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Outline

» General Scientific and Mathematical/Computational Motivation
» Brief Overview of 3D Resistive MHD Equations and VMS/Stabilized FE formulation

* Motivation for Fully Implicit Newton — Krylov Solution Methods

» General comments
* Facilitating adjoint methods for error-estimation and sensitivity analysis

 Scaling of Fully-coupled AMG preconditioner (block prec. Discussed earlier)

* Results for Preliminary Simulations for Geodynamo Relevant Flow Mechanisms

* Rotating thermal convection in spherical geometry
* High Rayleigh number thermal convection (validation w/lab experiments)

« VMS MHD Turbulence modeling: Initial results Taylor-Green MHD Vortex Decay
» Conclusions
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Motivation: Science/Technology and Mathematical / Computational

Science / Technology Motivation:
Resistive and extended MHD models are used to
study important plasma physics systems

= Astrophysics: Magnetic reconnection, solar flares, ..

» Planetary-physics: Earth’s magnetospheric sub-
storms, Aurora, geo-dynamo, planetary-dynamos

= Fusion: Magnetic Confinement [MCF] (e.g. ITER),
Inertial Conf. [ICF] (e.g. NIF, Z-pinch)

Mathematical/Computational Motivation:

Achieving Scalable Predictive Simulations of Complex
Highly Nonlinear Multiphysics Systems to Enable Scientific
Discovery and Engineering Design/Optimization

Mathematical Approach - develop: N

= Stable and higher-order accurate fully-implicit formulations +Gore Gnfinement RegionBl, ~ . I %

= Stable and accurate spatial discretizations for complex +Magreticsands I (s )

geom., Options enforcing key mathematical properties +Edge Pedestal Regon— B S0 >ﬂ<

(e.g. positivity, div B = 0) + Scrape-offLayer 7 tubeee )

= Robust and efficient fully-coupled nonlinear/linear iterative e Antenna £ o
solution methods based on Newton-Krylov (NK) methods | -

‘Jm@ Y @vﬁi Heating

= Scalable and efficient preconditioners utilizjng multi-level i b w/@/w
(AMG) methods (Fu”y_cou pled AMG’ phySICS_based, approxl Fig. 2: Tllustration of the mteracting physical processes within a tokamak discharge.
block factorization)

=> Also enables beyond forward simulation & integrated UQ NN g
e AT

MHD Equilibrium Instability



Mathematical / Computational Motivation: Achieving Scalable Predictive
Simulations of Complex Highly Nonlinear Multiphysics Systems to Enable
Scientific Discovery and Engineering Design/Optimization

What are multi-physics systems? (A multiple-time-scale perspective)

These systems are characterized by a myriad of complex, interacting, nonlinear multiple
time- and length-scale physical mechanisms.

These mechanisms:

- can be dominated by one, or a few processes, that drive a short dynamical time-scale
consistent with these dominating modes,

- consist of a set of widely separated time-scales that produce a stiff system response,

- nearly balance to evolve a solution on a dynamical time-scale that is long relative to
the component time scales,

- or balance to produce steady-state behavior.

Our goal is to develop:

- Stable and higher-order accurate fully-implicit formulations,
* Robust fully-coupled nonlinear/linear iterative solution methods,
» Scalable and efficient parallel preconditioners,

* Integrated sensitivity and error-estimation to enable UQ capabilities.
Sandia
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Multiple-time-scale systems: Bifurcation Analysis of a Steady Reacting
H,, O,, Ar, Opposed Flow Jet Reactor (10 species, 19 reactions)

O,, Ar

Inlet Jet

Stagnation Zone
Exit Wall

Exit wall

Streamlines

Exit " Exit e ——
Exit \‘Nall * f * * f Exit \;Vall
Inlet Jet Temperature (Min. 300°K, Max 2727°K)
H,, Ar

——————

70 steady state reacting flow solves .
, OH (Min. 0.0, Max 0.177)

3000
g Erincion  Sible " R Approx. Physical Time scales (sec.):
N oin g . . . .
g 2000~ 'gnited branch  Chemical kinetics: 10-12 to 104
3  Unaiabio ! « Momentum diffusion: 10-¢
@ | .
- _ * Heat conduction: 10-°
2 * Mass diffusion: 10-°to 10+
= Stable - Convection: 10-°to 10

S R Ty - Diffusion flame dynamics: © (steady)

Oxygen mole fraction in upper Inlet
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Multiple-time-scale systems: E.g. Driven Magnetic Reconnection with a

blem (I

Magnetic Island Coalescence Pro
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* lon Momentum Diffusion: 107 to 103 °

- Magnetic Flux Diffusion: 107 to 103 ° Alfven Wave
* Whistler Wave
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Z-pinch Double Hohlraum Schematic (ICF concept)

Z Machine (Approximate Ranges)

22 MJ stored energy “WM

100ns current rise time for “Double hohlraum
26 MA peak electrical current

250 ns plasma shell collapse
and stagnation

10-30 ns X-ray power pulse
~350 TW peak power

Computational Stability Constraints:

A Recent Physics Review: K. Matzen, et. al., PoP 12, 055503 (2005)

*Double z-pinch: Vessy, et. al., PoP 14, 056302 (2007)

Simulations: C. J. Garasi et. al. , Physics of Plasmas, 11 (5), May 2004, pp. 2729-2737
Alegra: A. C. Robinson, W. J. Rider et. al., AIAA, 2008-1235

Hyperbolic Operators: At < Az/c
* Alfven waves

* Magneto-sonic waves

» Material transport

* Radiation transport

Parabolic Operators: At < (Ag;)2/D
* Magnetic Diffusion
* Heat Conduction

Hall Physics: Whistler waves

> At < (Az)?/(Vady) @m



3D Resistive MHD Equations

Resistive MHD Model in Residual Notation
dpv T=—-[P— g,u(v V)L + pu[Vv + Vv
Ry=—+4+V-[pvv—(T+Ty)]+202xVv—pg=0 ] 1
ot Tm = —BeB-—|B|I
o 210
_9p
R V- =0
d(pe 1
R. = (pe) +V-[pve+q —T:Vv—1|—VxB|*=0
ot o
0B T
Rp=— +V:|Bov-veB- L (VB—(VB)")+yI
ot o
Ry=V-B=0
R(u)=L(u)—f=0

* Divergence free involution enforced as elliptic constraint with a Lagrange multiplier.

