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Motivation: Science/Technology and Mathematical / Computational  

Science / Technology Motivation:   
Resistive and extended MHD models are used to 
study important plasma physics systems 
§  Astrophysics: Magnetic reconnection, solar flares, ..  
§  Planetary-physics: Earth’s magnetospheric sub-

storms, Aurora, geo-dynamo, planetary-dynamos"
§  Fusion: Magnetic Confinement [MCF] (e.g. ITER), 

Inertial Conf. [ICF] (e.g. NIF, Z-pinch)"

 MHD Tokamak Equilibrium 

 NASA Magnetic Reconnection Animation (https://www.youtube.com/watch?v=i_x3s8ODaKg) 

Magnetic Reconnection: S = 1e+9 (left), Reconn. Rate vs. SP theory (right)  

Mathematical/Computational Motivation:   
Achieving Scalable Predictive Simulations of Complex 
Highly Nonlinear Multiphysics Systems to Enable Scientific 
Discovery and Engineering Design/Optimization "

Mathematical Approach - develop:  
§  Stable and higher-order accurate fully-implicit formulations 
§  Stable and accurate spatial discretizations for complex 

geom., Options enforcing key mathematical  properties                       
(e.g. positivity, div B = 0) 

§  Robust and efficient fully-coupled nonlinear/linear iterative 
solution methods based on Newton-Krylov (NK) methods 

§  Scalable and efficient preconditioners utilizing multi-level 
(AMG) methods (Fully-coupled AMG, physics-based, approx. 
block factorization) 

      => Also enables beyond forward simulation & integrated UQ 

 MHD Equilibrium Instability 



Mathematical / Computational Motivation: Achieving Scalable Predictive 
Simulations of Complex Highly Nonlinear Multiphysics Systems to Enable 
Scientific Discovery and Engineering Design/Optimization !

What are multi-physics systems? (A multiple-time-scale perspective)!
These systems are characterized by a myriad of complex, interacting, nonlinear multiple 
time- and length-scale physical mechanisms.!
These mechanisms:!
•  can be dominated by one, or a few processes, that drive a short dynamical time-scale 
consistent with these dominating modes,!
•  consist of a set of widely separated time-scales that produce a stiff system response,!

•  nearly balance to evolve a solution on a dynamical time-scale that is long relative to 
the component time scales, !
•  or balance to produce steady-state behavior. !

Our goal is to develop:!
!
•  Stable and higher-order accurate fully-implicit formulations, !
•  Robust fully-coupled nonlinear/linear iterative solution methods, !
•  Scalable and efficient parallel preconditioners,!
•  Integrated sensitivity and error-estimation to enable UQ capabilities.!



Multiple-time-scale systems: Bifurcation Analysis of a Steady Reacting  
H2, O2,, Ar, Opposed Flow Jet Reactor (10 species, 19 reactions) 

 
O2, Ar 

H2, Ar 

70 steady state reacting flow solves 

Approx. Physical Time scales (sec.):  
•  Chemical kinetics: 10-12 to 10-4 
•  Momentum diffusion: 10-6 

•  Heat conduction: 10-6 

•  Mass diffusion: 10-5 to 10-4  

•  Convection: 10-5 to 10-4  
•  Diffusion flame dynamics:       (steady) ∞

Streamlines 

Temperature (Min. 300oK, Max 2727oK) 

OH (Min. 0.0, Max 0.177) 

Ignited branch  



Multiple-time-scale systems: E.g. Driven Magnetic Reconnection with a "
Magnetic Island Coalescence Problem (Incompressible)   "

Approx. Computational Time Scales:  
•  Ion Momentum Diffusion: 10-7 to 10-3 
•  Magnetic Flux Diffusion:  10-7 to 10-3   
   

 

•  Ion Momentum Advection: 10-4 to 10-2 
•  Alfven Wave                    : 10-4 to 10-2 
•  Whistler Wave                 : 10-7 to 10-1 
•  Magnetic Island Sloshing: 100  
•  Magnetic Island Merging: 101 
 

[Finn and Kaw 1977; Chacon and Knoll Phys. 2006] 



Z-pinch Double Hohlraum Schematic (ICF concept)  

Z Machine (Approximate Ranges) 
  

 22 MJ stored energy 
 
100ns current rise time  for  
 26 MA peak electrical current 
 
250 ns plasma shell collapse 
            and stagnation 
 

10-30 ns X-ray power pulse 
   ~350 TW peak power 

Simulations: C. J. Garasi et. al. , Physics of Plasmas, 11 (5), May 2004, pp. 2729-2737	



A Recent Physics Review: K. Matzen, et. al.,  PoP 12, 055503 (2005) 

 Alegra: A. C. Robinson, W. J. Rider et. al. ,  AIAA, 2008-1235	



Computational Stability Constraints: 
 
Hyperbolic Operators:   
•  Alfven waves 
•  Magneto-sonic waves 
•  Material transport 
•  Radiation transport  
 

Parabolic Operators:   
•  Magnetic Diffusion 
•  Heat Conduction 
 

Hall Physics: Whistler waves 
        
      -> 
 
 

�t < �x/c

�t < (�x)2/D

�t < (�x)2/(VAdi)

with peak powers of order 1000 TW and total x-ray energy
outputs of 8–10 MJ per pinch !depending on assumed per-
turbation levels". Using the calculated Z-pinch output as in-
put to 2D hohlraum calculations, shaped capsule drive tem-
perature pulses with peak temperatures of 210 eV were
obtained. The time-dependent behavior of the radial spoke
arrays that separate the primary and secondary hohlraums
was calculated to provide adequate hohlraum coupling while
confining the magnetic field to the primary hohlraum, and
the sensitivity of the hohlraum energetics to the effective
spoke transmission was quantified. Finally, a high-yield cap-
sule was found to be compatible with the calculated drive
pulse; the capsule absorbs 1 MJ of x rays with a fusion yield
of 400 MJ. This scoping study highlighted the crucial issues
for this high-yield target concept that have been the objects
of subsequent experimental study on Z and that are the ob-
jects of the present design study: Z-pinch x-ray pulse shap-
ing, hohlraum energetics and coupling, radiation symmetry
control, and capsule robustness. The main new result pre-
sented in this paper is the development of a complete strat-
egy for radiation symmetry control that allows for robust
capsule ignition and burn in 2D hohlraum simulations, a nec-
essary achievement for any modern ICF target design.

