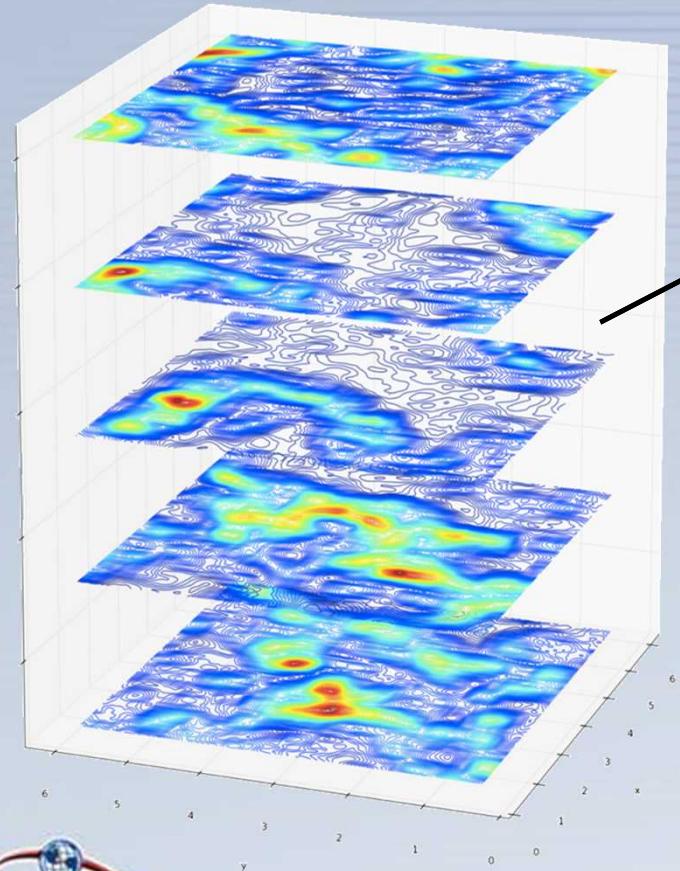
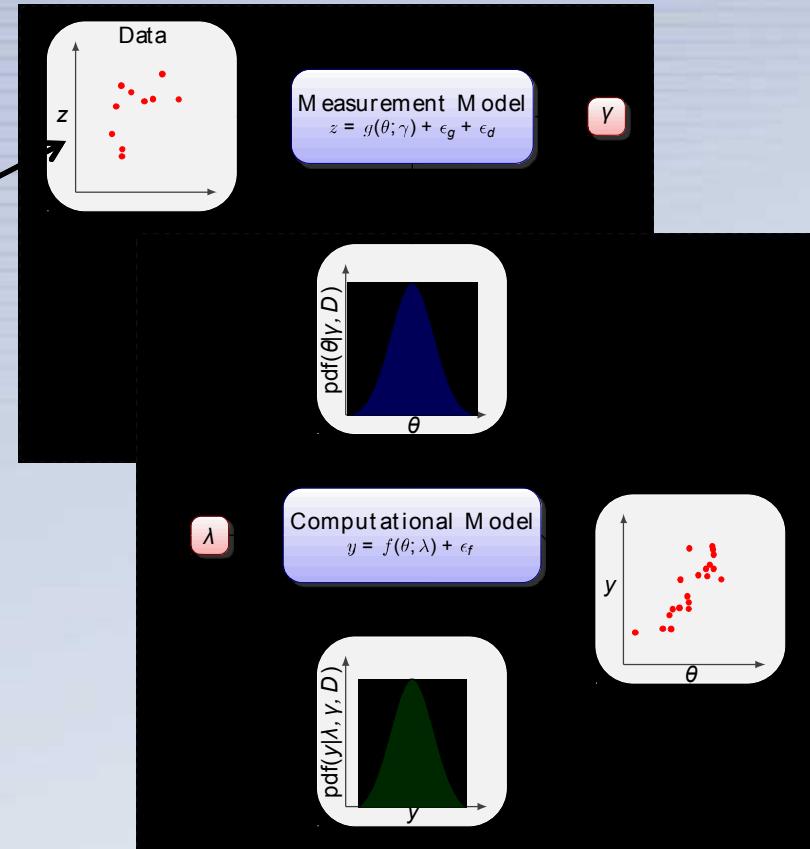
$$P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)}$$

Diagram labels: likelihood (green arrow pointing down to $P(D|\theta)$), prior (blue arrow pointing left to $P(\theta)$), evidence (blue arrow pointing left to $P(D)$), and posterior (blue arrow pointing up to $P(\theta|D)$).

- **Data D** based on DNS of Isotropic Turbulence
- Model parameters θ are the k^{sgs} model constants
- The prior distribution $P(\theta)$ is set to MVN with diagonal covariance, centered around the current nominal values for θ .
- The likelihood $P(D|\theta)$ is assumes a Gaussian discrepancy between the data and the model
- The posterior distribution $P(\theta|D)$ is sampled via and adaptive Markov Chain Monte Carlo algorithm

DNS-Informed Calibration

Filtered DNS k^{sgs} (JHU)

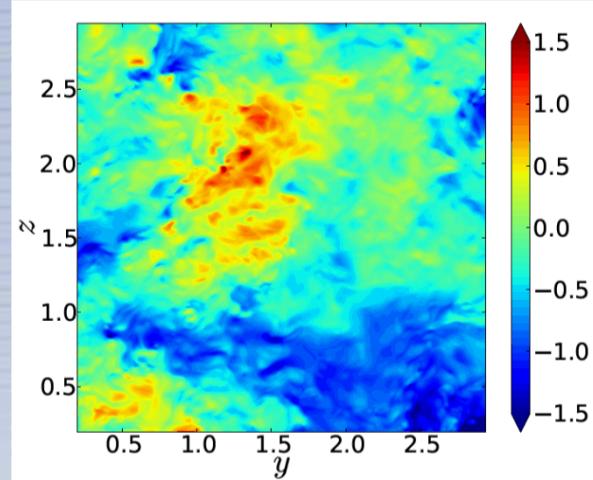


Data is Filtered DNS to LES scale

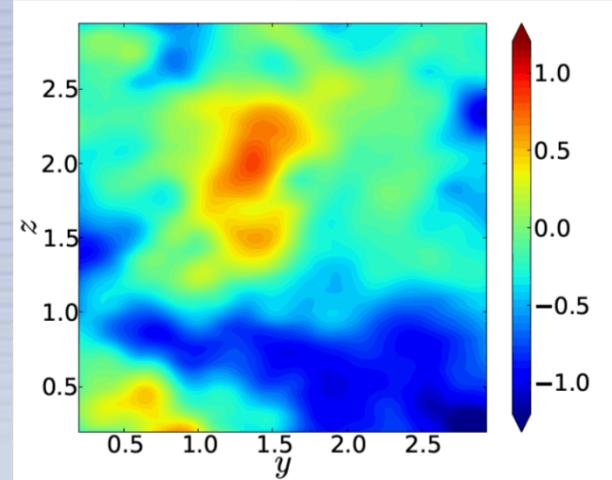
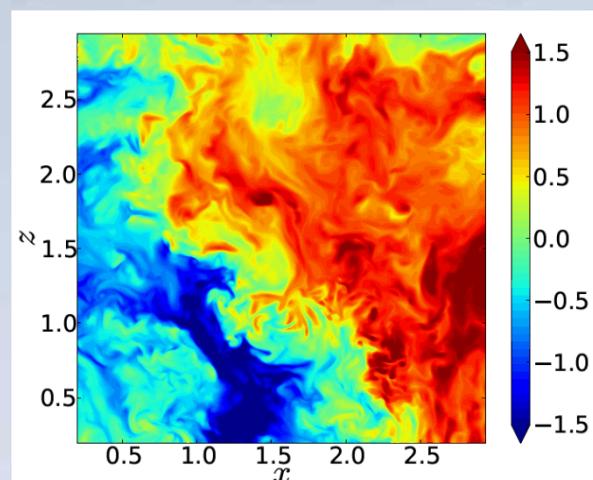
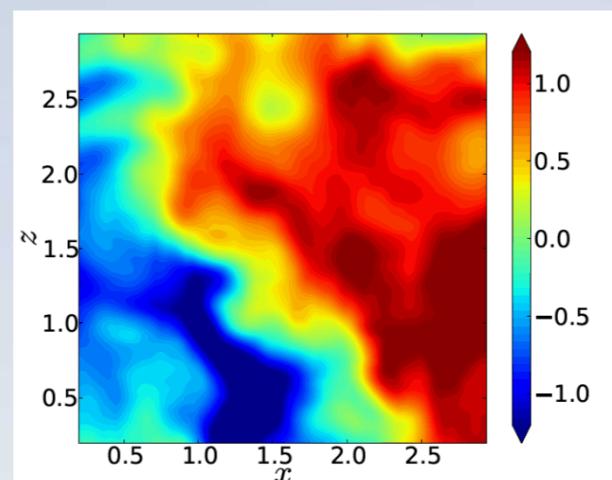
3 Filter sizes:

- $\Delta = L/64$
- $\Delta = L/32$
- $\Delta = L/16$

DNS



$\Delta = L/32$



Bayesian Calibration: Likelihood

Bayes formula:

$$P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)}$$

Diagram illustrating the Bayes formula:

- likelihood** (circled in red) is represented by $P(D|\theta)$.
- prior** is represented by $P(\theta)$.
- posterior** is represented by $P(\theta|D)$.
- evidence** is represented by $P(D)$.

- Data D based on DNS of Isotropic Turbulence
- Model parameters θ are the k^{sgs} model constants
- The prior distribution $P(\theta)$ is set to MVN with diagonal covariance, centered around the current nominal values for θ .
- The **likelihood** $P(D|\theta)$ is assumed a Gaussian discrepancy between the data and the model
- The posterior distribution $P(\theta|D)$ is sampled via an adaptive Markov Chain Monte Carlo algorithm

Likelihood

- Classical Approach

$$f_k(t; \Delta) = C_{\mu_\epsilon} f_P(t; \Delta) - C_\epsilon f_D(t; \Delta) + \epsilon_m + \epsilon_d.$$

$$L_{\mathcal{D}}(\theta) = \prod_{i=1}^{N_t} \frac{1}{\sqrt{2\pi}\sigma_i} \exp\left(-\frac{(f_{k,i} - C_{\mu_\epsilon} f_{P,i} + C_\epsilon f_{D,i})^2}{2\sigma_i^2}\right)$$

- Embedded Error (K. Sargsyan, H.N. Najm, and R. Ghanem - 2014)

Bayesian Calibration: Prior

Bayes formula:

$$P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)}$$

Diagram illustrating the Bayes formula:

- posterior** (left): An arrow points to the term $P(\theta|D)$.
- likelihood** (top): An arrow points to the term $P(D|\theta)$.
- prior** (right): A red circle highlights the term $P(\theta)$, with an arrow pointing to it.
- evidence** (bottom right): An arrow points to the term $P(D)$.