(Dedner et. al. 2002; Codina et. al. 2006, 2011)
- Only weakly divergence free in FE implementation (stabilization of B -/ coupling )

» Can show relationship with projection (e.g. Brackbill and Barnes 1980) when 1st order-splitting is used.

* Issue for using C° FE for domains with re-entrant corners / soln singularities
Sandia
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3D Resistive MHD Equations: VMS Formulation

Resistive MHD Model in Residual Notation

0

R, — (§:)+V-[NV+PI—H]—pg:O
1 1
Ny =pvRv—-— —B®B+ —(B:-B)

5 1o 240
sza—':JrV-(pV):O = p[Vu+ Vu']

0B n e
RB:EqLV- NB—M—(VB—VB )+vI| =0 ANg=Bv-v®B

0

Ry=V-B=0

R(u)=L(u)—f=0

* Divergence free involution enforced as elliptic constraint with a Lagrange multiplier.
(Dedner et. al. 2002; Codina et. al. 2006, 2011)

Only weakly divergence free in FE implementation (stabilization of B -/ coupling )

» Can show relationship with projection (e.g. Brackbill and Barnes 1980) when 1st order-splitting is used.

* Issue for using C° FE for domains with re-entrant corners / soln singularities
(Costabel et. al. 2000, 2002, Codina, 2011) Sandia
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Briefly Following Variational Multiscale Method (Hughes et. al.) Develop FE VMS MHD model

Let 11
W

uh + u’ (overlapping sum decomposition of solution )
w' T+ w (weighting function )

. h / .
Consider, 1~ resolved/coarse scales, and 1 unresolved/sub-grid scales

Following the VMS development the coarse and sub-grid scale equations become
Aw", u") + (L'wh u)g = (W', f) vw' e W
(w',Lu) = — (W, L(u") — f) = — (w’,R(uh)) vw' € W'

» Unresolved scales are driven by PDE residual of resolved scale solution.
* Formally the exact solution satisfies this representation
« Conceptually - resolved scale PDE residual “measures” unresolved or sub-grid scale effects

(Contributes to both accuracy and stability. Hughes et. al. CMAME, 1998, Codina CMAME,
2000, Hughes et. al. Enc. Comp. Mech. 2007 )

It is further assumed that the unresolved (sub-grid) scales are modeled by
/ h
u = —7|R(u")
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Focus on Nonlinear contributions to flux terms:
VMS induced cross term fluxes (sub-grid to resolved scales)

./\/;(,1) _ ,0( v ® Vh)

N1(31) _ (_Vh 2B 4+ B ® Vh)
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Summary of Initial VMS/Stabilized FE Weak form of Equations
for Low Flow Mach Number MHD System;

Governing Stabilized FE Residual (following Hughes et. al., Shakib - Navier-Stokes;
Equation Salah et. al. 99 & 01, Codina et. al. 2006 —Curl form magnetics )

Momentum F. :/q) - R dQ +Z/ PTmRm @ u V@dQ\—f—Z/ 7p(V - ®)RpdQ
Q Qe e VS

Total Mass F, =fq)RP dO +
Q

Z/ PTm VP - la(gz)—|—V-[pv®v]—|—VP—V-H—J><B] ds2

Thermal
Energy Fy = [OR,dQ+]Y [pC,t,(ue V)R QL [v,VD*CVTdQ
Q e g_ge e Qe

Magnetics: |, —/@ Rp dQ+ / (Rg ® ®R )-V<I>dﬂ+2/ (V- ®)(V-B) dQ
Induction Y B 26: g BUBORT UGB - g ¥
F\I,:/@Rw dQ+Z/ 5V®- Rp_d
Divergence 2 = - ———
Constraint Z/ 5o 24V . ueB-Bau— L (VB — (VB)T)] + V¢]dQ2
— Jae ot £40
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Why Newton-Krylov Methods?

/ Newton-Krylov \

Direct-to-steady-state Fully-implicit transient

Stability, Accuracy and Efficiency

Robustness, Convergence and Flexibility

- Stable (stiff systems)
 Strongly coupled multi-physics often

requires a strongly coupled nonlinear - High order methods
solver - Variable order techniques with error-control
- Quadratic convergence near solutions - Can be stable, accurate and efficient run at

the dynamical time-scale of interest in

multiple-time-scale systems (See e.g. Knoll et. al.,
Brown & Woodward., Chacon and Knoll, S. and Ober, S. and
Ropp)

- Enables continuation, bifurcation,
stability analysis, etc.

Sandia
National
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Why Newton-Krylov Methods?




Predictive computational analysis and uncertainty quantification (UQ) for
multiphysics has many open challenges

Challenges Include:

* Uncertainties arise from: discretization errors, boundary and initial conditions, model
parameters, physical parameters,

« Analysis and design often focus on a set of quantities of interest (Qol) rather than the
entire state (e.g. partial differential equation (PDE) solution)

» The stability, error, uncertainty propagation and sensitivity characteristics for Qol can
be significantly different from the PDE solution itself

We are addressing these challenges for studies of a moderate number of Qols dependent
on a large-number of parameters using adjoint-based methods to accurately and
efficiently compute numerical error estimates and to conduct sensitivity analysis for Qol

Adjoint methods have been well studied and demonstrated for single-physics parabolic PDEs.
[e.g. Rannacher, Oden, C. Johnson, Estep, Bangerth, Barth, Suli, Braack, .....]




Predictive computational analysis and uncertainty quantification (UQ) for
multiphysics has many open challenges

Forward problem: L(u;p) = f(p)
Adjoint problem: (£'(u;p))*t = d,g(u, p).
Adjoint Sensitivities: d,9(U;p) = (¢, d,R(u;p));  Error Estimate: g(u; p) - g(U;p) % (4, R{u; p))

Adjoint methods for stabilized FE methods:

Context of adjoint methods in optimization
Collis, S., and Heinkenschloss, M. Technical Report TR02-01, Rice University 2002.