II. HIGH-YIELD CAPSULE DESIGN

A. Characteristics and one-dimensional performance

The original double Z-pinch hohlraum reference2 de-
scribed a 400 MJ yield capsule with a beryllium ablator to be
driven by a pulse with a peak radiation temperature
#210 eV. The capsule chosen for the present design is simi-
lar to the earlier capsule. The main fuel is a cryogenic
deuterium-tritium !DT" layer deposited on the inside of the
spherical ablator shell. The ablator is composed of beryllium,

doped uniformly with 0.2 at. % of copper to mitigate preheat
of the DT fuel by the higher energy photons in the tail of a
220 eV Planckian distribution. Figure 2 shows schematically
the baseline capsule chosen for the present study, while Fig.
3 shows the time-dependent radiation temperature Tr!t" used
in simulations to design the capsule. The model temperature
history shown contains three distinct features: a “foot” pulse
of 95 eV, a “shoulder” step of 130 eV, and a “peak” tem-
perature pulse of 223 eV. The characteristics and perfor-
mance of the baseline capsule in one-dimensional !1D"
LASNEX

19 simulations are summarized in Table I. For com-
parison, also shown in Table I are the corresponding values
for a graded-dopant Be-Cu capsule designed for a peak
300 eV effective temperature drive for the upcoming Na-
tional Ignition Facility !NIF" laser indirect-drive ignition
campaign.20 The high-yield capsule is 2.65 times larger in
radius than the NIF capsule, with 30 times more DT fuel.
With an absorbed energy of 1.21 MJ, the high-yield capsule
does not require as high an implosion velocity as the NIF
capsule, so the peak ablation pressure is #60 Mbar com-
pared to the 160 Mbar for the NIF capsule. As a result, the
high-yield capsule can be driven with a simpler pulse shape
than the four distinct temperature steps required for the NIF
capsule.2 The hot-spot convergence ratio, and the fuel kinetic
energy margin !the fraction of the peak fuel implosion ki-
netic energy remaining at ignition time" are comparable for
the two capsules.

B. Pulse shape tolerance

Capsule-only radiation-hydrodynamics simulations are
used to evaluate several possible capsule failure modes, such
as pulse shape sensitivity, unstable growth of initial capsule
perturbations, and hohlraum radiation asymmetry. The first
of these, pulse shape sensitivity, is essentially a one-

FIG. 3. !Color" Temperature history assumed for capsule design, with tol-
erable variations.

FIG. 1. !Color" Double Z-pinch hohlraum concept. !A" and !B" top and
bottom primary hohlraums, containing notional wire array Z pinch with
internal pulse-shaping targets. !C" High-yield capsule, !D" secondary hohl-
raum containing the capsule, !E" on-axis permanent shine shield and radial
spoke electrode structures, and !F" upper and lower electrical power feeds.

FIG. 2. !Color" High-yield capsule schematic.

056302-2 Vesey et al. Phys. Plasmas 14, 056302 !2007"

Downloaded 26 Mar 2007 to 134.253.26.11. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp

*Double z-pinch: Vessy, et. al.,  PoP 14, 056302 (2007) 

*Double hohlraum 
  PoP Figure 



3D Resistive MHD Equations 

  

Resistive MHD Model in Residual Notation 

"

•  Divergence free involution enforced as elliptic constraint with a Lagrange multiplier.                                   
(Dedner et. al. 2002; Codina et. al. 2006, 2011)"

•  Only weakly divergence free in FE implementation (stabilization of B -    coupling )"

•  Can show relationship with projection (e.g. Brackbill and Barnes 1980) when 1st order-splitting is used."
"

•  Issue for using C0 FE for domains with re-entrant corners / soln singularities "
  (Costabel et. al. 2000, 2002, Codina, 2011)"

TM =
1
µ0

B⇥B� 1
2µ0

⇤B⇤2I

Re =
⇤(⇥e)

⇤t
+⌅ · [⇥ve + q]�T : ⌅v � �⇤ 1

µ0
⌅⇥B⇤2 = 0

 

Rv =
@⇢v

@t
+r · [⇢v ⌦ v � (T+TM )] + 2⇢⌦⇥ v � ⇢g = 0

RP =
@⇢

@t
+r · (⇢v) = 0

R(u) = L(u)� f = 0

T = �[P � 2

3
µ(r · v)]I+ µ[rv +rvT ]

R = r ·B = 0

RB =
@B

@t
+r ·


B⌦ v � v ⌦B� ⌘

µ0

�
rB� (rB)T

�
+  I

�
= 0



3D Resistive MHD Equations: VMS Formulation  

  

Resistive MHD Model in Residual Notation 

"

•  Divergence free involution enforced as elliptic constraint with a Lagrange multiplier.                                   
(Dedner et. al. 2002; Codina et. al. 2006, 2011)"

•  Only weakly divergence free in FE implementation (stabilization of B -    coupling )"

•  Can show relationship with projection (e.g. Brackbill and Barnes 1980) when 1st order-splitting is used."
"

•  Issue for using C0 FE for domains with re-entrant corners / soln singularities "
  (Costabel et. al. 2000, 2002, Codina, 2011)"

 

RP =
@⇢

@t
+r · (⇢v) = 0

R(u) = L(u)� f = 0

R = r ·B = 0

⇧ = µ[ru+ruT ]

RB =
@B

@t
+r ·


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µ0

�
rB�rBT

�
+  I

�
= 0 NB = B⌦ v � v ⌦B

Nv = ⇢v ⌦ v � 1

µ0
B⌦B+

1

2µ0
(B ·B)

Rv =
@(⇢v)

@t
+r · [Nv + P I�⇧]� ⇢g = 0



Briefly Following Variational Multiscale Method (Hughes et. al.) Develop FE VMS MHD model  

Let (overlapping sum decomposition of solution ) 
(weighting function ) 

u = uh + u0

w = wh +w0

Consider,         resolved/coarse scales, and        unresolved/sub-grid scales  uh u0

•  Unresolved scales are driven by PDE residual of resolved scale solution. 
•  Formally the exact solution satisfies this representation 
•  Conceptually - resolved scale PDE residual “measures” unresolved or sub-grid scale effects 

(Contributes to both accuracy and stability. Hughes et. al. CMAME, 1998, Codina CMAME, 
2000, Hughes et. al. Enc. Comp. Mech. 2007 ) 

It is further assumed that the unresolved (sub-grid) scales are modeled by 

u0 = �⌧ [R(uh)]

Following the VMS development the coarse and sub-grid scale equations become  

A(wh,uh) + (L⇤wh,u0)⌦0 = (wh, f) 8wh 2 Wh

(w0,Lu0) = �
�
w0,L(uh)� f

�
= �

⇣
w0,R(uh)