- Data D based on DNS of Isotropic Turbulence
- Model parameters θ are the k^{sgs} model constants
- The **prior distribution** $P(\theta)$ is set to MVN with diagonal covariance, centered around the current nominal values for θ .
- The likelihood $P(D|\theta)$ is assumes a Gaussian discrepancy between the data and the model
- The posterior distribution $P(\theta|D)$ is sampled via and adaptive Markov Chain Monte Carlo algorithm

Independent Gaussian Priors

- Centered at values from the literature ($C_{\mu\epsilon}$, C_ϵ)

$$\mu_1^{pr} = (0.0845, 0.85) \quad \mu_2^{pr} = (0.07, 1.05)$$

- Range of Marginal Standard Deviations

$$\sigma_1^{pr} = (0.04, 0.4), \sigma_2^{pr} = (0.02, 0.2), \sigma_3^{pr} = (0.01, 0.1)$$

Bayesian Calibration: Posterior

Bayes formula:

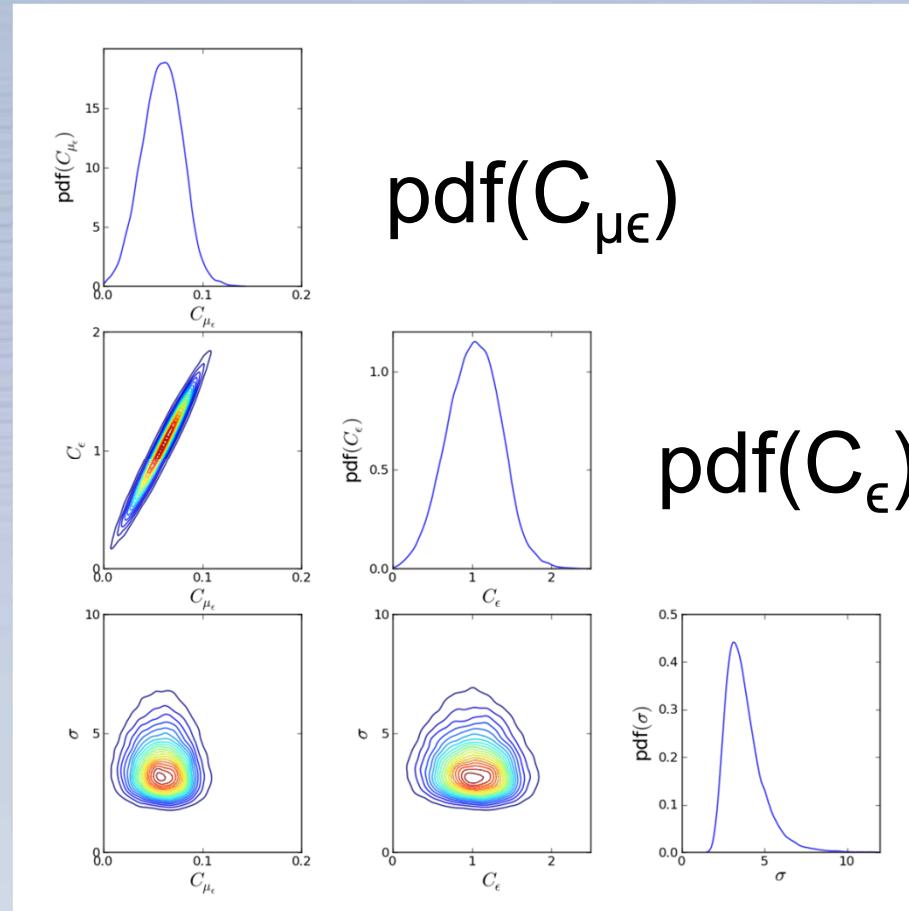
$$P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)}$$

Diagram illustrating the Bayes formula:

- posterior** (circled in red) is the result of combining the **likelihood** and the **prior**.
- likelihood** is represented by the term $P(D|\theta)$.
- prior** is represented by the term $P(\theta)$.
- evidence** is represented by the term $P(D)$.

- Data D based on DNS of Isotropic Turbulence
- Model parameters θ are the k^{sgs} model constants
- The prior distribution $P(\theta)$ is set to MVN with diagonal covariance, centered around the current nominal values for θ .
- The likelihood $P(D|\theta)$ is assumes a Gaussian discrepancy between the data and the model
- The **posterior distribution** $P(\theta|D)$ is sampled via and adaptive Markov Chain Monte Carlo algorithm

Sample Posterior Distributions



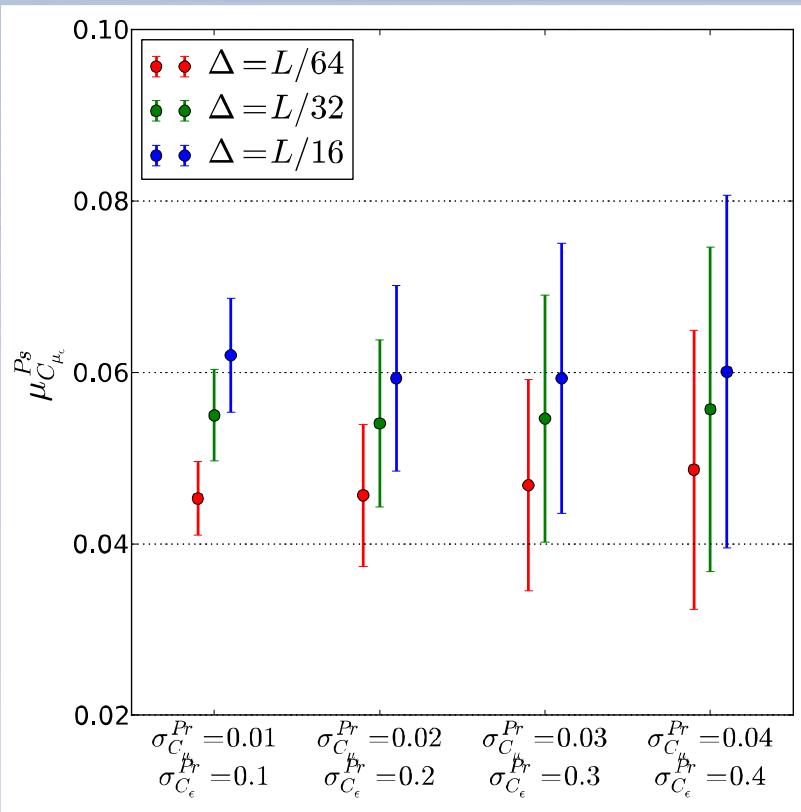
$C_{\mu\epsilon}$

C_ϵ

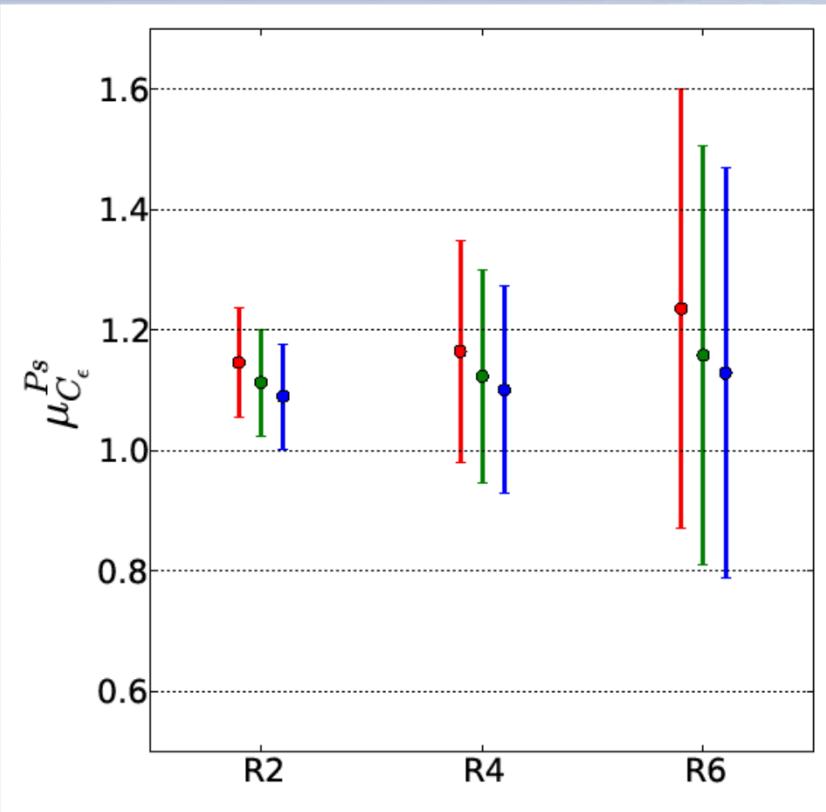
σ

Effect of Filter Size and Prior

Posterior for $C_{\mu\epsilon}$



Posterior for C_ϵ



Forward UQ – Predictive Assessment

Employ Polynomial Chaos (PC) Expansion to propagate uncertainties from input parameters to output Quantities of Interest

$$M(C_\epsilon, C_{\mu_\epsilon}) \approx \sum_{k=0}^P c_k \Psi_k(\xi_1, \xi_2)$$

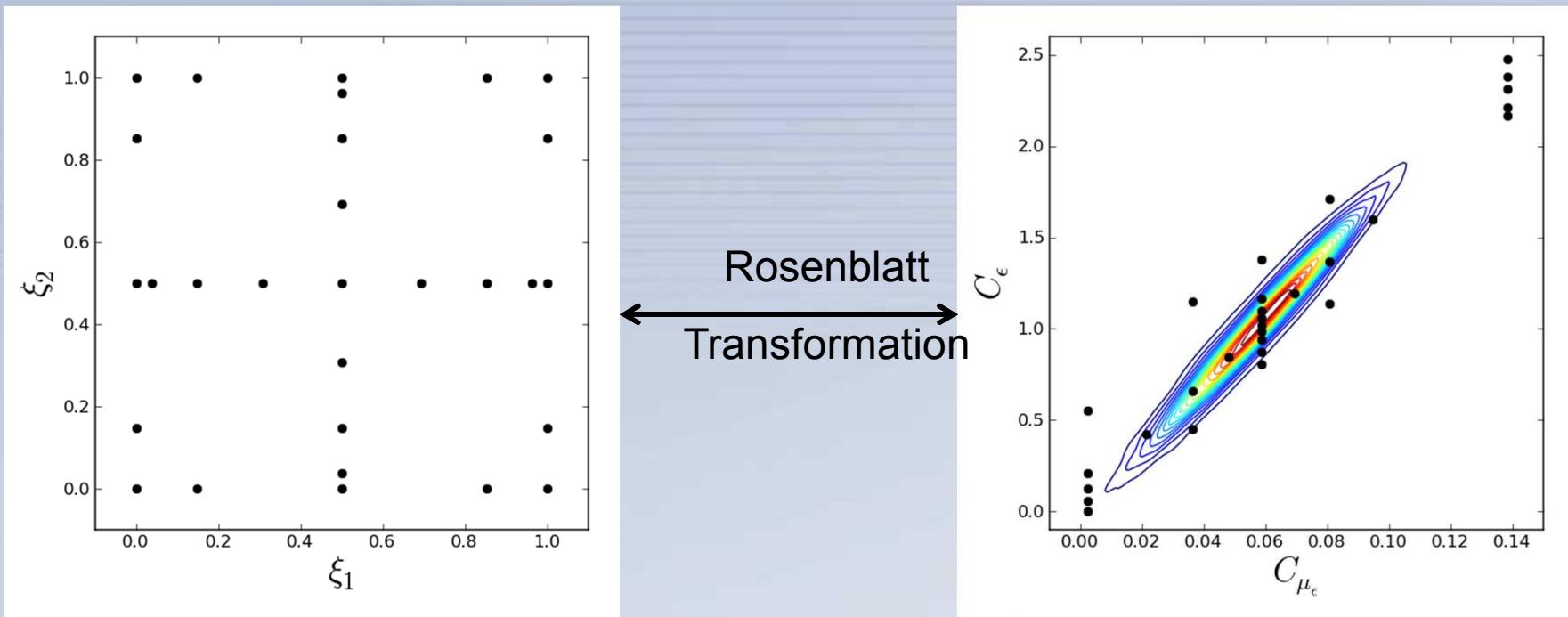
$$C_\epsilon = C_\epsilon(\xi_1, \xi_2), \quad C_{\mu_\epsilon} = C_{\mu_\epsilon}(\xi_1, \xi_2)$$