Error estimation for SUPG
Houston, P., Rannacher, R., and Suli, E. CMAME (2000)
Rannacher, R. CMAME, 1998

Cyr, Shadid, Wildey, Approaches for adjoint-based a posteriori analysis
of stabilized finite element methods, to appear SISC

We have studied variational adjoints, discrete adjoints and alternate error representations for
stabilized methods in transport and Navier-Stokes (steady and transients)



Initial Adjoint Error Estimate Study for Resistive MHD:

Analytic Hartmann Flow

GoL? cosh|Ha y/L
= Qol (1): Average Uy = — 0 _ [ y/ ])
. , 1 1 u Ha tanh[Ha) cosh[H a]
Fluid velocity (Vx)  _ _/ V. dy
- X
2/ B — _GOLz,uO 1y 1 sinh[Ha y/L])
. ‘ viun Ha L tanh[Ha] cosh[Hal
= Qol (2) Magnetics:
Average of half-domain induced field in = S Rey = ==
streamwise direction (Bx) TN EEE /\ VI
1 “,;‘;/ \:i;:; : ,Z k . R€ - )
D Yy \ . \\\/ ,u,
Bw — / Bw dy y f; §‘1‘ =: A Ha _ %
O 0 0.5 le 15 2 0 0.5 y}L \/m
Qol: Flow Rate / 2 Qol: Bxavg [0,1]
3.150E-01 4.000E-02
3125601 | - *'\E\' - .
3.750E-02
3.100E-01
5
o
3.075E-01 S 3.500E-02
3.050E.01 ®Drekar Qol: Flow rate #Drekar Qol: Bxavg [0,1]
: —Exact Qol: Flow rate 3.250E-02 —Exact Qol: Bxavg [0,1]
®Drekar Qol: Flow rate + Adj. Err. Est. -250E-
3.025E-01 rekar Qol: Flow rate + Adj. Err. Es #®Drekar Qol: Bxavg [0,1] + Adj. Err. Est.
3.000E-01 T ' 3.000E-02 e i
1.E-02 1.E-01 1.E+00
h=ly/Ny 1.E-02 1.E-01 1.E+00
h=Ly /Ny




Relative Error

Qol: Kinetic Energy

1.25E-01

1.20E-01

1.15E-01

1.10E-01 [ ®=Drekar Qol: K.E.
—Exact Qol: K.E.
1.05€-01 #®Drekar Qol: K.E. + Adj. Err. Est.

1.00E-01
1.E-02

Relative Error in Qol: Kinetic Energy

#®Adj. Est. Rel. Err.
—True Rel. Err.

Adj. Est. Rel. Err. =0.3 x20217

Relative Error

Comparison of Vectar Potential and Anaiytic Profiles.
Gp/ax = %0

Qol: Induced Magnetic Energy

®Drekar Qol: Ind. M.E. \

—Exact Qol: Ind. M.E.
®Drekar Qol: Ind. M.E. + Adj. Err. Est.

Relative Error in Qol: Induced Magnetic Energy

/

#®Adj. Est. Rel. Err.

Adj. Est. Rel. Err. = 1.67 x2-0527




Initial Adjoint Sensitivity Analysis for Resistive MHD: MHD Duct Flows

E.g. Analytic Hartmann Flow — accuracy of derivatives

= Qol (1) Flow: Average
Fluid velocity (Vx)

_ 1 [t
V — 5/ Vx dy V;L yiL
-1 L
Re = ﬂ m V_
7 n
Ha = %
NG
E.g. Mesh Simulation: 40 elements in duct cross-section
Physical Parameter Re=1;Rem=1,Ha=1; Re =875; Re =43.7.; Ha=44.7;
Analytic Adjoint Rel. Err. | Analytic Adjoint Rel. Err.
Pressure Gradient (GO) -0.313035 | -0.312884 0.048% | -4.37214 -4.36929 0.065%
Dynamic Viscosity ( ,LL ) | -0.294487 | -0.294383 0.04% -447.214 446.529 0.15%
Density ( 0) 0.0 -1.2e-7 | ——-- 0.0 1.1e-3 | -—--
Resistivity (77) 0.018548 | 0.018501 0.2% 21.3607 21.3623 0.01%
Applied Mag. Ind. (BO) -0.037097 -4.27214




Initial Adjoint Sensitivity Analysis for Resistive MHD: MHD Duct Flows
E.g. Analytic Hartmann Flow — accuracy of derivatives

1
Q 2( ) Q 2Ho

E.g. Mesh Simulation: 40 elements in duct cross-section

=  Qol (1): Total Energy: Kinetic + Magnetic
Re = 884; Rem = 177; Ha = 90;

1

(B2 + B;)d

Physical Parameter Analytic Uniform Mesh Non-uniform Boundary
Layer Mesh
Drekar / Rel. Err. | Drekar/ Rel. Err.
Adjoint Adjoint
Qol: T.E. 21.9318 22.29552 1.66% 21.96336 0.15%
Qol Derivatives:
Pressure Gradient (GO) -20.9318 -21.4356 2.41% -20.9753 0.21%
Dynamic Viscosity ( lu ) -3972.97 -4145.97 4.35% -3979.72 0.17%
Density (p) 0.0 1.1e-1 | —-- 3.0e-3 |-
Resistivity (77) 778.574 779.613 0.133% | 779.988 0.18%
Applied Mag. Ind. (B,) -41.4632
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Initial Adjoint Error Estimation Study for Resistive MHD: 3D MHD Duct Flows =—___
E.g. 3D MHD Generator (Re ~ 2500, Re, ~ 10, Ha = 5) '

pV L VL _ BoL
=  Qol (1): Average Fluid velocity (Vx) e = BT Rem = Ha= N
o _ _JoVed
Volume(2)
" state: Re ™~ 2500, Re, ~ 10, Ha =5;
= Adjoint Error estimation, take reference solution as 400x200x200 element mesh
Nx x Ny x Nz (#unknowns) | Qol: V' Err. Est. Pred. Qol | Est. Rel. Rel. Err.
Err. Ref.”
20x10x10 (16K) 5.63814 0.4664 6.1045 8.3% -3.5%
40x20x20 (128K) 5.40236 0.1154 5.5178 2.1% 0.8%
80x40x40 (1M) 5.41037 0.0159 5.4263 0.3% 0.7%
160x80x80  (8M) 5.44320 0.0040 5.4472 0.07% 0.09%
400x200x200 (128M)* 5.44831 - - - -




Initial Adjoint Error Estimation Study for Resistive MHD: 3D MHD Duct Flows =—___
E.g. 3D MHD Generator (Re ~ 2500, Re, ~ 10, Ha = 5) '

Ro_ PVL. VL . _ Bl
Qol (1) Flow: Induced Magnetic Energy L Rem = o T m
LT, =t (B2 + B2)dQ
210 Ja

State: Re ~ 2500, Re,, ~ 10, Ha =5;

Adjoint Error estimation, take reference solution as 400x200x200 element mesh
Nx x Ny x Nz (#unknowns) | Qol: M.E. | Err. Est. Pred. Qol | Est. Rel. Rel. Err.