⌘
8w0 2 W0



N (2)
v = ⇢ (v0 ⌦ v0)� 1

µ0
(B0 ⌦B0) +

1

2µ0
(B0 ·B0)

N (2)
B = (�v0 ⌦B0 +B0 ⌦ v0)

Focus on Nonlinear contributions to flux terms: 
VMS induced cross term fluxes (sub-grid to resolved scales)  

VMS induces additional higher-order 
sub-grid scale interactions/fluxes 

N (1)
v = ⇢

�
vh ⌦ v0 + v0 ⌦ vh

�
� 1

µ0

�
Bh ⌦B0 +B0 ⌦Bh

�
+

1

µ0
(Bh ·B0)

N (1)
B =

�
�vh ⌦B0 +B0 ⌦ vh

�
+

�
�v0 ⌦Bh +Bh ⌦ v0�



Summary of Initial VMS/Stabilized FE Weak form of Equations 
 for Low Flow Mach Number MHD System;                                                                                                           

Governing 
Equation 

Stabilized FE Residual  (following Hughes et. al., Shakib - Navier-Stokes; 
Salah et. al. 99 & 01, Codina et. al. 2006 –Curl form magnetics ) 

Momentum 

Total Mass 

Thermal 
Energy 

Magnetics: 
Induction  
 
         
Divergence 
Constraint 

FP = ΦRP dΩ +
Ω
∫ ρτm∇Φ •Rm dΩ

Ωe
∫

e
∑

FT = ΦRT dΩ +
Ω
∫ ρCPτT u •∇Φ( )RT dΩ +

Ωe
∫

e
∑ νT∇Φ •Cc∇T dΩ

Ωe
∫

e
∑

F =
Z

⌦
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X

e

Z

⌦e
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X

e

Z

⌦e
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@B
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�
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Z

⌦
� · RB d⌦ +

X

e

Z

⌦e
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X

e

Z
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�
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Z

⌦
� ·Rmd⌦+

X

e

Z

⌦e

⇢⌧mRm ⌦ u : r�d⌦+
X

e

Z

⌦e

⌧̂P (r ·�)RP d⌦



Why Newton-Krylov Methods? 
"

Newton-Krylov"

Fully-implicit transient"

Stability, Accuracy and Efficiency!
•  Stable (stiff systems)!

•  High order methods!

•  Variable order techniques with error-control!

•  Can be stable, accurate and efficient run at 
the dynamical time-scale of interest in 
multiple-time-scale systems (See e.g. Knoll et. al., 
Brown & Woodward., Chacon and Knoll, S. and Ober, S. and 
Ropp)"

Robustness, Convergence and Flexibility!

•  Strongly coupled multi-physics often 
requires a strongly coupled nonlinear 
solver!

•  Quadratic convergence near solutions!

•  Enables continuation, bifurcation, 
stability analysis, etc.!

Direct-to-steady-state"



Why Newton-Krylov Methods? 
"

Newton-Krylov"

Fully-implicit transient"
"

Stability, Accuracy and Efficiency!

Direct-to-steady-state"
"

Robustness, Rapid Convergence,  !
"

Optimization, Inverse Problems, !

Integrated Adjoint Error-estimation, !

Sensitivity Analysis, and UQ tools!



Predictive computational analysis and uncertainty quantification (UQ) for 
multiphysics has many open challenges 

Challenges Include: 
 
•  Uncertainties arise from: discretization errors, boundary and initial conditions, model 

parameters, physical parameters,  

•  Analysis and design often focus on a set of quantities of interest (QoI) rather than the 
entire state (e.g. partial differential equation (PDE) solution) 

 
•  The stability, error, uncertainty propagation and sensitivity characteristics for QoI can 

be significantly different from the PDE solution itself 

We are addressing these challenges for studies of a moderate number of QoIs dependent 
on a large-number of parameters using adjoint-based methods to accurately and 
efficiently compute numerical error estimates and to conduct  sensitivity analysis for QoI 
 
 

 

Adjoint methods have been well studied and demonstrated for single-physics parabolic PDEs. 
[e.g. Rannacher, Oden, C. Johnson, Estep, Bangerth, Barth, Suli, Braack, …..]  



Predictive computational analysis and uncertainty quantification (UQ) for 
multiphysics has many open challenges 

Forward problem: L(u;p) = f(p)

Adjoint Sensitivities: @pg(U ; p) = ( , @pR(u; p)); Error Estimate: g(u; p)� g(U ; p) ⇡ ( ,R(u; p))

Adjoint problem: (L0
(u;p))⇤ = @ug(u,p).

Adjoint methods for stabilized FE methods:  
 

Context of adjoint methods in optimization 
Collis, S., and Heinkenschloss, M. Technical Report TR02-01, Rice University 2002. 
 
Error estimation for SUPG  
Houston, P., Rannacher, R., and Suli, E. CMAME (2000) 
Rannacher, R. CMAME, 1998 
 
Cyr, Shadid, Wildey, Approaches for adjoint-based a posteriori analysis  
of stabilized finite element methods, to appear SISC 

 
We have studied variational adjoints, discrete adjoints and alternate error representations for 

stabilized methods in transport and Navier-Stokes (steady and transients)   



§  QoI	
  (1):	
  Average	
  
Fluid	
  velocity	
  (Vx)	
  

§  QoI	
  (2)	
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Average	
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  half-­‐domain	
  induced	
  field	
  in	
  
streamwise	
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  (Bx)	
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§  QoI	
  (1):	
  Kine<c	
  Energy	
  

§  QoI	
  (2):	
  Induced	
  Magne<c	
  Energy:	
  

Ini<al	
  Adjoint	
  Error	
  Es<mate	
  Study	
  for	
  Resis<ve	
  MHD:	
  	
  
Analy<c	
  Hartmann	
  Flow	
  –	
  Nonlinear	
  QoI	
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§  QoI	
  (1)	
  Flow:	
  Average	
  
Fluid	
  velocity	
  (Vx)	
  

	
  

	
  

Ini<al	
  Adjoint	
  Sensi<vity	
  Analysis	
  for	
  Resis<ve	
  MHD:	
  MHD	
  Duct	
  Flows	
  	
  
E.g.	
  Analy<c	
  Hartmann	
  Flow	
  –	
  accuracy	
  of	
  deriva<ves	
  
	
  	
  	
  

Ha =
B0Lp
µ⌘

Rem =
V L

⌘
Re =

⇢V L

µ
;

Physical Parameter  Re = 1; Rem = 1, Ha = 1; Re = 875; Re = 43.7.; Ha = 44.7; 

Analytic Adjoint  Rel. Err.  Analytic Adjoint Rel. Err. 