Employ quadrature to compute PC coefficients

$$c_k = \frac{\langle M(C_\epsilon, C_{\mu_\epsilon}) \Psi_k(\xi_1, \xi_2) \rangle}{\langle \Psi_k^2(\xi_1, \xi_2) \rangle}$$

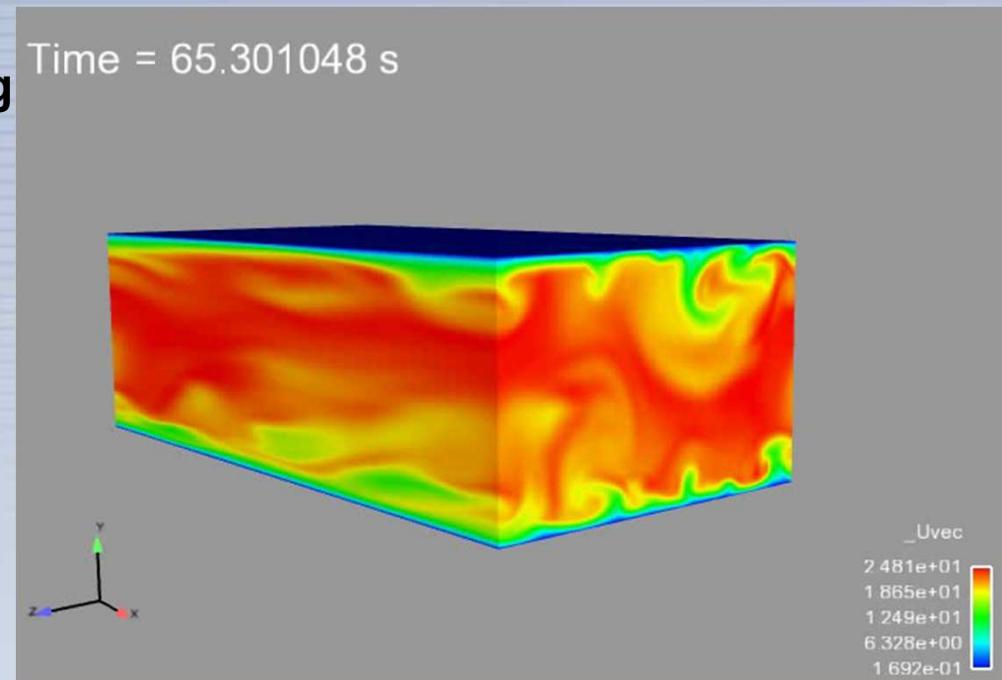
Sparse Quadrature to Construct PC Expansion for Model Output

$$C_\epsilon = C_\epsilon(\xi_1, \xi_2), \quad C_{\mu_\epsilon} = C_{\mu_\epsilon}(\xi_1, \xi_2)$$



Fuego LES Simulations with Calibrated Parameters

- **k^{sgs} Turbulence Model with various C_ϵ and $C_{\mu\epsilon}$ corresponding to quadrature points**
- **Normalized Input Parameters**
 - $\rho = 1.0$
 - $\mu = 1/Re_T = 1/590$
- **No slip walls at top and bottom**
- **Periodic in x and z**
- **Body force in x-direction to produce flow**



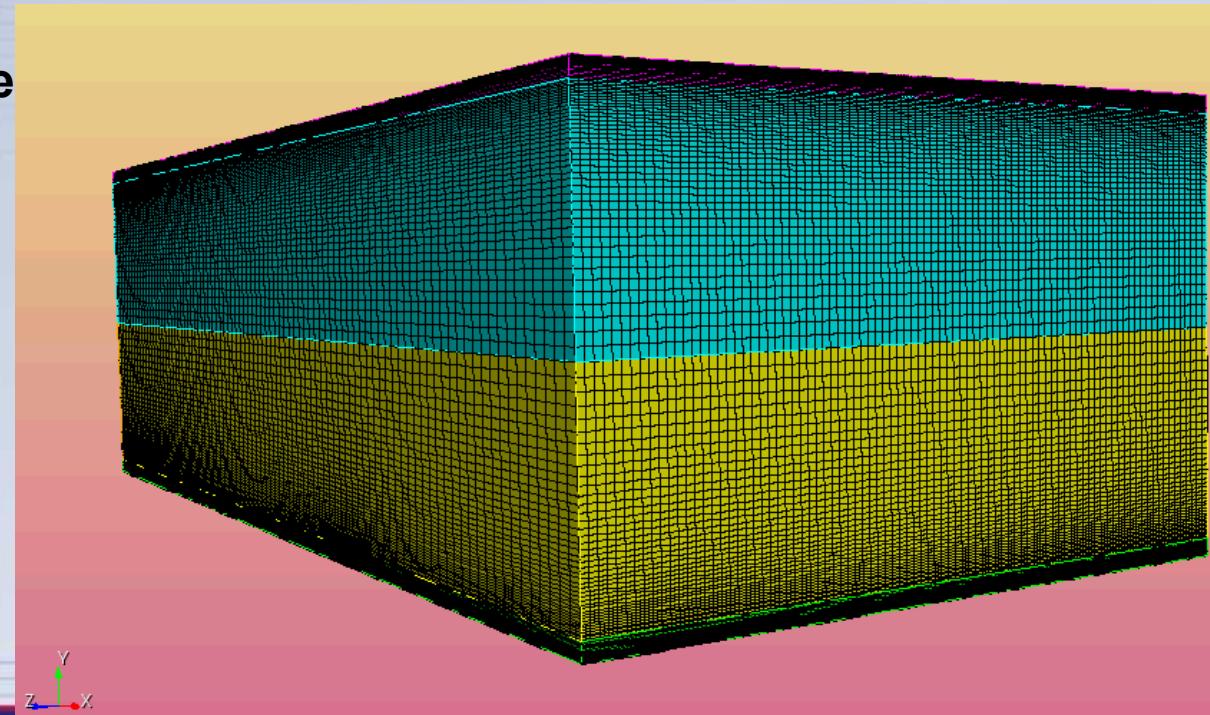
Mesh

- **Dimensions:**
 - Flow direction: $x = 2\pi$ (periodic)
 - Wall normal direction: $y = 2$
 - Cross flow direction: $z = \pi$ (periodic)

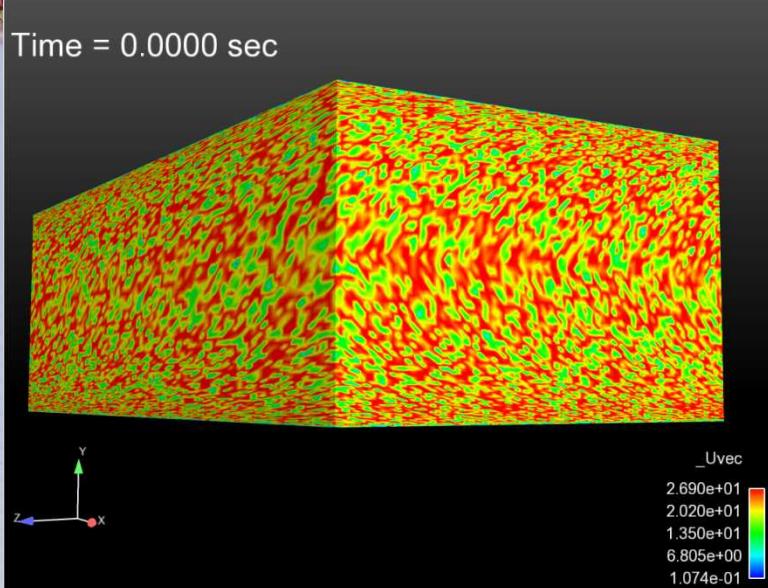
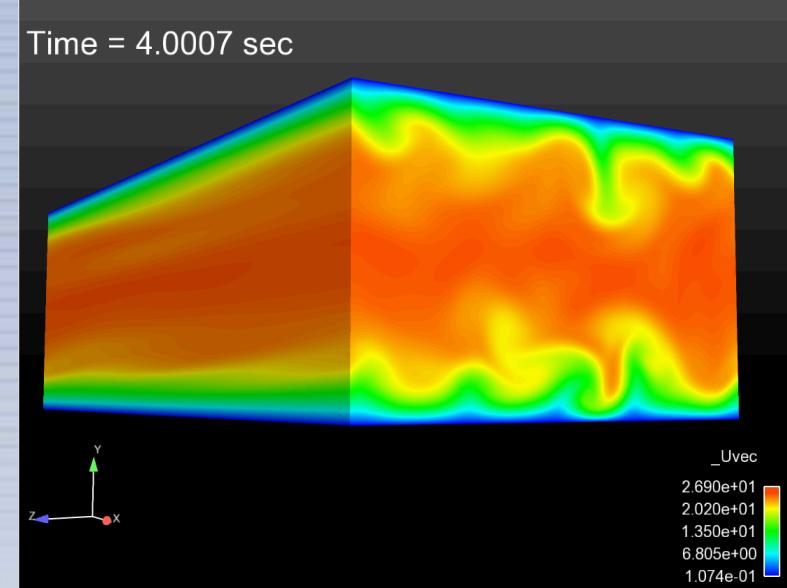
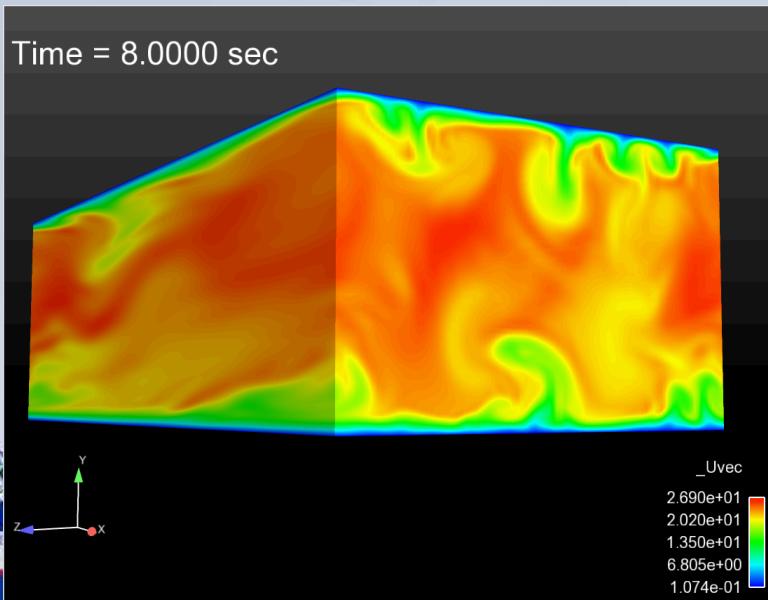
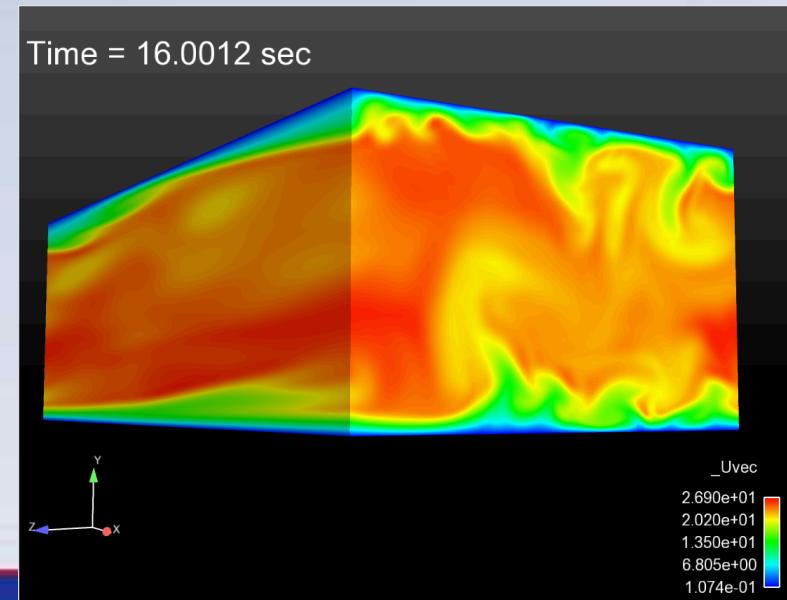
- **Grid size:**