(2.0*10%) (2.0*10%) (2.0*10%) Err. Ref.*

40x20x20 (128K) 6.4768 0.1298 6.6085 2.0% 10.2%
60x30x30 (432K) 6.5999 0.2962 6.8961 4.5% 8.5%
80x40x40 (1M) 6.8876 0.2239 7.1114 3.25% 4.51%
100x50x50  (2M) 7.0632 0.1136 7.1769 1.50% 2.07%
160x80x80  (8M) 7.1256 0.0748 7.2004 1.05% 1.21%
400x200x200 (128M)* 7.2128 - - - -




Initial Adjoint Error Estimation Study for Resistive MHD: 3D MHD Duct Flows =—___
E.g. 3D MHD Generator (Re ~ 2500, Re, ~ 10, Ha = 5) '

Qol: Avg. Flow Rate

(%, ]
u Yy
i) (4]
»
L
Qol: 2 * Induced Magnetic Energy

VL . VL . Bl
Qol (1): Average Fluid velocity (Vx) e = u Rem = n = N
T Jo, Vad©
~ Volume(92)

Qol (2): Induced Magnetic Energy

ME. = — (B2 + B%)d
210 Jo
State: Re ™~ 2500, Re, ~ 10, Ha = 5;

Adjoint Error estimation, take reference solution as 400x200x200 element mesh

Average Velocity Induced Magnetic Energy
5.55 7.5E-04
&
5.5 7.0E-04 \/
6.5E-04
=Reference
Qofl: Drekar

6.0E-04
+Qol: Drekar +Qol (predicted): Drekar + Adjoint Err. Est.
Qol (predictied): Drekar + adjoint Err. Est.

+Reference

5.35 5.5E-04

5.0E-04

53
0.005 0.05

0.005 0.05




Initial Adjoint Sensitivity Analysis for Resistive MHD: 3D MHD Duct
Flows E.g. 3D MHD Generator (Re ~ 2500, Re , ~ 10, Ha = 5)

= Qol (1) Flow: Average

1

Fluid velocity (Vx) V:/ Vedy

-

E.g. Coarse Mesh Simulation: N, x N, x N,: 140x20x20 mesh

. Reference state: P = 1, U = 0.002, GO = 0.31, n = 1, BO = 0.2236

u Parameters in simple numerical sensitivity study (+- 1%, 5%, 10%) U, GQ;

) <
= Local linear Taylor series model (e.g. surrogate model for sampling UQ) ¢=ad+ %(p —p) + HOT

Physical Parameter
Dynamic Viscosity ( (1 )

Qol computed from
Drekar

Qol Estimated from
Adjoint Sensitivity & Linear
Model

Relative Error

0.00202 (1+1%) | 4.61750 4.61703 0.010%
0.00198 (U4-1%) | 4.69811 4.69784 0.006%
0.00210 (U+5%) | 4.46483 4.45541 0.211%
0.00190 ([4-5%) | 4.86876 4.85945 0.191%
0.00220 (J4+10%) | 4.28845 4.25338 0.82%
0.00180 (14-10%) | 5.10192 5.06148 0.79%




Initial Adjoint Sensitivity Analysis for Resistive MHD: 3D MHD Duct

Flows E.g. 3D MHD Generator (Re = 2500, Re , = 10, Ha = 5)

= Qol (1) Flow: Average

Fluid velocity (Vx) V:/

1

-

Vedy

. Reference state: P = 1, U = 0.002, GO = 0.31, n = 1, BO = 0.2236

u Parameters in simple numerical sensitivity study (+- 1%, 5%, 10%) U, Go;

) <
= Local linear Taylor series model (e.g. surrogate model for sampling UQ) : ¢=a¢+ %(p —p) + HOT

E.g. Coarse Mesh Simulation: N, x N, x N,: 140x20x20 mesh

Physical Parameter Qol computed from | Qol Estimated from Relative Error
Pressure Gradient ((5) | Drekar Adjoint Sensitivity & Linear
0
Model

0.3131 (G0+1%) 4.70082 4.70288 0.04%

0.3069 ((G(-1%) | 4.61401 4.61198 0.04%

0.3255 ((G+5%) | 4.87404 4.88466 0.22%

0.2945 (GO-5%) 4.43997 4.43020 0.17%

0.341 (Go+10%) | 5.14753 5.11189 0.69%

0.279 ((G5-10%) | 4.22159 4.19842 0.55%




Qol: Induced Magnetic Energy

#Drekar Qol: Ind. M.E.
—Exact Qol: Ind. M.E.
#Drekar Qol: Ind. M.E. + Adj. Err. Est.




Why Newton-Krylov Methods?

Fully-implicit transient

/1 N\

Stability || Accuracy ||Efficiency

Direct-to-steady-state

i \\
Convergence Design
Properties | | | Optimization
Characterization \
Complex Soln. Spaces




Preconditioning
Three variants of preconditioning

/7

/771777

T 11717
o

1

1. Domain Decomposition (Trilinos/Aztec & IFPack)
* 1 —level Additive Schwarz DD

7
21747 Hi

7'!..'.

L117
4

L7
777

7
45

o

* ILU(k) Factorization on each processor
(with variable levels of overlap)

%
20
&

&

* High parallel efficiency, non-optimal
algorithmic scalability

PR

S ey
Tokamak Parallel ' L[]
/Partition (64 Procs.)