Pressure Gradient (      ) -0.313035 -0.312884  0.048% -4.37214 -4.36929  0.065% 

Dynamic Viscosity (      ) -0.294487 -0.294383  0.04% -447.214 446.529  0.15% 

Density (    )  0.0 -1.2e-7 ----- 0.0 1.1e-3 ----- 

Resistivity (    )  0.018548 0.018501 0.2% 21.3607 21.3623  0.01% 

Applied Mag. Ind. (B0) -0.037097 -4.27214 

G0

µ

E.g. Mesh Simulation: 40 elements in duct cross-section  

V̄ =
1

2

Z 1

�1
V
x

dy

⇢
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Ini<al	
  Adjoint	
  Sensi<vity	
  Analysis	
  for	
  Resis<ve	
  MHD:	
  MHD	
  Duct	
  Flows	
  	
  
E.g.	
  Analy<c	
  Hartmann	
  Flow	
  –	
  accuracy	
  of	
  deriva<ves	
  
	
  	
  	
  

Physical Parameter Analytic  Uniform Mesh 
 

Non-uniform Boundary 
Layer Mesh 

Drekar / 
Adjoint  

Rel. Err.  Drekar /
Adjoint 

Rel. Err. 

QoI: T.E. 21.9318 22.29552 1.66% 21.96336 0.15% 

QoI Derivatives: 

Pressure Gradient (      )  -20.9318 -21.4356  2.41%   -20.9753  0.21% 

Dynamic Viscosity (      ) -3972.97 -4145.97  4.35%  -3979.72  0.17% 

Density (    )  0.0   1.1e-1 -----  3.0e-3 ----- 

Resistivity (    ) 778.574  779.613  0.133%  779.988   0.18% 

Applied Mag. Ind. (B0) -41.4632 

G0

µ

E.g. Mesh Simulation: 40 elements in duct cross-section  

⇢
⌘
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  Total	
  Energy:	
  Kine<c	
  +	
  Magne<c	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  Re	
  =	
  884;	
  Rem	
  =	
  177;	
  Ha	
  =	
  90;	
  

T.E. =

Z

⌦

1

2
(u2

x

+ u2
y

)d⌦+

Z

⌦

1

2µ0
(B2

x

+B2
y

)d⌦



Ini$al	
  Adjoint	
  Study:	
  Visualiza$on	
  of	
  Adjoint	
  Solu$on	
  for	
  Resis$ve	
  MHD	
  
E.g.	
  3D	
  MHD	
  Generator	
  (Re	
  ~	
  2500,	
  Rem	
  ~	
  10,	
  Ha	
  =	
  5)	
  

Forward	
  	
  
Solu$on 

Adjoint	
  
Solu$on	
  
	
  
QoI:	
   ̄V



§  QoI	
  (1):	
  Average	
  Fluid	
  velocity	
  (Vx)	
  
	
  
	
  
§  State:	
  
§  Adjoint	
  Error	
  es$ma$on,	
  take	
  reference	
  solu$on	
  as	
  400x200x200	
  element	
  mesh	
  

Ini$al	
  Adjoint	
  Error	
  Es$ma$on	
  Study	
  for	
  Resis$ve	
  MHD:	
  3D	
  MHD	
  Duct	
  Flows	
  	
  
E.g.	
  3D	
  MHD	
  Generator	
  (Re	
  ~	
  2500,	
  Rem	
  ~	
  10,	
  Ha	
  =	
  5)	
  

Ha =
B0Lp
µ⌘

Rem =
V L

⌘
Re =

⇢V L

µ
;

Nx x Ny x Nz (#unknowns) QoI:  Err. Est.  Pred. QoI Est. Rel. 
Err.  

Rel. Err. 
Ref.* 

20x10x10        (16K) 5.63814 0.4664 6.1045 8.3% -3.5% 

40x20x20        (128K) 5.40236 0.1154 5.5178 2.1% 0.8% 

80x40x40        (1M) 5.41037 0.0159 5.4263 0.3% 0.7% 

160x80x80      (8M) 5.44320 0.0040 5.4472 0.07% 0.09% 

400x200x200 (128M)* 5.44831 - - - - 

V̄

Re	
  ~	
  2500,	
  Rem	
  ~	
  10,	
  Ha	
  =	
  5;	
  

¯V =

R
⌦ V

x

d⌦

Volume(⌦)



§  QoI	
  (1)	
  Flow:	
  Induced	
  Magne$c	
  Energy	
  
	
  

	
  
§  State:	
  
§  Adjoint	
  Error	
  es$ma$on,	
  take	
  reference	
  solu$on	
  as	
  400x200x200	
  element	
  mesh	
  

Ini$al	
  Adjoint	
  Error	
  Es$ma$on	
  Study	
  for	
  Resis$ve	
  MHD:	
  3D	
  MHD	
  Duct	
  Flows	
  	
  
E.g.	
  3D	
  MHD	
  Generator	
  (Re	
  ~	
  2500,	
  Rem	
  ~	
  10,	
  Ha	
  =	
  5)	
  

Ha =
B0Lp
µ⌘

Rem =
V L

⌘
Re =

⇢V L

µ
;

Nx x Ny x Nz (#unknowns) QoI: M.E.  
(2.0*104)  

Err. Est. 
(2.0*104)  

 Pred. QoI 
(2.0*104)  

Est. Rel. 
Err.  

Rel. Err. 
Ref.* 

40x20x20        (128K) 6.4768 0.1298 6.6085 2.0% 10.2% 

60x30x30        (432K) 6.5999 0.2962 6.8961 4.5%   8.5% 

80x40x40        (1M) 6.8876 0.2239 7.1114 3.25% 4.51% 

100x50x50      (2M) 7.0632 0.1136 7.1769 1.50% 2.07% 

160x80x80      (8M) 7.1256 0.0748 7.2004 1.05% 1.21% 

400x200x200 (128M)* 7.2128  - - - - 

Re	
  ~	
  2500,	
  Rem	
  ~	
  10,	
  Ha	
  =	
  5;	
  

M.E. =
1

2µ0

Z

⌦
(B2

x

+B2
z

)d⌦



Ini$al	
  Adjoint	
  Error	
  Es$ma$on	
  Study	
  for	
  Resis$ve	
  MHD:	
  3D	
  MHD	
  Duct	
  Flows	
  	