$90 \times 116 \times 90 = 931500$ points

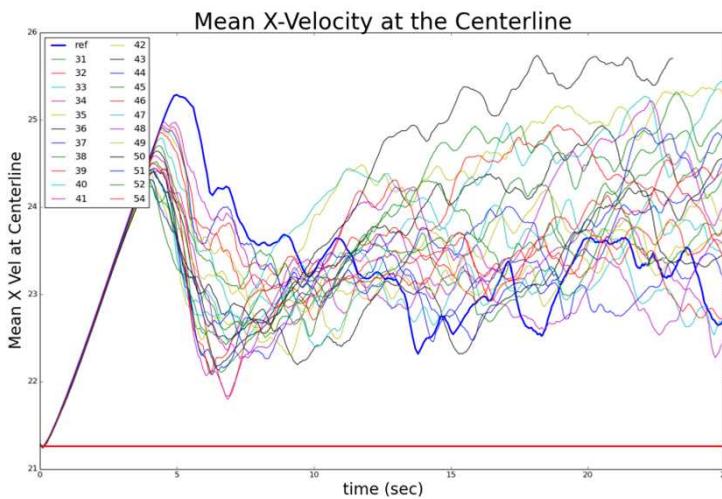
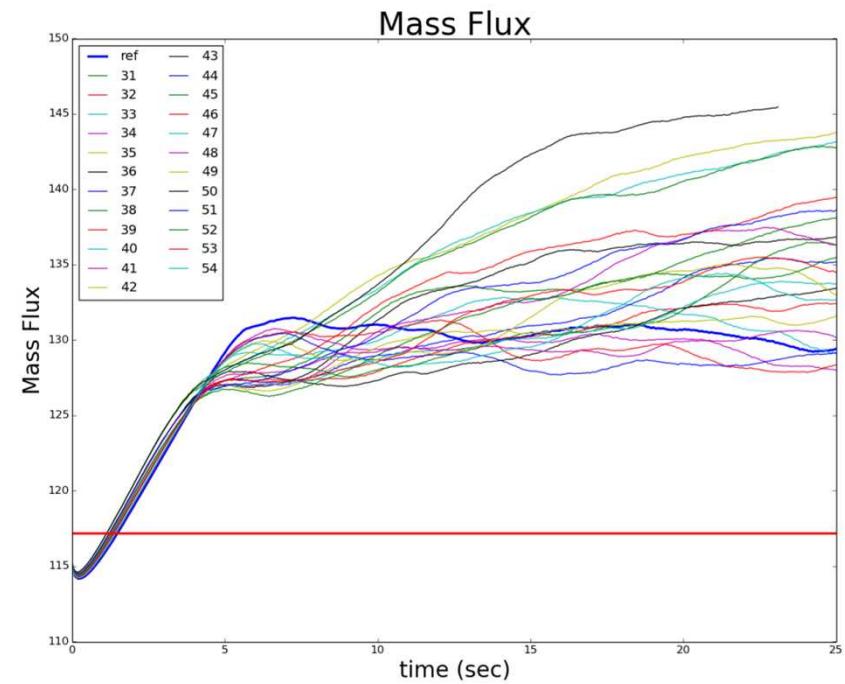
- $y^+ \approx 1.15$ at walls
- Hyperbolic tan to same spacing as in z



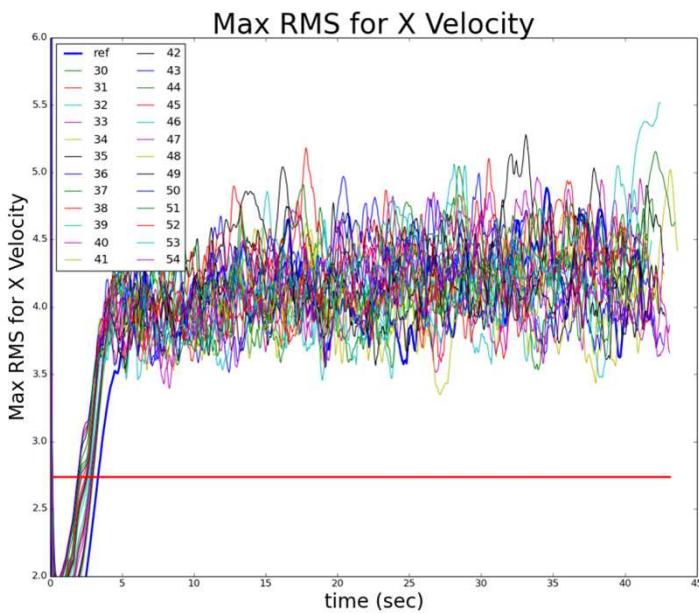
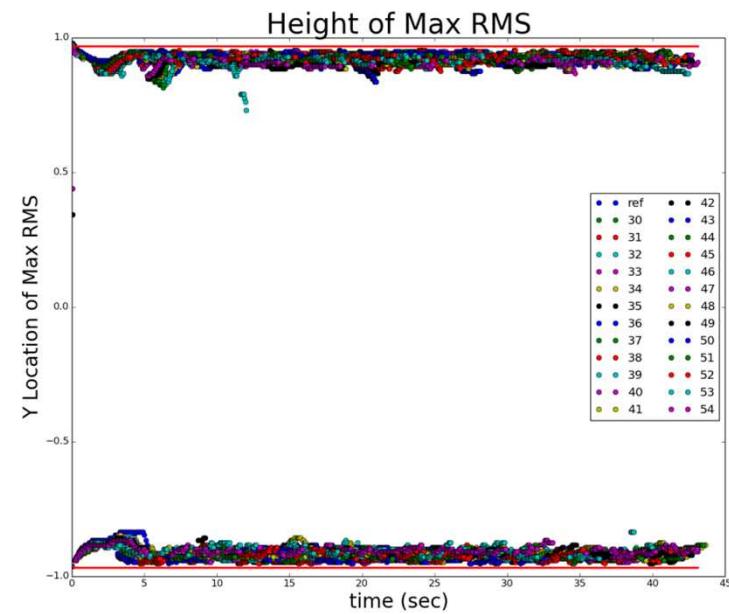
Fuego LES Simulations



QoIs: Velocity and Mass Flux



QoI: RMS of Centerline Velocity



Forward UQ – Predictive Assessment

Evaluate weights with values from LES

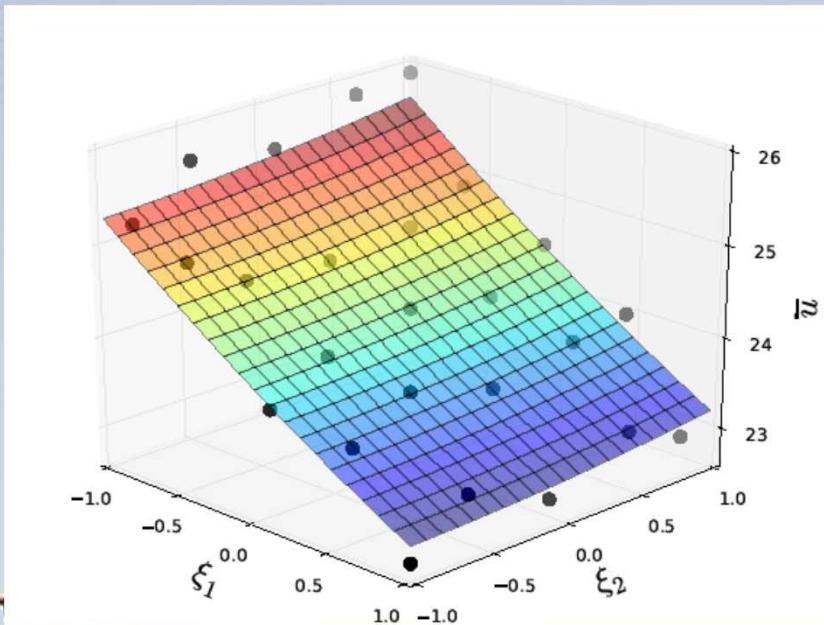
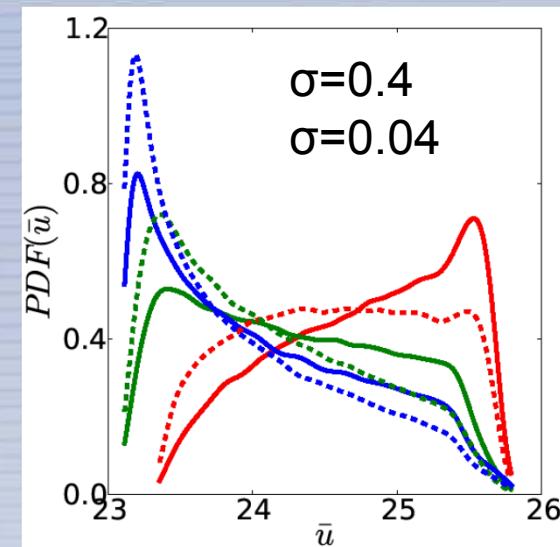
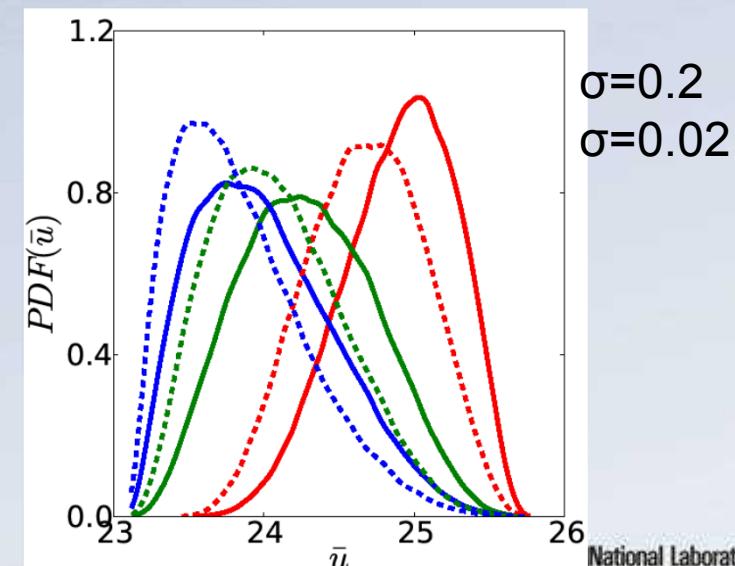
$$c_k = \frac{\langle M(C_\epsilon, C_{\mu_\epsilon}) \Psi_k(\xi_1, \xi_2) \rangle}{\langle \Psi_k^2(\xi_1, \xi_2) \rangle}$$

Employ Polynomial Chaos (PC) Expansion to propagate uncertainties from input parameters to output Quantities of Interest

$$M(C_\epsilon, C_{\mu_\epsilon}) \approx \sum_{k=0}^P c_k \Psi_k(\xi_1, \xi_2)$$