2. Multilevel Methods for Systems: ML pkg (Tuminaro, Sala, Hu, Siefert, Gee)
Fully-coupled Algebraic Multilevel methods

« Consistent set of DOF-ordered blocks at each node (e.g. stabilized FE)
» Uses block non-zero structure of Jacobian

« Aggregation techniques and rates can be chosen
« Jacobi, GS, ILU(k) as smoothers

« Can provide optimal algorithmic scalability

3. Approximate Block Factorization / Physics-based (Teko package)

» Applies to mixed interpolation (FE), staggered (FV), physics compatible
discretization approaches using segregated unknown blocking

» Applied to systems where coupled AMG is difficult or might fail
« Can provide optimal algorithmic scalability

Sandia
National
Llaboratories



SFE Initial Scaling Studies for Cray XK7 AND BG/Q.
3D MHD Generator [Re = 500, Re,, =1, Ha = 2.5]

Weak Scaling: Linear Iterations (Ha=2.5)

800

~— FC AMG (BG/Q) @T’

700}| = =« DD ILU(1),ov=1 (Titan) )/ 4
* -+« FC AMG (Titan) ’
4
& 60011.8 Billion max unknowns ) 1
A 14K unknowns per core (Titan)
2 500} ‘ 1
H ’
[}
E 4
g a00f ) 1
S
e
4
2 300} R .
© .
[0} ’
5 200} e 1
(256
100} -7 - g
22— Ga cores)(513 Gz (5o
> Wy #
0 == e =T I L
10° 10° 10’ 108 10°

MHD Recently run on 2 M cores of BG/Q

50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

Number of Unknowns
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Number of Unknowns

1010

4 Billion element/unknown Solution of Poisson Eq. 1M cores

[Preliminary strong scaling of Krylov linear solver + preconditioner

(ML: FC - AMG), Tuminaro, Hu, Siefert et. al.]

Strong Scaling: 3D Poisson Problem
4.1 Billion DOF; Sequoia BG/Q
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# MPI Processes
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Initial Scaling Study for Cray XK7.
3D Hydromagnetic Kelvin-Helmholtz Instability
[Re =104, Re,, =104 M, =3; CFL,_, ~51]
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500e+00 g
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Weak Scaling: Linear Iterations (Re =10* ,Re,, =10* ,M, =3) Weak Scaling: Linear Solve Time (Re=10* ,Re,, =10* ,M, =3)
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Scaling for SFE Lagrange Multiplier Formulation.
3D Island Coalescence [S =103, dt = 0.1]

Weak Scaling Study: 3D Island Coalescence < M. current

) . . . . | 1.000e+01

Driven Magnetic Reconnection Problem N 1500e+00

40 ‘ i ' 3506ex00
e+

<=Avg. Time (sec.) / Time Step

Work

35 “-Avg. Gmres Steps / Time Step
30
Scaling with Lundquist No.
25
- 32K unknowns / core Lundquist No. S Newt. Steps / dt Gmres Steps / dt
20 — 1.0E+03 1.36 5.2
5 - 5.0E+03 1.43 5.7
1.0E+04 1.51 6
10 s 2096 cores 5.0E+04 2 9.8
1 core 8 cores 64 cores cores = 1.0E+05 2 12
5 —_— r 5.0E+05 2 8.4
256x256x256 1' e > 8' ;
0 L L L L aaaal L L i a a1l L L Ll sl L L L raaal L L La i) . .
1.0E+04 1.0E+05 1.0E+06 1.0E+07 1.0E+08 1.0E+09 BDF2 NK FC-AMG ILU(fiII=0,ov=1), V(3,3)

Number of Unknowns

SNL Capacity Cluster: Chama
Mesh: 128x128x128, dt = 0.0333.
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Highlight: Scalable FC-AMG and ABF Preconditioning for resistive MHD
Summary of Structure of Linear Systems Generated in Newton’s Method

Resistive MHD Model in Residual Notation
2
Ru:(%ZlﬂLV-[Pu®u—(T+TM)]+2/OQ><u—pg:0; T=—(P+§M(V°u))1+u[VU+VuT]
1 1
15 - - 2
RP:a—i—l—V-(pu):O T MOB®B QMOHB” I
Re—MjLV-[pve+q]—T:Vv—77||iV><B||2:O
at Mo
0B
RB:W+V.[u®B—B®u—ME(VB—(VB)T)Jr@bI]:O BZV@ZA
0 -> _ %% . ERURV 0 _

We consider a primitive variable discretization for incompressible, low flow-Mach number
approximations, anelastic approx. and low flow-Mach number compressible flows

General Structure of Newton System:

_F Bg—, Z j—
_|B y 0
JAx=—-F J=|" ¢
Y O D
Note: For non-stabilized form L

Incompressible, low-flow Mach
approximation Cu — ()

Elliptic constrained generalized
Lagrange multiplier C'g = ()



Initial Scaling Studies for Cray XK7 AND BG/C

SFE, Q1 interpolation, | |[[ |[[ |[[ | ; C, and Cg weighted
LaplackanBnatrix;

I

Weak Scaling: Linear Iterations (Ha=2.5)
— FC AMG (BG/Q) (16K}, ~— FC AMG (BG/Q) ‘A
700l| = -+ DD ILU(1),ov=1 (Titan) ' , 140}| * -+ DD ILU(1),0ov=1 (Titan) " | ~20x E
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Weak Scaling: Linear Solve Time (Ha=2.5)
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sl[— lIdeal] Strong Scaling: 3D Poisson Problem
[Preliminary strong scaling of 4.1 Billion DOF; Sequoia BG/Q
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1 preconditioner
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Sandia
Shadid, Pawlowski, Cyr, Tuminaro, Chacon, Scalable Implicit 3D Resistive MHD with . . . @ National .
Stabilized FE Methods and Fully-coupled Multilevel Preconditioners, in preparation (DOE/ORNL Titan Cray XK7: Joule Metric) Laboratories



Scaling for Lagrange Multiplier Formulation.
3D Island Coalescence [S = 103, dt = 0.1], SFE

(Scaling of total time with I/O included)

Work

Weak Scaling Study: 3D Island Coalescence
Driven Magnetic Reconnection Problem

current

1.000e+01

40 i |
2.500e+00
=<=Avg. Time (sec.) / Time Step 5.0006+00
35 “*Avg. Gmres Steps / Time Step -
30 32K unknowns percore "
25 Scaling with Lundquist No.
20 Lundquist No. S Newt. Steps / dt Gmres Steps / dt
1.0E+03 1.36 5.2
15 5.0E+03 1.43 5.7
10 1.0E+04 1.51 6
1 core 8 cores 64 cores 5127cores 4296 cores 5 0E+04 2 98
_‘.———D/H =
> 256x256x256 1.0E+05 2 12
I e e 5.0E+05 2 8.4
1.0E+04 1.0E+05 1.0E+06 1.0E+07 1.0E+08 1.0E+09 1.0E+06 2 8.4