  
E.g.	
  3D	
  MHD	
  Generator	
  (Re	
  ~	
  2500,	
  Rem	
  ~	
  10,	
  Ha	
  =	
  5)	
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Q
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§  QoI	
  (1):	
  Average	
  Fluid	
  velocity	
  (Vx)	
  

§  QoI	
  (2):	
  Induced	
  Magne$c	
  Energy	
  
	
  

	
  

§  State:	
  
§  Adjoint	
  Error	
  es$ma$on,	
  take	
  reference	
  solu$on	
  as	
  400x200x200	
  element	
  mesh	
  

Ha =
B0Lp
µ⌘

Rem =
V L

⌘
Re =

⇢V L

µ
;

Re	
  ~	
  2500,	
  Rem	
  ~	
  10,	
  Ha	
  =	
  5;	
  

M.E. =
1

2µ0

Z

⌦
(B2

x

+B2
z

)d⌦
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§  QoI	
  (1)	
  Flow:	
  Average	
  
Fluid	
  velocity	
  (Vx)	
  

	
  
§  Reference	
  state:	
  
§  Parameters	
  in	
  simple	
  numerical	
  sensi$vity	
  study	
  (+-­‐	
  1%,	
  5%,	
  10%)	
  
§  Local	
  linear	
  Taylor	
  series	
  model	
  (e.g.	
  surrogate	
  model	
  for	
  sampling	
  UQ)	
  

Ini$al	
  Adjoint	
  Sensi$vity	
  Analysis	
  for	
  Resis$ve	
  MHD:	
  3D	
  MHD	
  Duct	
  
Flows	
  	
  E.g.	
  3D	
  MHD	
  Generator	
  (Re	
  ~	
  2500,	
  Rem	
  ~	
  10,	
  Ha	
  =	
  5)	
  

Ha =
B0Lp
µ⌘

Rem =
V L

⌘
Re =

⇢V L

µ
;

Physical Parameter 
Dynamic Viscosity (      ) 

QoI computed from 
Drekar  

QoI Estimated from 
Adjoint Sensitivity & Linear 
Model  

 Relative Error  

0.00202 (   +1%) 4.61750 4.61703 0.010% 

0.00198  (   -1%) 4.69811 4.69784 0.006% 

0.00210 (   +5%)   4.46483 4.45541 0.211% 

0.00190  (   -5%)   4.86876 4.85945 0.191% 

0.00220 (   +10%) 4.28845 4.25338 0.82% 

0.00180 (   -10%) 5.10192 5.06148 0.79% 

E.g. Coarse Mesh Simulation: Nx x Ny x Nz: 140x20x20 mesh 

V̄ =

Z 1

�1
V
x

dy

⇢ = 1, µ = 0.002, G0 = 0.31, ⌘ = 1, B0 = 0.2236
µ,G0;

µ

µ

µ

µ

µ

µ

µ

q = q̄ +
@̄q

@p
(p� p̄) + H.O.T



§  QoI	
  (1)	
  Flow:	
  Average	
  
Fluid	
  velocity	
  (Vx)	
  

	
  
§  Reference	
  state:	
  
§  Parameters	
  in	
  simple	
  numerical	
  sensi$vity	
  study	
  (+-­‐	
  1%,	
  5%,	
  10%)	
  
§  Local	
  linear	
  Taylor	
  series	
  model	
  (e.g.	
  surrogate	
  model	
  for	
  sampling	
  UQ)	
  :	
  	
  	
  

Ini$al	
  Adjoint	
  Sensi$vity	
  Analysis	
  for	
  Resis$ve	
  MHD:	
  3D	
  MHD	
  Duct	
  
Flows	
  	
  E.g.	
  3D	
  MHD	
  Generator	
  (Re	
  =	
  2500,	
  Rem	
  =	
  10,	
  Ha	
  =	
  5)	
  

Ha =
B0Lp
µ⌘

Rem =
V L

⌘
Re =

⇢V L

µ
;

Physical Parameter 
Pressure Gradient (      ) 

QoI computed from 
Drekar  

QoI Estimated from 
Adjoint Sensitivity & Linear 
Model  

 Relative Error  

0.3131 (      +1%) 4.70082  4.70288  0.04% 

0.3069 (      -1%) 4.61401  4.61198  0.04% 

0.3255 (      +5%)    4.87404  4.88466  0.22% 

0.2945 (      -5%)    4.43997  4.43020  0.17% 

0.341 (      +10%)  5.14753  5.11189  0.69% 

0.279 (      -10%)  4.22159  4.19842  0.55% 

E.g. Coarse Mesh Simulation: Nx x Ny x Nz: 140x20x20 mesh 

V̄ =

Z 1

�1
V
x

dy

⇢ = 1, µ = 0.002, G0 = 0.31, ⌘ = 1, B0 = 0.2236
µ,G0;

µ,G0;

µ,G0;
µ,G0;
µ,G0;

µ,G0;
µ,G0;

µ,G0;

q = q̄ +
@̄q

@p
(p� p̄) + H.O.T



Physical	
  Parameter	
   Analy$c	
   Drekar	
  /Adjoint	
   Rel.	
  Err.	
  

QoI:	
  T.E.	
   21.9318	
   21.9634	
   0.15%	
  

QoI	
  Deriva$ves:	
  

Pressure	
  Gradient	
  (	
  	
  	
  	
  	
  	
  )	
   	
  -­‐20.9318	
   	
  -­‐20.9753	
   	
  0.21%	
  

Dynamic	
  Viscosity	
  (	
  	
  	
  	
  	
  	
  )	
   -­‐3972.97	
   	
  -­‐3979.72	
   	
  0.17%	
  

Density	
  (	
  	
  	
  	
  )	
   	
  0.0	
   	
  3.0e-­‐3	
   -­‐-­‐-­‐-­‐-­‐	
  

Resis$vity	
  (	
  	
  	
  	
  )	
   778.574	
   	
  779.988	
  	
   	
  0.18%	
  

Applied	
  Mag.	
  Ind.	
  (B0)	
   -­‐41.4632	
  

G0

µ

⇢

⌘

1.0E%03'

1.5E%03'

2.0E%03'

1.E%02' 1.E%01' 1.E+00'

Q
oI
'

h'='Ly'/'Ny'

QoI:'Induced'Magne=c'Energy''

Drekar'QoI:'Ind.'M.E.'

Exact'QoI:'Ind.'M.E.'

Drekar'QoI:'Ind.'M.E.'+'Adj.'Err.'Est.'