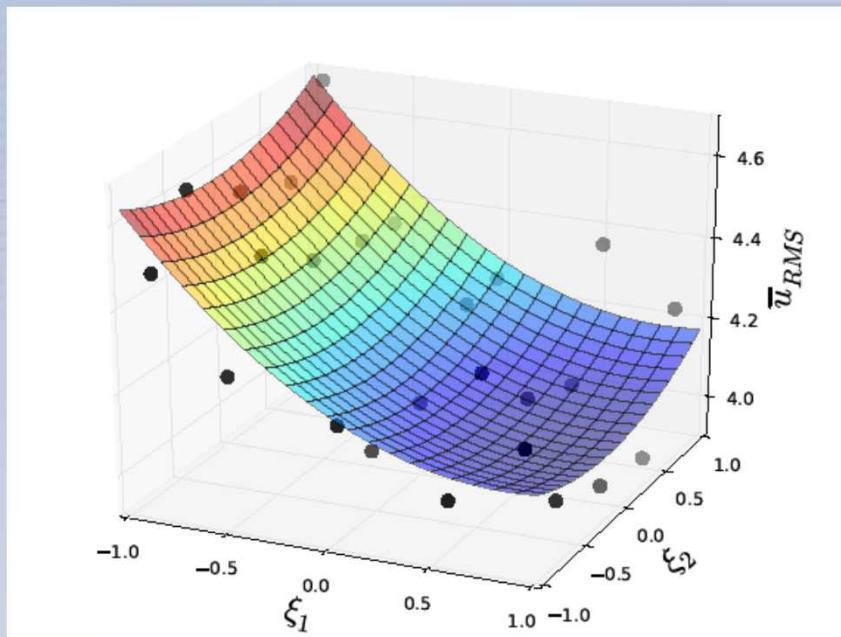
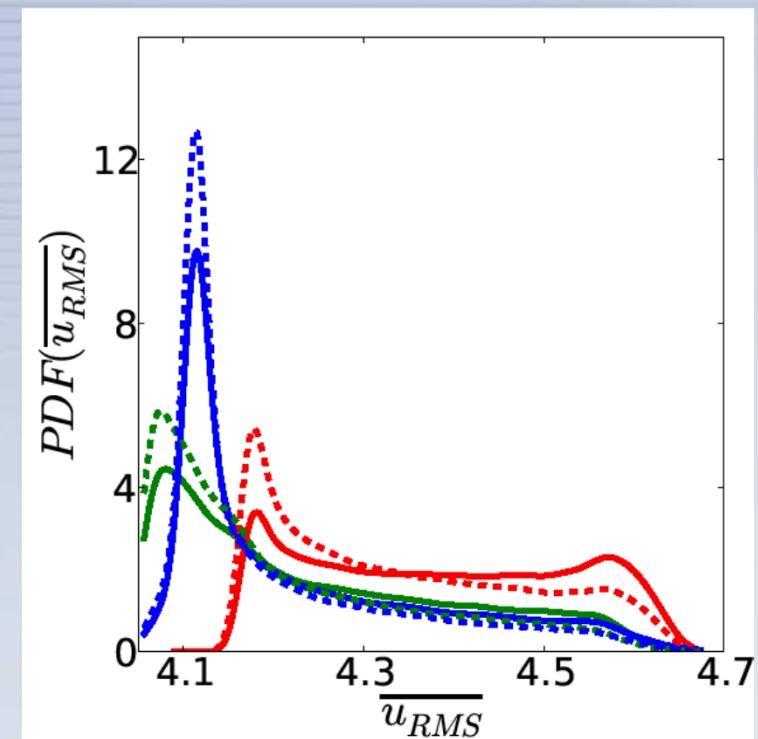
Midline Average Velocity

- **DNS = 21.26**
- **Solid =** $\mu_1^{pr} = (0.0845, 0.85)$
- **Dashed =** $\mu_2^{pr} = (0.07, 1.05)$



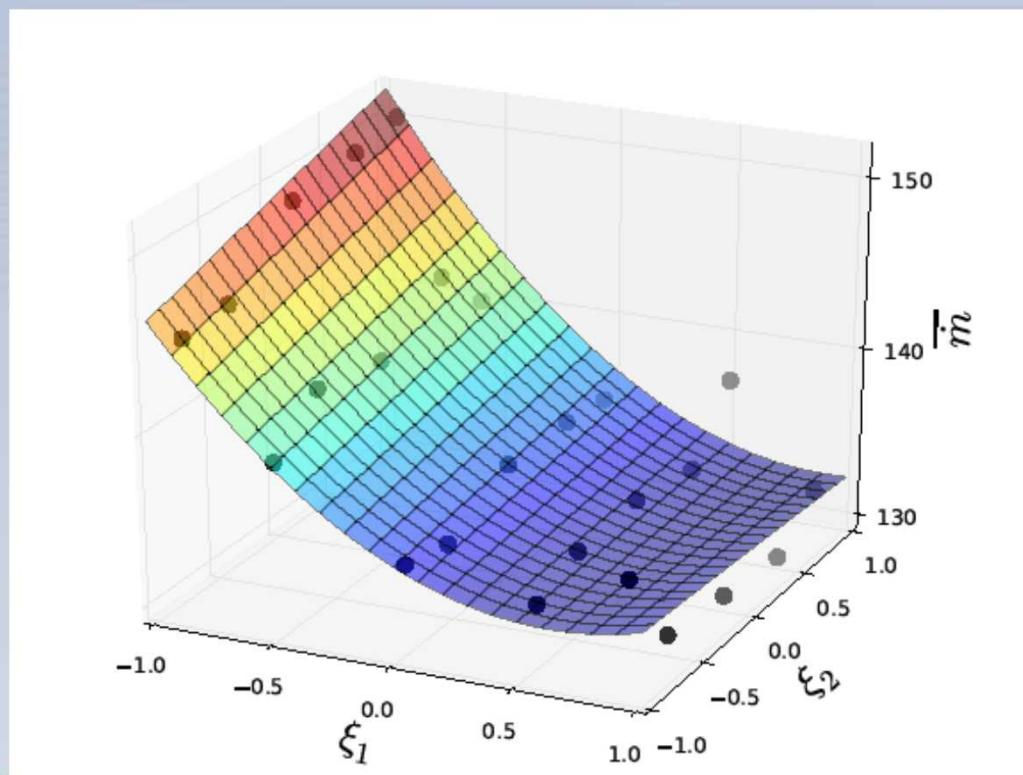
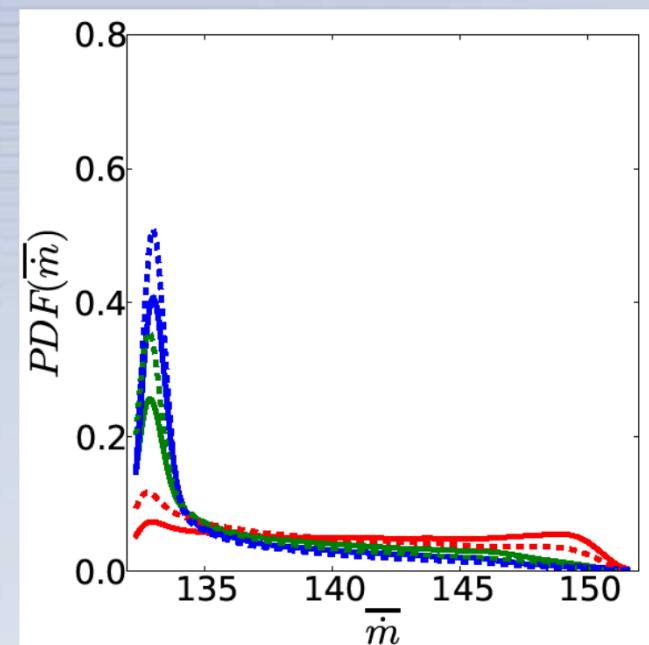
RMS of Centerline Velocity

- DNS = 2.7

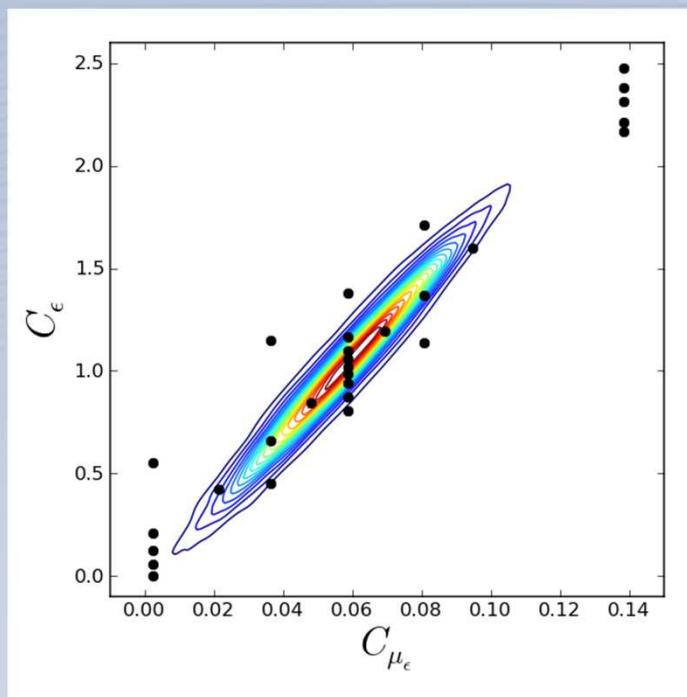
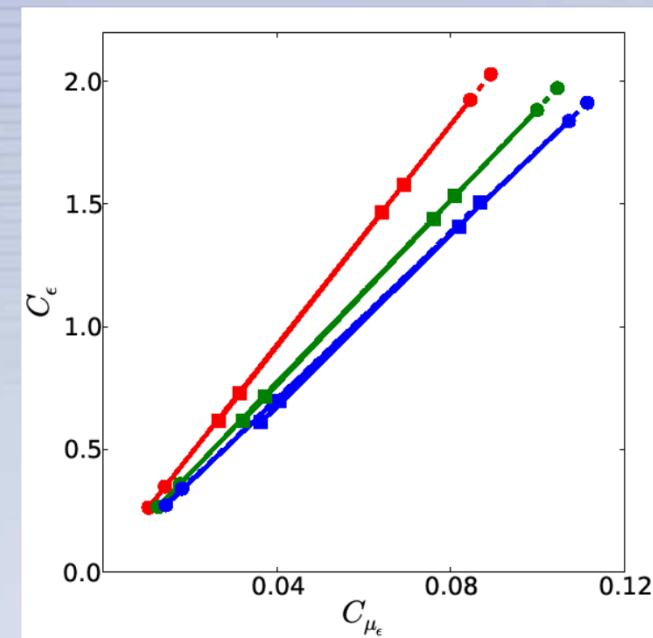