Number of Unknowns

Analysis (coarse graph-based aggregation):
 Sala; Math. Modeling and Numer. Anal., 2004
* Sala, Shadid, Tuminaro; SIAM J. Matrix Analysis, 2006

Numerical Studies for NS, TR and MHD Systems:

» Shadid et. al. CMAME., 2006

* Lin, Sala, Shadid, Tuminaro; IJINME 2006

e Lin, Shadid, Tuminaro, Marzio Sala, IJNME 2010

* Lin, Shadid, et, al. IJNMF 2010

» Shadid, Pawlowski, Banks, Chacon, Lin, Tuminaro, JCP 2010

* Lin, IINME, 2012

* Cyr, Shadid and Tuminaro, JCP 2012

» Shadid, Pawlowski, Cyr, Tumniaro, Chacon, 2014, in preparation

BDF2 NK FC-AMG ILU(fill=0,ov=1), V(3,3)
SNL Capacity Cluster: Chama
Mesh: 128x128x128, dt = 0.0333.

Sandia
National
Laboratories



Physics-based and Approximate Block Factorizations: Coercing Strongly Coupled Off-
Diagonal Physics / Disparate Discretizations and Scalable Multigrid to play well together

Physics-based (Parabolization): Schur Complement, (Approximate) Block Factorization:
Ol = 0,V , 040 = Jyll. I —AtC, | Jumt!] u" — AtC v™
”H+1 —u" 4 At?),.zw”“ v”—f—l — " 4+ At?)ru”“. —Ath 1 Un+1_ o™ — Atcmun
: ] Dy U I upy' | [ Dy—up,'L o I o0
(I A0y, ‘\ll“+ =u" + Atr)xl?” L D, - 0 I i 0 D, Dz—lL I

The Schur complement is then
D, —UD;'L = (I — At*C,C,) = (I — At*0,,)

Result: Stiff (large-magnitude) off-diagonal hyperbolic type operators (blocks)
are now combined onto diagonal parabolic operator (block).

Scalar equation multigrid can now be used effectively on this operator

Our General Approach:
Physics-based: Understand stiff physics, develop asymptotic analytic analysis to simplified system(s)
while approximating critical operators to maintain stiff coupling in approximate Schur complement(s)

ABF: Understand stiff physics, consider spectral properties of operators,
develop approximate block factorization(s) to simplified system(s) while approximating critical
operators to maintain stiff coupling in approximate Schur complement(s)

Sandia
Laboratories



Step back to CFD for a moment to

Introduce block approximate factorization (physics-based) preconditioners

Sandia
National
Laboratories



3D Plane Jet; Kelvin-Helmholtz Unstable with Secondary Cross-stream Instability;
VMS LES Model; Re =108

Time = 3.93929

1.000e+00
5.000e-01
0.000e+00
-5.000e-01
-1.000e+00




Kelvin-Helmholtz

Linear lterations: Re=‘5000 with SUPG-PSPG

Transient

140 — AggC

e—e DD
1200 m—a PCD |

4—¢ SIMPLEC

U;lOO*
—
L
— 80,
—
O
()
£ 60f
—

1024 cofes
40r1 1 core \
N
0 I I I
10* 10° 10° 10’

Number of unknowns

G'Eime/NonIinear step: Re=5000 with SUPG-PSPG

— AggC
e—e DD
50| m—m PCD
¢—¢ SIMPLEC
o
@ 40
d
wn
c
= 30
=
S~
()
S 20}
= 1024 cores
\
1 core N\
10
\ = —b
0 4 ‘5 ‘6 ‘7 8
10 10 10 10 10

Number of unknowns

Kelvin Helmholtz: Re=5000, Weak scaling at CFL=2.5
* Run on 1 to 1024 cores
* Pressure - PSPG, Velocity - SUPG(residual and Jacobian)

Sandia
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Now Return to MHD

Block approximate factorization (physics-based) preconditioners

Sandia
National
Laboratories



Physics-based and Approximate Block Factorizations: Coercing Strongly Coupled Off-
Diagonal Physics / Disparate Discretizations and Scalable Multigrid to play well together

E.g. Primitive-Variable MHD a New Nested Schur Complement (2D vector potential)

1) Fully-implicit enables solution of incompressible, anelastic, low-Mach approximation,
low-flow Mach compressible systems. However physics coupling is challenging

. T

e.g. Mixed FE, BT Z e.g. Stabilized FE, or |F B' Z
Staggered FV forother| B (0 0 compressible B C 0
than compressible |V 0O D Y 0O D

2) Consider Block LU factorization

F BT Z I F BT A

B C 0| =|BF! 1 S —BF'Z

Y 0 D YF-! —_YFIBTS-t | P
where S=C—-BF'BT (C1 doesn’ t need to exist)

P=D-YF Y I+BTS'BF1)Zz

» 3x3 system leads to embedded Schur complements (embedding is independent of ordering)

* How are S and P to be effectively approximated?

» Use alternate approximate block factorizations (ABF) National

- Straight forward approach: approximate operators in Schur complement to produce diag@igggses
Laboratories



Overview of more Detailed Mathematical Analysis of Residual-based
Defect-Correction ABF Preconditioner
1) Developed a new residual defect-correction factorization procedure that strongly couples
operators producing the Alfven wave and reduces to two 2x2 blocks for the ABF:

MiZi=b; My&—%)=(b— J%) ;leads to this ABF &= M, (M, + My — J)M{'b

F BT Z F zZ\ [F? F BT F BT z
B C 0 == I I B C = | B C
Yy 0 D Y D I I Y |YF IBT] D
2) Our previous extensive work for NS Schur complement lead to evaluated and developed diagonal

(Pressure Proj., SIMPLE(R)), Press-Conv-Diff (PCD) and Least Squares comutator (LSC) type
approaches for

S=0C,— BF BT

Q

Pressure Projection: S = —BF BT ~ —B(At)IBT ~ —(At)L

Press-Conv-Diff (PCD): S = —BF 'BT ~ —F,;'BBT ~ —F,'L

Q

See e.g. EIman, Howle, Shadid, Shuttleworth, Tuminaro,” A Taxonomy of Parallel Mulit-level Block m
Preconditioners for the Incompressible Navier-Stokes Equations”, JCP, v. 227, 3, pp 1790 - 1808, 2008 Laboratores



Overview of more Detailed Mathematical Analysis of Residual-based
Defect-Correction ABF Preconditioner