Example:	
  Accuracy	
  of	
  Adjoint	
  Error	
  
Es$mate	
  (Re=Rem=Ha	
  =1)	
  
QoI:	
  Induced	
  Magne$c	
  Energy	
  	
  

Example:	
  Accuracy	
  of	
  Adjoint	
  Sensi$vity	
  (Re	
  =	
  884;	
  Rem	
  =	
  177;	
  Ha	
  =	
  90)	
  
QoI:	
  Total	
  Energy	
  (Kine$c	
  +	
  Magne$c	
  Energy)	
  

Preliminary	
  Example:	
  Using	
  adjoint-­‐
enhanced	
  surrogate	
  model(s)	
  -­‐	
  
Accuracy	
  vs.	
  Cost	
  QoI:	
  Total	
  Energy	
  

Example:	
  Steady	
  MHD	
  Duct	
  Flow	
  (Hartmann	
  Analy$c	
  Solu$on)	
  

T.E. =

Z

⌦

1

2
(u2

x

+ u2
y

)d⌦+
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⌦

1

2µ0
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M.E. =
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Why Newton-Krylov Methods? 
"

Newton-Krylov"

Direct-to-steady-state" Fully-implicit transient"

Convergence"
Properties"

Characterization "
Complex Soln. Spaces"

Design "
Optimization" Stability" Accuracy" Efficiency"

Very Large Problems -> Parallel Iterative Solution of Sub-problems"
"
Krylov Methods - Robust, Scalable and Efficient Parallel Preconditioners"

•  Approximate Block Factorizations"
•  Physics-based Preconditioners"
•  Multi-level solvers for systems and scalar equations "



Preconditioning 
Three variants of preconditioning 

1. Domain Decomposition (Trilinos/Aztec & IFPack)  

2. Multilevel Methods for Systems: ML pkg (Tuminaro, Sala, Hu, Siefert, Gee) 

3. Approximate Block Factorization / Physics-based (Teko package)    

•  1 –level Additive Schwarz DD 
•  ILU(k)  Factorization on each processor   
(with variable levels of overlap) 
•  High parallel efficiency, non-optimal 
algorithmic scalability  

Fully-coupled Algebraic Multilevel methods 
•  Consistent set of DOF-ordered blocks at each node (e.g. stabilized FE) 
•  Uses block non-zero structure of Jacobian  
•  Aggregation techniques and rates can be chosen 
•  Jacobi, GS, ILU(k) as smoothers 
•  Can provide optimal algorithmic scalability 

•  Applies to mixed interpolation (FE), staggered (FV), physics compatible 
discretization approaches using segregated unknown blocking 
•  Applied to systems where coupled AMG is difficult or might fail 
•  Can provide optimal algorithmic scalability 



SFE Initial Scaling Studies for Cray XK7 AND BG/Q.   
3D MHD Generator [Re = 500, Rem = 1, Ha = 2.5] 

~20x 

Titan: 128K 

BG/Q: 256K 

1.8 Billion max unknowns 
14K unknowns per core (Titan) 1.8 Billion max unknowns 

4096x increase in prb. size 
 

MHD Recently run on ½ M cores of BG/Q 

[Preliminary strong scaling of Krylov linear solver + preconditioner 
(ML: FC – AMG), Tuminaro, Hu, Siefert et. al.] 

1.8 Billion unknowns 

(DOE/ORNL Titan Cray XK7: Joule Metric) 

4 Billion element/unknown Solution of Poisson Eq. 1M cores 
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Initial Scaling Study for Cray XK7.   
3D Hydromagnetic Kelvin-Helmholtz Instability 

[Re = 104, Rem = 104, MA = 3; CFLmax ~5 ] 

170 Million max unknowns 
10K unknowns per core 

170 Million max unknowns 



Scaling for SFE Lagrange Multiplier Formulation.  
3D Island Coalescence [S = 103, dt = 0.1] 

BDF2 NK FC-AMG ILU(fill=0,ov=1), V(3,3) 
SNL Capacity Cluster: Chama 

Lundquist	
  No.	
  S	
   Newt.	
  Steps	
  /	
  dt	
   Gmres	
  Steps	
  /	
  dt	
  
1.0E+03	
   1.36	
   5.2	
  
5.0E+03	
   1.43	
   5.7	
  
1.0E+04	
   1.51	
   6	
  
5.0E+04	
   2	
   9.8	
  
1.0E+05	
   2	
   12	
  
5.0E+05	
   2	
   8.4	
  
1.0E+06	
   2	
   8.4	
  

Scaling with Lundquist No. 

Mesh: 128x128x128, dt = 0.0333. 

256x256x256 

32K unknowns / core 
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Highlight: Scalable FC-AMG and ABF Preconditioning for resistive MHD 
Summary of Structure of Linear Systems Generated in Newton’s Method 

x = [v, P,B, r]T

We consider a primitive variable discretization for incompressible, low flow-Mach number 
approximations, anelastic approx. and low flow-Mach number compressible flows  

J�x = �F J = F = [Fv, FP ,FB, Fr]
T

Resistive MHD Model in Residual Notation 

RP =
⇥�

⇥t
+� · (�u) = 0

RB =
⇥B
⇥t
�⇤⇥ (u⇥B) +⇤⇥ (

�

µ0
⇤⇥B) = 0.

TM =
1
µ0

B⇥B� 1
2µ0

⇤B⇤2I

Re =
⇤(⇥e)

⇤t
+⌅ · [⇥ve + q]�T : ⌅v � �⇤ 1

µ0
⌅⇥B⇤2 = 0

RB =
@B
@t

+r · [u⌦B�B⌦ u� ⌘

µ0

�
rB� (rB)T ) +  I] = 0

R = r · B = 0

Ru =
@⇢u
@t

+r · [⇢u⌦ u� (T + TM )] + 2⇢⌦⇥ u� ⇢g = 0

General Structure of Newton System: 

Note: For non-stabilized form 
 

Incompressible, low-flow Mach 
approximation  

 
Elliptic constrained generalized 

Lagrange multiplier 
 

Cu = 0

CB = 0

RAz =
⇥Az

⇥t
+ u ·⇥Az �

�

µ0
⇥2Az + E0

z = 0.

B = ⇥�A

2D 

Z 

Y D 0 

0 



Initial Scaling Studies for Cray XK7 AND BG/Q.   

~20x 

Titan: 128K 

BG/Q: 256K 

1.8 Billion max unknowns 
4096x increase in prb. size 

 

MHD Recently run on ½ M cores of BG/Q 

[Preliminary strong scaling of 
Krylov linear solver + 

preconditioner 
(ML: FC – AMG), PI-Tuminaro, 

Hu, Siefert et. al.] 