Mean Mass Flux

- DNS = 117

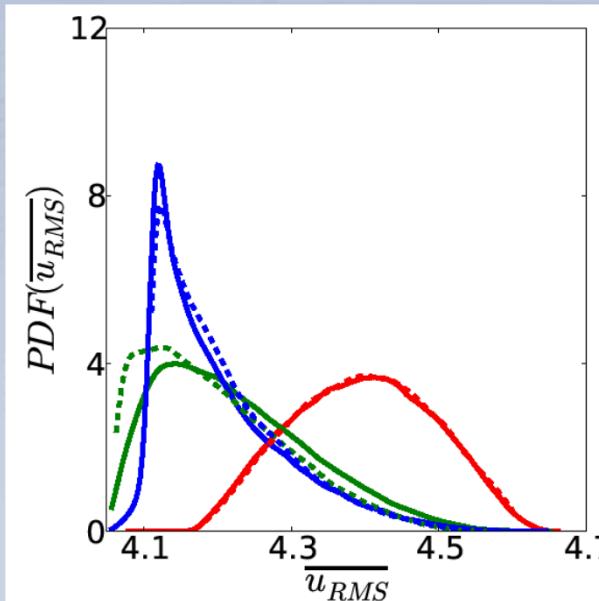
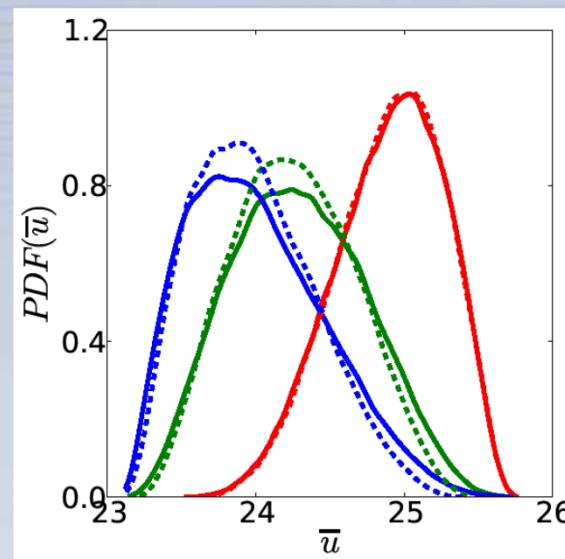
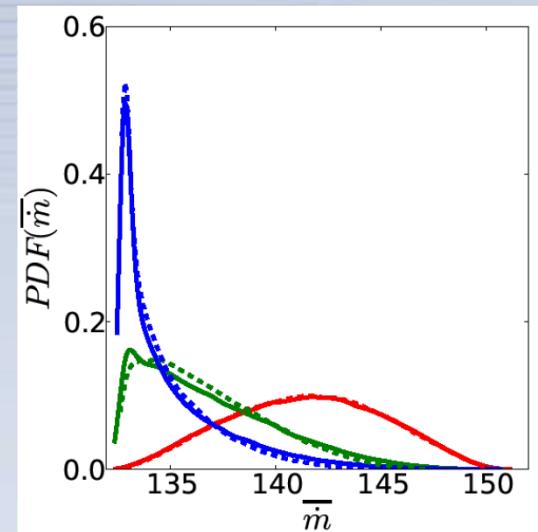


Principal Component Analysis of Joint PDF's



First Principal Component yields similar results to Joint PDF

- Solid – Joint PDF
- Dashed – 1st PC



Conclusions

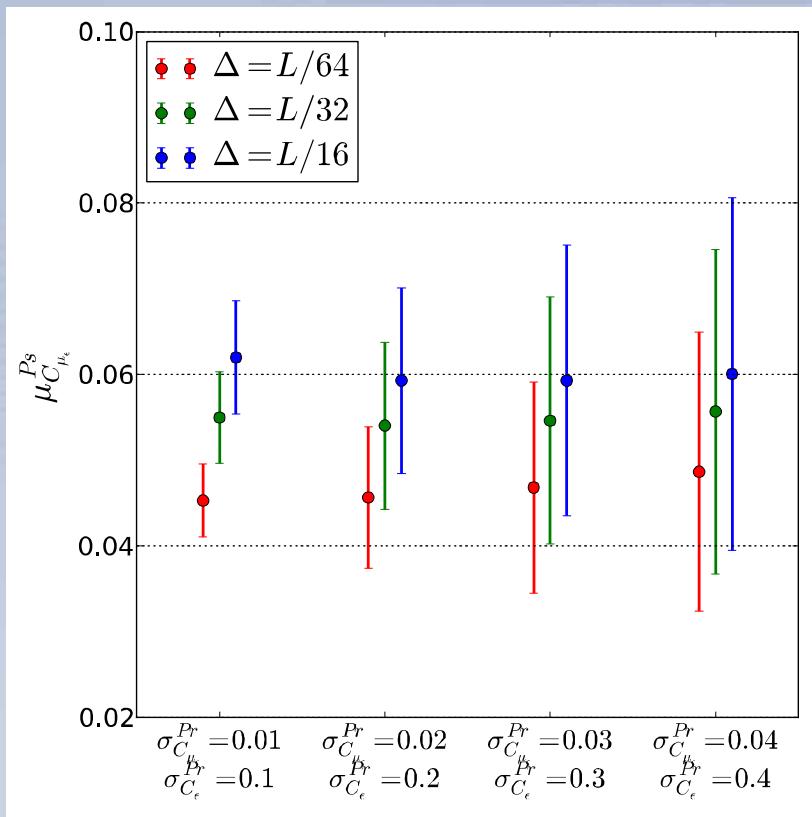
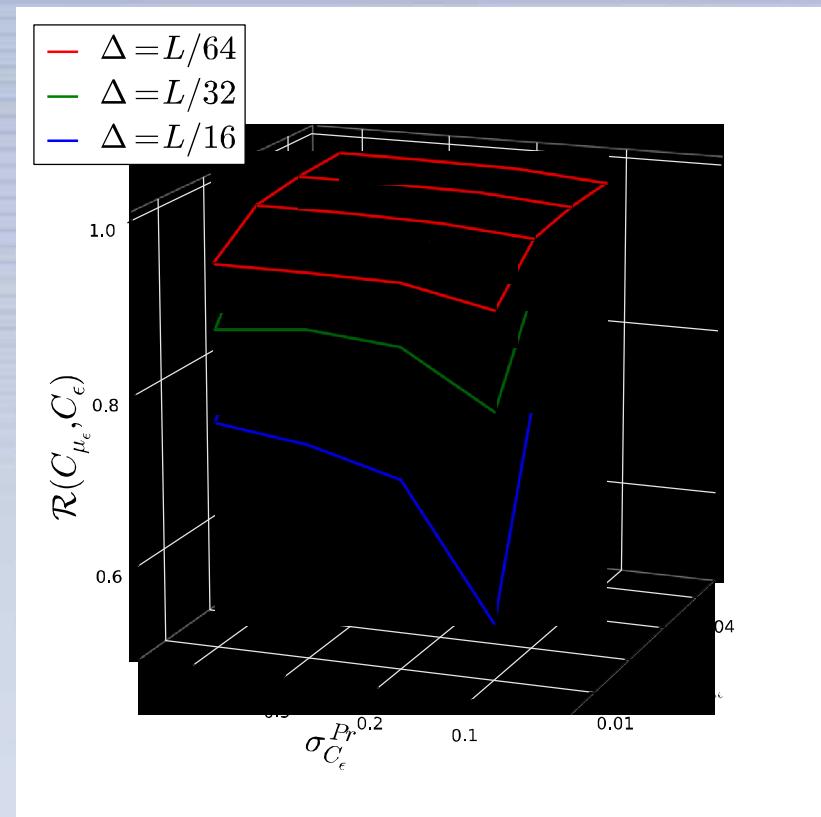
- Used DNS isotropic turbulence to predict engineering LES channel flow QoI
- Production and dissipation terms for the k_{sgs} model are highly correlated
- Discrepancy in QoI values from DNS
 - Isentropic turbulence to channel flow
 - “engineering level”
 - Errors in k_{sgs}

Path Forward in FY15

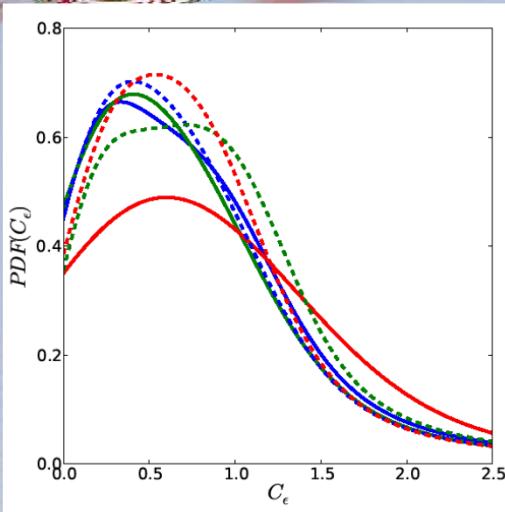
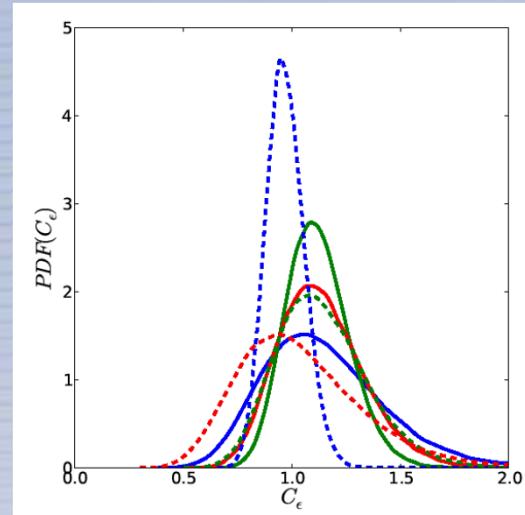
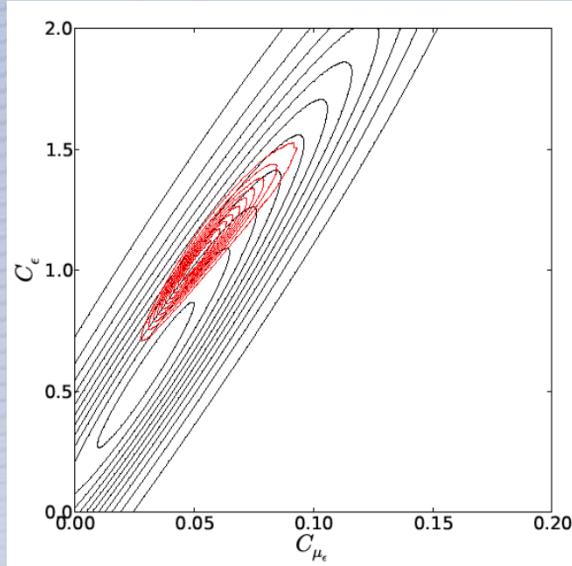
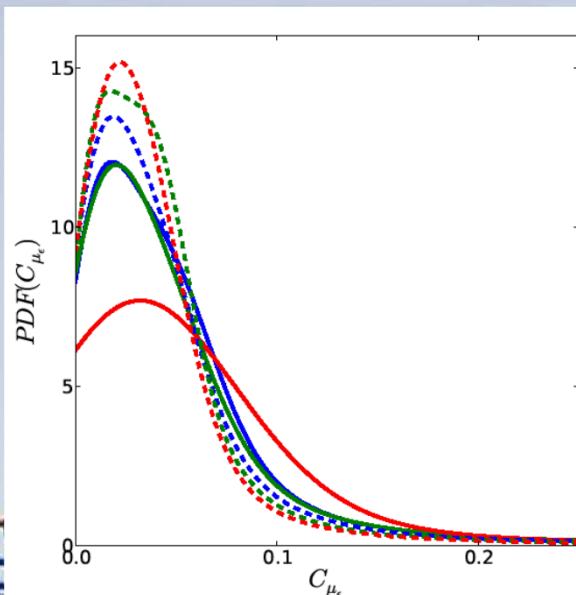
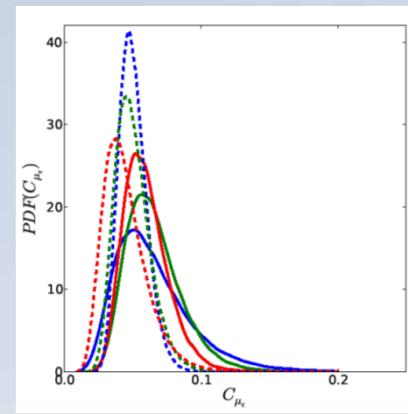
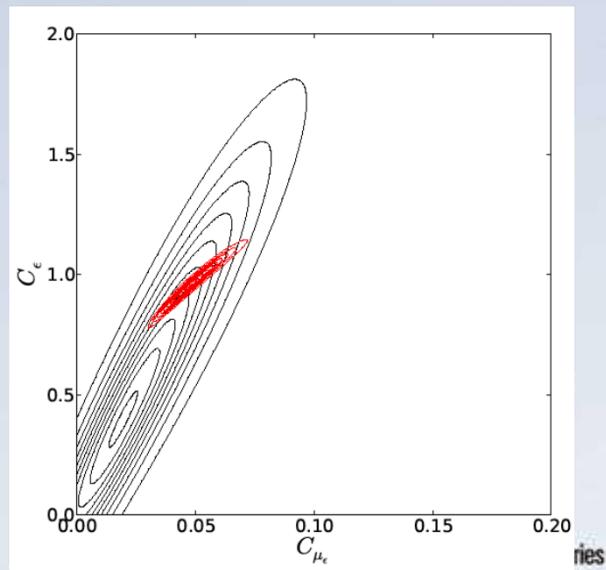
- **Complete combustion model implementation in Nalu**
 - Coordinate reaction flow case with J. Oefelein et al
 - Extra development effort from Blaylock & Hewson
- **Calibrate combustion model coefficients**
- **Tie reacting flow simulation with ODT-informed PCE model to estimate probability of extinction**
- **UQ of reacting flow simulation**
- **UQ of wall model for channel flow and backward facing step**
- **Make UQ/calibration tools available through SNL git repository**