1) Developed a new residual defect-correction factorization procedure that strongly couples
operators producing the Alfven wave and reduces to two 2x2 blocks for the ABF:

MiZi=b; My&—%)=(b— J%) ;leads to this ABF &= M, (M, + My — J)M{'b

F BT Zz F Z1 [F-1! F BT F BT VA
B C 0| = I I B C — |B C
Yy 0 D Y D I I Y |YF IBT] D

2) Our previous extensive work for NS Schur complement lead to evaluated and developed diagonal
(SIMPLE), Press-Conv-Diff (PCD) and Least Squares comutator (LSC) type approaches for

S=C,—BF'BT
3) Additionally the similar structure of S and P, an order-of-magnitude analysis and a stiff-wave

analysis of the momentum-magnetics sub-block carried out, suggested diagonal, comutator, and
LSC approaches for

P=D_-YF 17

4) Analysis of the Spectrum for our New residual-based defect-correction primitive-variable MHD

Preconditioner.
-1

-1

F BY ZzZ|[F B? F F Z I 0 0
B C o0o||B C I I =10 I 0
Y 0 D I I| |y D K. K, I-YF'BY'S 'BF-lzp~!

Mathematical Analysis:
« Derivation of prec. operator above implies large number of e-values equal to unity.
+ A combined analytical and numerical study of spectrum carried out. Result indicated encouraging
bound on eigenvlaue spectrum. Confirmed with numerical resulits. Sandia
National
() .

Cyr, Shadid, Tuminaro, Pawlowski, and Chacon, “A new approximate block factorization preconditioner for 2D incompressible
(reduced) resistive mhd,” SIAM Journal on Scientific Computing, 35:B701-B730, 2013



Transient 2D Hydromagnetic
Kelvin-Helmholtz Problem, SFE
Re = 5e+3, S =1e+3; M, =1.5; CFL_, ~ 10

Linear lterations: At=2.50e-03

Time/Nonlinear Step: At=2.50e-03

200

K 60
— AggC-ILU,, , —  AggC-ILUj,
-- DD / -- DD
Y4
50f -
*— SIMPLEC 1024 cores /' *— SIMPLEC
150} == BlkUp 6400X3200 mesh R 1 i =—=a BlkUp
+—¢ Split Comm 80 M unknowns 8‘ +— Split Comm
N — Split CSC T 401 — Split CSC 1
g — Split Diag , E v Split Diag
“ 100r . {1 2 30} ]
© ’ =
g /, w0
’ N—
= ]
— 1 core ,', € 20f |
200X100 mesh e =
50} 80K unknowns R —
\ 10t —_— h
0 4 !—T ‘ 6 ‘ 7 8 0 4 ‘ 5 ‘ 6 ‘ 7 8
10 10 10 10 10 10 10 10 10 10
Number of Unknowns Number of Unknowns
Comm — comutator; CSC — continuous Schur comp.; Quad-core Nehalems with Infini-band SNL Red Sky

Diag. — diagonal approx of inverse in Schur comp.

Cyr, Shadid, Tuminaro, Pawlowski, and Chacon, “A new approximate block factorization preconditioner for 2D incompressible (reduced)

resistive mhd,” SIAM Journal on Scientific Computing, 35:B701-B730, 2013 Sandi

E. C. Cyr, J. N. Shadid, and R. S. Tuminaro, “Teko an abstract block preconditioning capability with concrete National
example applications to Navier-Stokes and resistive MHD,” in preparation , 2013. Laboratories



Extensions to 3D: Initial Approximate Block Preconditioning
3D MHD Generator [Re = 500, Re,, =1, Ha = 2.5], SFE

5.0006-02
2500e-02
0.000e+00

-2.500e-02
-5.000e-02

F BI Zz o5
F BT Z
g= |5 O =|B, C
Y D BT s
B, Cg F o Z][F F BT S=C—-BF BT
~ Mspiit = I I B C > A —
TR Mepa =] L ; | P=D-vFz
300 Iterations vs Unknown Count (B=3.3540) 180 Solve Time vs Processor Count (B=3.3540)
+—+ Block Split +—+ Block Split
~ FC AMG 160| +=—+ FC AMG
250 +— |LU(0) ov=1 #=— |LU(0) ov=1
140
2
2200 120}
o
2
= » 100
3 150 v
£ £
€ E 80f
>
£ 6ol
é 100 (2 cores) 1
1024 cores a0k
0 | ) ) 0 M |
10* 10° 10° 10’ 108 10* 10° 10° 107 108
Number of Unknowns Number of Unknowns

Weak scaling of FC-AMG and block preconditioners reasonable to 1024 cores
Both suffer some performance degradation on this capacity machine (Redsky)

Laboratories



New proposed residual defect-correction ABF strongly couples Alfven wave operators

and reduces to three 2x2 blocks

Mz =b; My@Z—2)=(b—JZ) ;leads to this ABF & = M, (M, + M, — J)M;'b

F, BT 0

B Cp 0 0] _
0o Fg BT|7

0 0 B Cy,

0 0

I 0 O

0 I

0 0 I
BT
Cp

YF,nTLlBT

0

F—l

0

0 0
0

F, BT 0 0
B Cp 0 0

0 Fg BT
0 B Cy

* Order-of-magnitude analysis of structural error terms for ABF and previous work
on 2D and 3x3 systems suggests diagonal, and comutator approaches should be
workable in appropriate parameter regimes.

* Reduction to 2 problem types that are similar to what we have studied and
developed Schur complement approaches for

* Saddle pointsystems g = — (Op — BE-1BT
m

SB =C¢—BF§IBT

« Momentum-magnetics coupling P — FB — Y}A?’n_,blZ

« Eigen-structure analysis to be carried out.