1.8 Billion unknowns 

(DOE/ORNL Titan Cray XK7: Joule Metric) 

4 Billion element/uknown Solution of Poisson Eq. 1M cores 
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v  P  B  r  
SFE, Q1 interpolation,                         ; Cu and CB weighted 

Laplacian matrix; 

[Re = 500, Rem = 1, Ha = 2.5] 
3D MHD Generator  

Shadid, Pawlowski, Cyr, Tuminaro, Chacon, Scalable Implicit 3D Resistive MHD with 
Stabilized FE Methods and Fully-coupled Multilevel Preconditioners, in preparation  



Scaling for Lagrange Multiplier Formulation.  
3D Island Coalescence [S = 103, dt = 0.1], SFE 

BDF2 NK FC-AMG ILU(fill=0,ov=1), V(3,3) 
SNL Capacity Cluster: Chama 

Lundquist	
  No.	
  S	
   Newt.	
  Steps	
  /	
  dt	
   Gmres	
  Steps	
  /	
  dt	
  
1.0E+03	
   1.36	
   5.2	
  
5.0E+03	
   1.43	
   5.7	
  
1.0E+04	
   1.51	
   6	
  
5.0E+04	
   2	
   9.8	
  
1.0E+05	
   2	
   12	
  
5.0E+05	
   2	
   8.4	
  
1.0E+06	
   2	
   8.4	
  

Scaling with Lundquist No. 

Mesh: 128x128x128, dt = 0.0333. 

256x256x256 

Analysis (coarse graph-based aggregation):  
•  Sala; Math. Modeling and Numer. Anal., 2004 
•  Sala, Shadid, Tuminaro; SIAM J. Matrix Analysis, 2006!
 

Numerical Studies for NS, TR and  MHD Systems: 
•  Shadid et. al. CMAME., 2006 
•  Lin, Sala, Shadid, Tuminaro; IJNME 2006 
•  Lin,  Shadid, Tuminaro, Marzio Sala, IJNME 2010 
•  Lin, Shadid, et, al. IJNMF 2010 
•  Shadid, Pawlowski, Banks, Chacon, Lin, Tuminaro, JCP 2010 
•  Lin, IJNME, 2012 
•  Cyr, Shadid and Tuminaro, JCP 2012 
•  Shadid, Pawlowski, Cyr, Tumniaro, Chacon, 2014, in preparation 

(Scaling of total time with I/O included) 

32K  unknowns per core 



Physics-based (Parabolization): 

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The Schur complement is then 

Schur Complement, (Approximate) Block Factorization: 

Result: Stiff (large-magnitude) off-diagonal hyperbolic type operators (blocks) 
are now combined onto diagonal parabolic operator (block).  

 
Scalar equation multigrid can now be used effectively on this operator  

Our General Approach:  
   Physics-based: Understand stiff physics, develop asymptotic analytic analysis to simplified system(s)    
   while approximating critical operators  to maintain  stiff coupling in approximate Schur complement(s)  

 
   ABF: Understand stiff physics, consider spectral properties of operators,  

  develop approximate block factorization(s) to simplified system(s) while approximating critical   
  operators  to maintain  stiff coupling in approximate Schur complement(s) 

Physics-based and Approximate Block Factorizations: Coercing Strongly Coupled Off- 
Diagonal Physics / Disparate Discretizations and Scalable Multigrid to play well together  



 
Step back to CFD for a moment to  

 
Introduce block approximate factorization (physics-based) preconditioners 



3D Plane Jet; Kelvin-Helmholtz Unstable with Secondary Cross-stream Instability; 
 VMS LES Model; Re = 108 



1 core 
1024 cores 

1 core 
1024 cores 

Transient  
Kelvin-Helmholtz 



Now Return to MHD 
 

Block approximate factorization (physics-based) preconditioners 



E.g. Primitive-Variable MHD a New Nested Schur Complement (2D vector potential) 

2) Consider Block LU factorization 

•  3x3 system leads to embedded Schur complements (embedding is independent of ordering)  

•  How are S and P to be effectively approximated? 

•  Straight forward approach:  approximate operators in Schur complement to produce diagonal inverses 
•  Use alternate approximate block factorizations (ABF) 

1) Fully-implicit enables solution of incompressible, anelastic, low-Mach approximation, 
low-flow Mach compressible systems. However physics coupling is challenging  

e.g. Stabilized FE, or  
compressible 0 

e.g. Mixed FE,  
Staggered FV for other 

than compressible 

Physics-based and Approximate Block Factorizations: Coercing Strongly Coupled Off- 
Diagonal Physics / Disparate Discretizations and Scalable Multigrid to play well together  
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(C-1 doesn’t need to exist)  



Overview of more Detailed Mathematical Analysis of Residual-based 
Defect-Correction ABF Preconditioner   

1)  Developed a new residual defect-correction factorization procedure that strongly couples 
operators producing the Alfven wave and reduces to two 2x2 blocks for the ABF:  

 
 

2)  Our previous extensive work for NS Schur complement lead to evaluated and developed diagonal 
(Pressure Proj., SIMPLE(R)), Press-Conv-Diff (PCD) and Least Squares comutator (LSC) type 

approaches for  

 S = Cu �BF̂�1BT

Press-Conv-Diff (PCD):  S = �BF̂�1BT ⇡ �F�1
P BBT ⇡ �F�1

P L

Pressure Projection:  S = �BF̂�1BT ⇡ �B(�t)IBT ⇡ �(�t)L

See e.g. Elman, Howle, Shadid, Shuttleworth, Tuminaro,”A Taxonomy of Parallel Mulit-level Block 
Preconditioners for the Incompressible Navier-Stokes Equations”, JCP, v. 227, 3, pp 1790 - 1808, 2008  



Overview of more Detailed Mathematical Analysis of Residual-based 
Defect-Correction ABF Preconditioner   

1)  Developed a new residual defect-correction factorization procedure that strongly couples 
operators producing the Alfven wave and reduces to two 2x2 blocks for the ABF:  

 
 

2)  Our previous extensive work for NS Schur complement lead to evaluated and developed diagonal 
(SIMPLE), Press-Conv-Diff (PCD) and Least Squares comutator (LSC) type approaches for  

3)  Additionally the similar structure of S and P, an order-of-magnitude analysis and a stiff-wave 
analysis of the momentum-magnetics sub-block carried out, suggested diagonal, comutator, and 

LSC approaches for   
  

 

4)  Analysis of the Spectrum for our New residual-based defect-correction primitive-variable MHD 
Preconditioner. 