Thank You & Questions

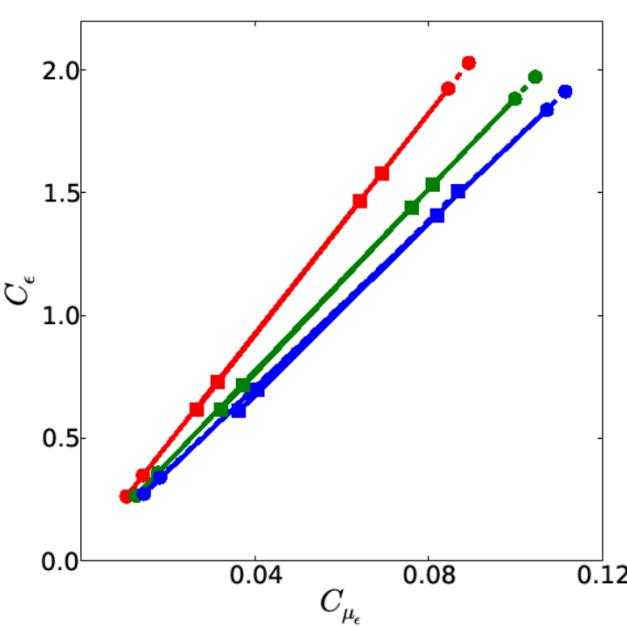
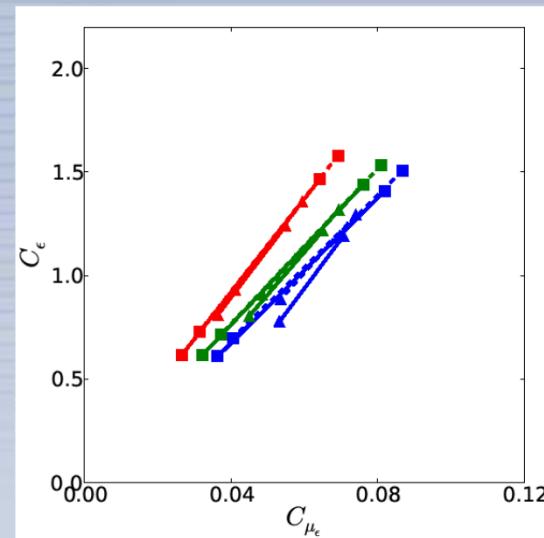
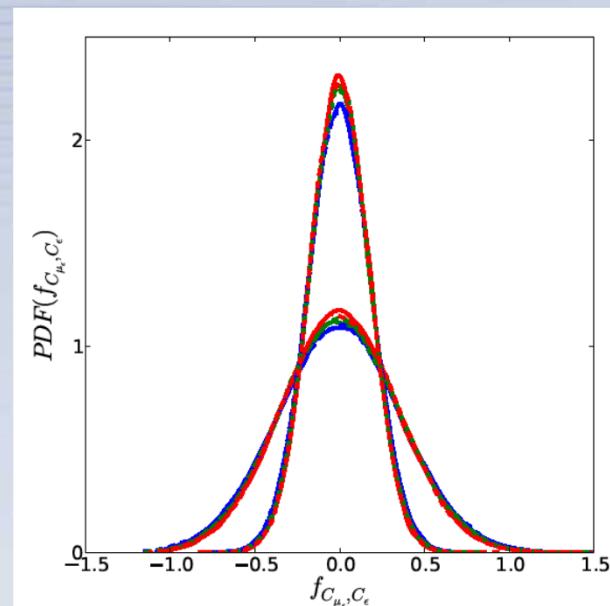
Effect of Filter Size and Prior



Posterior

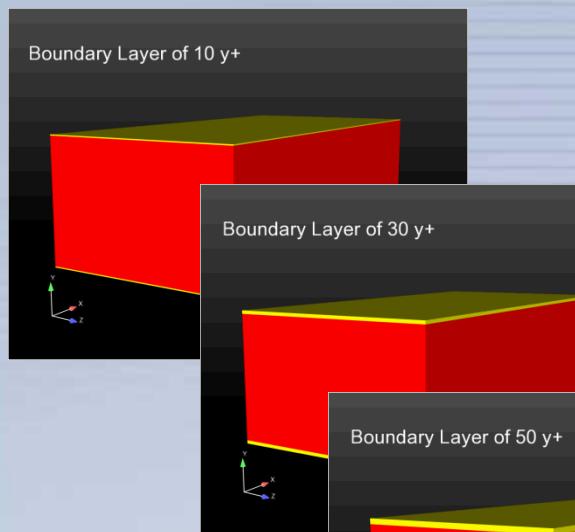
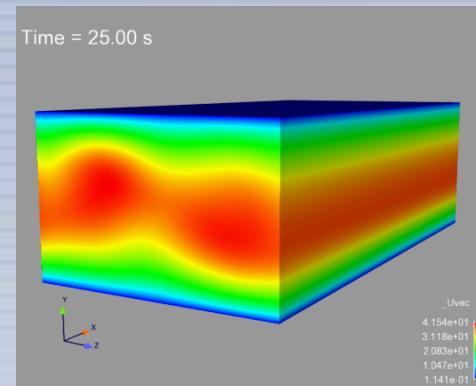
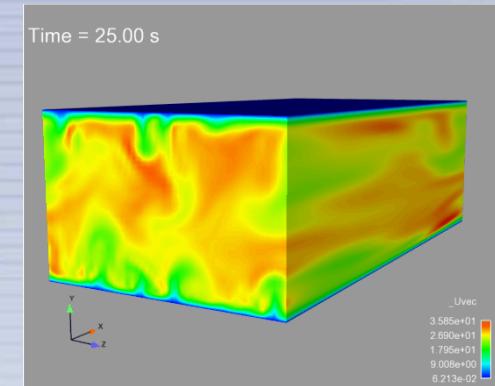
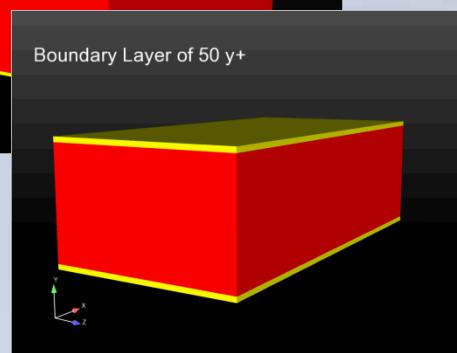
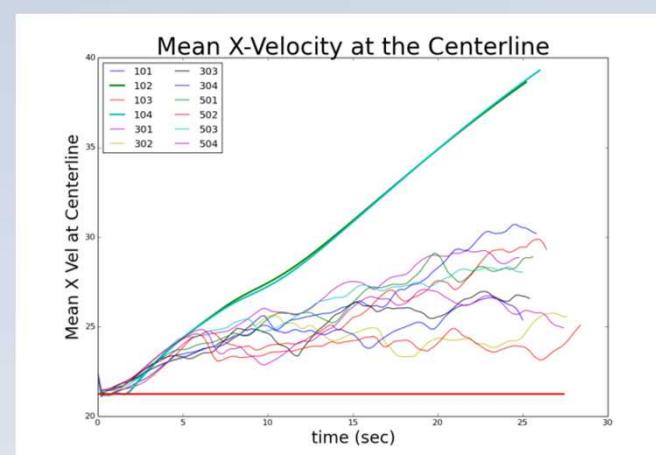


Principal Component Analysis of Joint PDF's

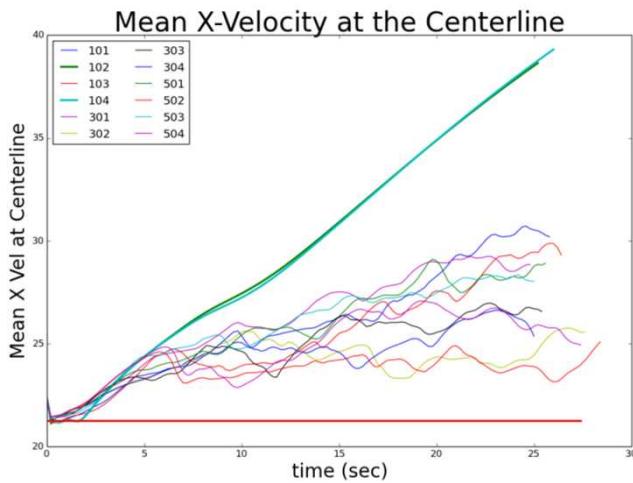
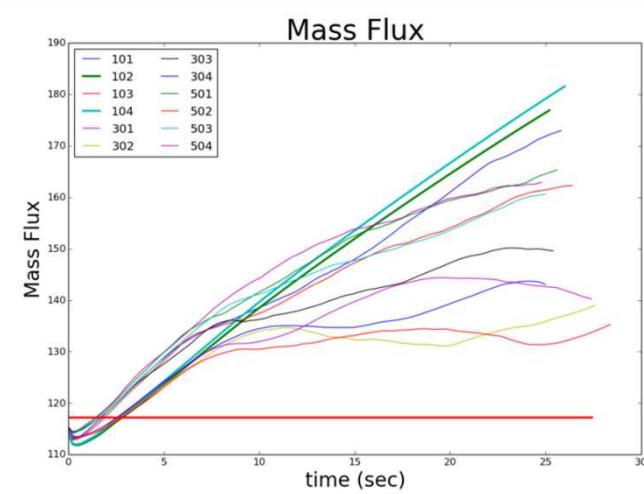
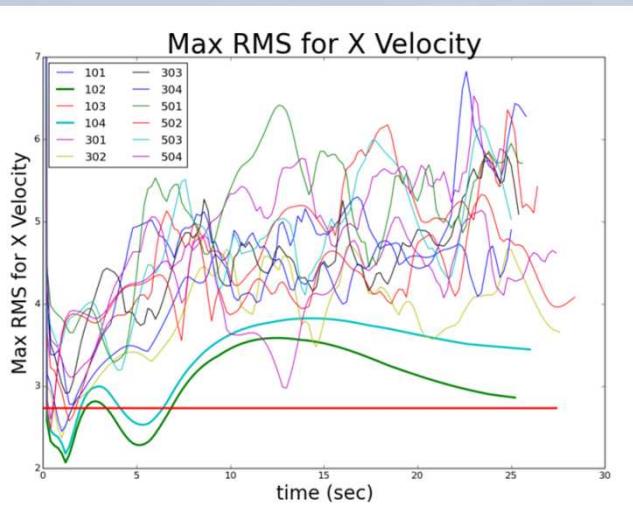
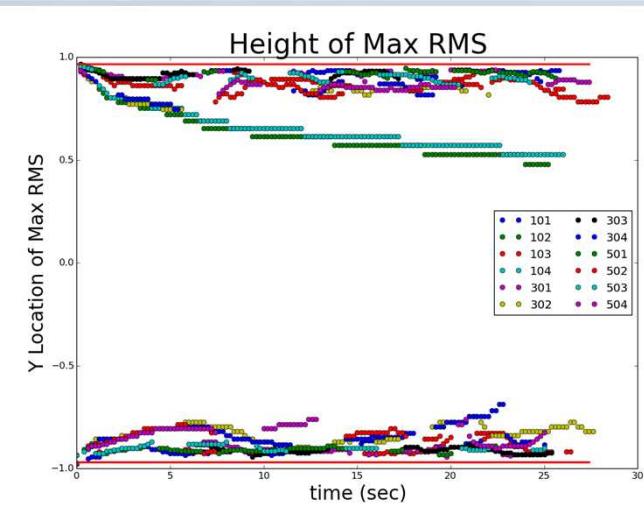