 
 
 
 

Mathematical Analysis: 
•  Derivation of prec. operator above implies large number of  e-values equal to unity.  
•  A combined analytical and numerical study of spectrum carried out. Result indicated encouraging 

bound on eigenvlaue spectrum. Confirmed with numerical results.  

P = D � Y F̂�1Z

S = Cu �BF̂�1BT

Cyr, Shadid, Tuminaro, Pawlowski, and Chacon, “A new approximate block factorization preconditioner for 2D incompressible 
(reduced) resistive mhd,” SIAM Journal on Scientific Computing, 35:B701-B730, 2013 



Transient 2D Hydromagnetic  
Kelvin-Helmholtz Problem, SFE 

Re = 5e+3, S = 1e+3; MA = 1.5; CFLmax ~ 10 

Quad-core Nehalems with Infini-band  SNL Red Sky 

1024 cores 
6400X3200 mesh 
80 M unknowns 

1 core 
200X100 mesh 
80K unknowns 

Cyr, Shadid, Tuminaro, Pawlowski, and Chacon, “A new approximate block factorization preconditioner for 2D incompressible (reduced) 
resistive mhd,” SIAM Journal on Scientific Computing, 35:B701-B730, 2013 
 E. C. Cyr, J. N. Shadid, and R. S. Tuminaro, “Teko an abstract block preconditioning capability with concrete 
example applications to Navier-Stokes and resistive MHD,” in preparation , 2013. 

Comm – comutator; CSC – continuous Schur comp.; 
Diag. – diagonal approx of inverse in Schur comp. 



Weak scaling of FC-AMG and block preconditioners reasonable to 1024 cores 
Both suffer some performance degradation on this capacity machine (Redsky) 
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Extensions to 3D: Initial Approximate Block Preconditioning 
3D MHD Generator [Re = 500, Rem = 1, Ha = 2.5], SFE 

P̂ = D̂ � Y F�1Z

S = C �BF�1BT



New proposed residual defect-correction ABF strongly couples Alfven wave operators 
and reduces to three 2x2 blocks  

•  Order-of-magnitude analysis of structural error terms for ABF and previous work 
on 2D and 3x3 systems suggests diagonal, and comutator approaches should be 

workable in appropriate parameter regimes.  

•  Reduction to 2 problem types that are similar to what we have studied and 
developed Schur complement approaches for 

•  Saddle point systems 

•  Momentum-magnetics coupling 

•  Eigen-structure analysis to be carried out.  

P = FB � Y F̂�1
m Z



Extensions to 3D: Initial Approximate Block Preconditioning 
3D HMKH [Re =104, Rem=104, MA = 3; CFL ~0.125], SFE 

Block Preconditioners 
Split-3x3: 3x3  (SIMPLEC everywhere) 

Preliminary Split-4x4: 4x4 
 

Fully coupled Algebraic 
ML: Uncoupled AMG with repartitioning 

DD: Additive Schwarz Domain Decomposition 

ABF preconditioners scale algorithmically, more relevant for mixed and physics-
compatible discretizations  

FC-AMG – ILU(0), V(3,3); 3x3, 4x4 SIMPLEC and Gauss-Seidel 



Physics-based and Approximate Block Factorizations: Coercing Strongly Coupled Off- 
Diagonal Physics / Disparate Discretizations and Scalable Multigrid to play well together  

(w/ H. Elman and E. Phillips, UMD)  

Drekar – Element types implemented with 
*Intrepid (PI-Bochev, Ridzal, Peterson) 

u  P  

Mixed basis*: 

B  

Exact Penalty Formulation: (Q2/Q1 Navier-Stokes, Q2 B field; see e.g. Gunzburger)  

Phillips, Elman, Cyr, Shadid, Pawlowski, A Block Preconditioner for an Exact Penalty Formulation for Stationary MHD, submitted to SISC  

u  P  B  r  

Mixed basis*: 
Shotzau Formulation: (Q2/Q1 Navier-Stokes, B -edge, Q1 Lagrange Multiplier)  

Structure of preconditioner and Maxwell ABF   



N (2)
v = ⇢ (v0 ⌦ v0)� 1

µ0
(B0 ⌦B0) +

1

2µ0
(B0 ·B0)

N (2)
B = (�v0 ⌦B0 +B0 ⌦ v0)

Focus on Nonlinear contributions to flux terms: 
VMS induced cross term fluxes (sub-grid to resolved scales)  

VMS induces additional higher-order 
sub-grid scale interactions/fluxes 

Oberai and Sondak, Spectral 
VMS MHD Turbulence,  2012  

Used as VMS FE MHD turbulence model  
with  Assad Oberai, David Sondak  (RPI) 
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MHD Turbulence Modeling  
Taylor–Green MHD Vortex Decay: Re = 5100 (Drekar FE VMS Resistive MHD Model)   

With:    
Prof. Assad Oberai (RPI),  
David Sondak (DOE Office of Science Graduate Fellowship, recent Ph. D. – RPI)   



DNS: Pouquet et. al. (2010),  
Spectral VMS: Oberai and Sondak, 2012  



DNS: Pouquet et. al. (2010),  
Spectral VMS: Oberai and Sondak, 2012  



 
 
 

Conclusions 
•  Initial results for 3D Stabilized/VMS  FE Lagrange multiplier formulation for low-flow 
Mach number resistive MHD system is very encouraging (e.g. MHD generator, HMKH, geo-
dynamo physics, isotropic decay of MHD turbulence, soon a tokamak model..) 

•  Robustness, efficiency and scalability of parallel Newton-Krylov solvers is very good.    
  Preconditioning critical: 

•  FC-AMG (ML) for new 3D MHD systems continues to work very well (stabilized FE) 

•  Approx. block factorization results are encouraging for Lagrange multiplier 
system. Applies to more general discretizations (mixed interp., [edge, face, ..]) 
{Talks by Eric Cyr, Howard Elman, Edward Phillips} 

•  Initial scaling of NK/FC-AMG linear solver to near extreme-scale (256K, ½ Million 
cores) is encouraging, still more work for preconditioner setup.  

 
•  Preliminary results for integrated adjoint based error-estimation and sensitivity 
capabilities for resistive MHD is very encouraging. 

•  Next consider complex systems (e.g. tokamak, geo-dynamo, plasmoids) 

•  Explore application for laboratory experiments for dynamo studies. 

•  MHD turbulence modeling with full VMS  3D resistive MHD formulation appears very 
promising. Need to apply to more challenging  plasma physics systems (w/Oberai, Sondak – 
RPI).  
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The End 