Wall-Model Calibration (in progress)

Calibrate boundary layer and bulk model parameters

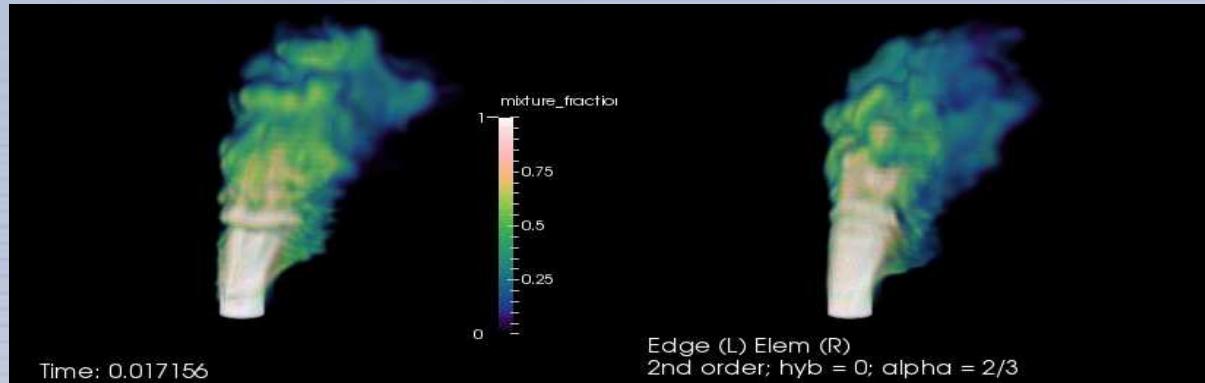
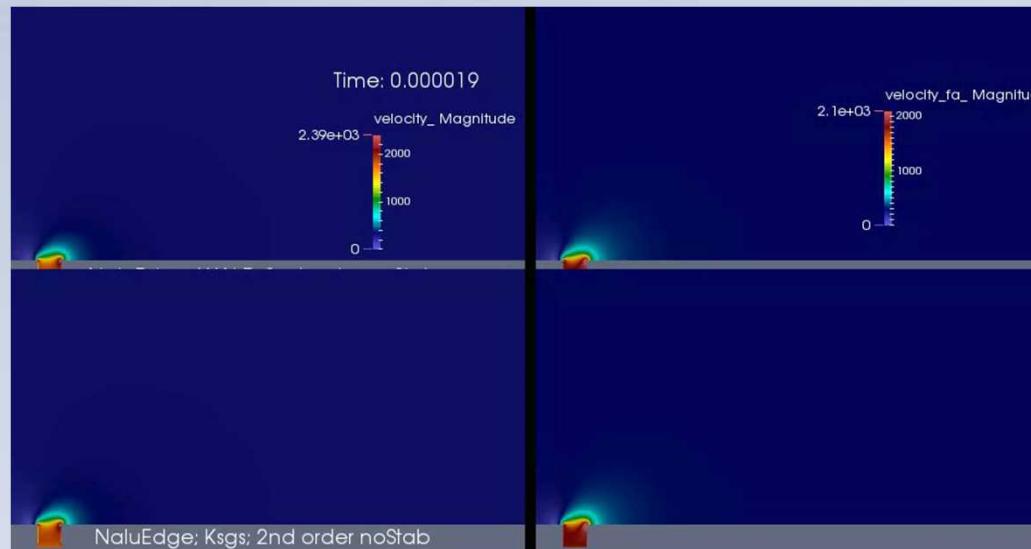


Wall Model Results



Jet-in-Crossflow UQ (in progress)

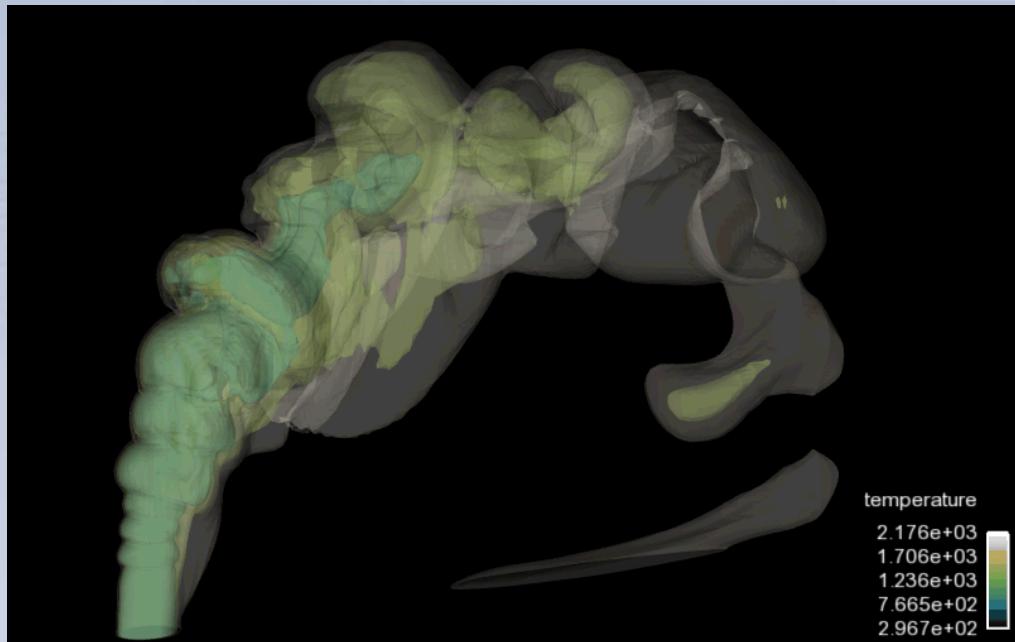
Simulation capability implemented in Nalu
Validate against Su & Mungal Re 5K case



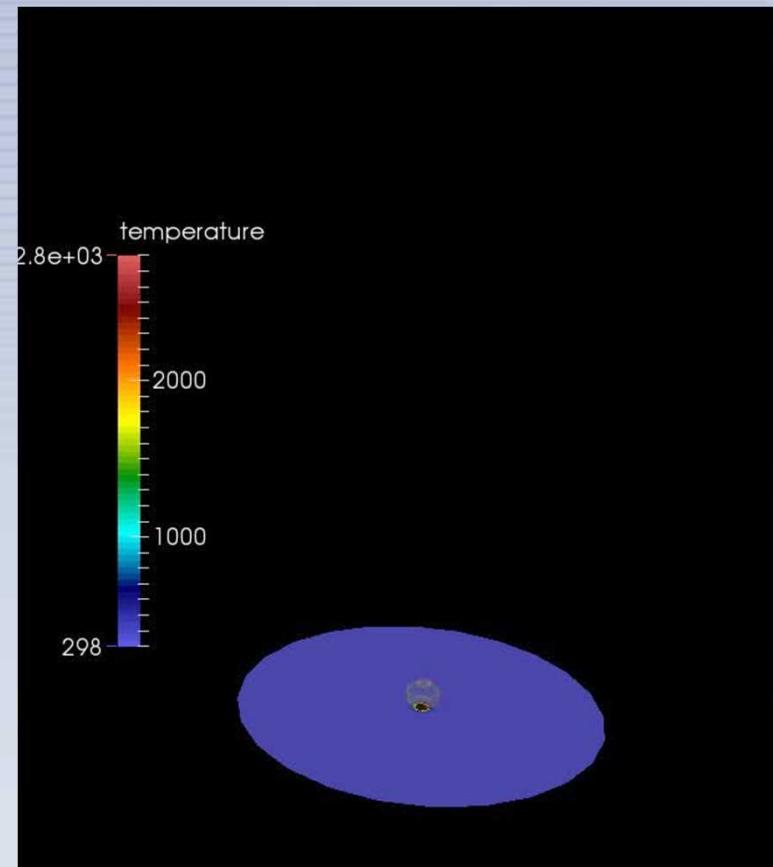
Collaborating with
Ruiz, Lacaze,
Oefelein,
“Assessing the
accuracy of Large
Eddy Simulation in
a Jet In Cross Flow
Configuration,” *(in
prep)*

Combustion Model Implementation

Re ~25,000; Burke Schumann Methane Combustion

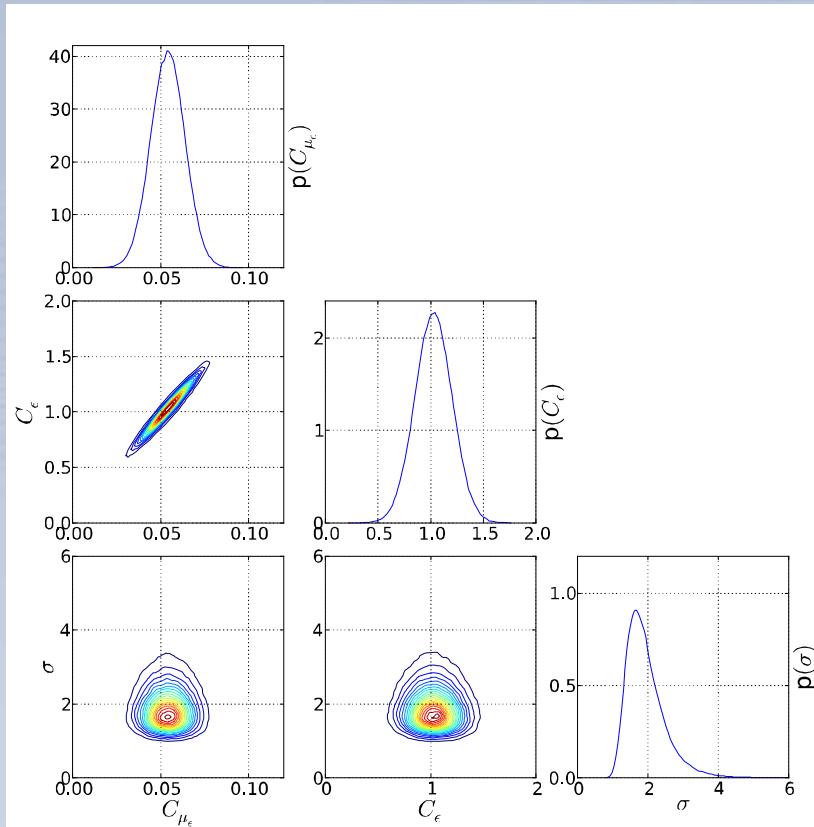


Mixture fraction iso-surfaces colored by temperature



Forward UQ

Joint PDF of Model Parameters



Safta, Blaylock, Templeton, Domino,
“Parameter Uncertainty in LES of
Channel Flow,” *(in prep.)*

Propagation in Turbulent Channel