Sandia
Laboratories



Extensions to 3D: Initial Approximate Block Preconditioning
3D HMKH [Re =104, Rem=104, MA = 3; CFL ~0.125], SFE

FC-AMG - ILU(0), V(3,3); 3x3, 4x4 SIMPLEC and Gauss-Seidel

lterations vs Unknown Solve Time vs Unknown Count
200 ‘ ‘ 2048 cores 20 ‘ ‘ ‘

»—x ML x ML

— LU — LU
n »—  Split-3x3 »—+  Split-3x3
S 150|| = Split-4x4 1s|| = Split-4x4
o
g
= @
-g 100} GgJ 10}
— = (256 cores]
;.5
GLJ 50+ 5k
Z

—-;é ///
0 = : ‘ : 0 4 ‘5 ‘6 ‘7 8
10* 10° 108 10’ 108 10 10 10 10 10
Number of Unknowns Number of Unknowns
Fully coupled Algebraic Block Preconditioners
ML: Uncoupled AMG with repartitioning Split-3x3: 3x3 (SIMPLEC everywhere)
DD: Additive Schwarz Domain Decomposition Preliminary Split-4x4: 4x4

ABF preconditioners scale algorithmically, more relevant for mixed and physics-
compatible discretizations

CBD (Ghoratories



Physics-based and Approximate Block Factorizations: Coercing Strongly Coupled Off-
Diagonal Physics / Disparate Discretizations and Scalable Multigrid to play well together

(w/ H. EIman and E. Phillips, UMD)

Mixed basis*:
Exact Penalty Formulation: (Q2/Q1 Navier-Stokes, Q2 B field; see e.g. Gunzburger) [ *

F Bt Z 250 — G 5 é
Ap = B 0 0 a0 =
=4 0 A %150-
A _7t 0 gEj 100} a B
‘Pp = 0 X’ Bt X=F+ ZA_th, 50r

. ) S . r—1 t 0 X X X
0 0 Yo Y=-BX B 10* 10° 10° 107 10°

Number of Unknowns

Phillips, Elman, Cyr, Shadid, Pawlowski, A Block Preconditioner for an Exact Penalty Formulation for Stationary MHD, submitted to SISC
Mixed basis*:

116

l=1 P B r

Shotzau Formulation: (Q2/Q1 Navier-Stokes, B -edge, Q1 Lagrange Multiplier)

[ J

Structure of preconditioner and Maxwell ABF

- PA

A Dt -7t 0 y _ =t ; P2
D 0 0 0 B Mp =2 O, £ s00| o0
AP = t PP — 0 X B :_g K
Z o F B O : | ,
0 0 B 0 2 //
© 100} A

¥

10

bl

A A+tD'Q7'D 0 . n o . : :
MP2 = ( O r —r > X ~ F + ZM;1Zt’ Y p— —BX_1Bt ?O NL?nberofUnknc;vsnS

—_]

Drekar — Element types implemented with @ National
*Intrepid (PI-Bochev, Ridzal, Peterson) Laboratories



Focus on Nonlinear contributions to flux terms:
VMS induced cross term fluxes (sub-grid to resolved scales)

— (v )

= (—v"@B' +B' ®v")

Used as VMS FE MHD turbulence model
with Assad Oberai, David Sondak (RPI)

@ Includes subgrid effects (U/)

@ Allows for the possibility of local inverse energy cascade

o Cross stresses (U" @ U/) well-represented
(Wang and Oberai 2010)

o Reynolds stresses (U" @ U’) not adequately modeled
(Wang and Oberai 2010)

= Eddy viscosity model?
o Mix the VMS models with an eddy viscosity model

A (WP UM+ U) + (Vwh, 207 7°uP) + (Veh, 207 V°BP) = (WH,FP)

Eddy diffusivities

1
vr = A1 = ?h\/|u’|2 + L IB’|?, € =0.0398
ftop

Oberai and Sondak, Spectral Sandia

VMS MHD Turbulence, 2012 National
laboratories



MHD Turbulence Modeling
Taylor—-Green MHD Vortex Decay: Re = 5100 (Drekar FE VMS Resistive MHD Model)

~Induction

1.56

Time: 0.0C

With:

Prof. Assad Oberai (RPI), Sandia
David Sondak (DOE Office of Science Graduate Fellowship, recent Ph. D. — RPI) @ | onal




A VMS Survey (VMS, MHD, and Homogeneous, Isotropic Turbulence) VMS, MHD, and Wall-Bounded Turbulence

Homogeneous, Isotropic Turbulence
VMS Spectral Method

@ Momentum and induction
cross correlation terms

10-1

@ Periodic boundary
conditions

10‘25‘

= Only nonlinear terms

E" (k)

@=@ DNS 512°

@ Adds to stability of method 10-3
i =9 Spectral VMS 32°

W=l Spectral DSEV 32° |

Further Explorations

@ Detailed turbulence »
statistics 10 10!

@ Subgrid dynamo and VMS

@ Helical flows The VMS-based model performs very
well. The dynamic Smagorinsky model

@ Vary Prn is overly dissipative.

DNS: Pouquet et. al. (2010), National
Spectral VMS: Oberai and Sondak, 2012 Laboratories



A VMS Survey (VMS, MHD, and Homogeneous, Isotropic Turbulence) VMS, MHD, and Wall-Bounded Turbulence

Homogeneous, Isotropic Turbulence
VMS Spectral Method

@ Momentum and induction

101

cross correlation terms
@ Periodic boundary 10-2
conditions 5
o)
= Only nonlinear terms o
M
@ Adds to stability of method 10-3 =0 DNS212*
&=® Spectral VMS 32°
Further Explorations B8 Speciral DSEV 32
#-% FEM (Drekar) VMS 64°
@ Detailed turbulence )
statistics 10 10!
k
@ Subgrid dynamo and VMS
@ Helical flows The FEM solution with linear elements
using the VMS model also performs

® Vary Prm very well.

DNS: Pouquet et. al. (2010), mll'l
Spectral VMS: Oberai and Sondak, 2012 Laboratories



Conclusions

* Initial results for 3D Stabilized/VMS FE Lagrange multiplier formulation for low-flow
Mach number resistive MHD system is very encouraging (e.g. MHD generator, HMKH, geo-
dynamo physics, isotropic decay of MHD turbulence, soon a tokamak model..)

* Robustness, efficiency and scalability of parallel Newton-Krylov solvers is very good.
Preconditioning critical:
* FC-AMG (ML) for new 3D MHD systems continues to work very well (stabilized FE)

» Approx. block factorization results are encouraging for Lagrange multiplier
system. Applies to more general discretizations (mixed interp., [edge, face, ..])
{Talks by Eric Cyr, Howard Elman, Edward Phillips}

* Initial scaling of NK/FC-AMG linear solver to near extreme-scale (256K, 2 Million
cores) is encouraging, still more work for preconditioner setup.

* Preliminary results for integrated adjoint based error-estimation and sensitivity
capabilities for resistive MHD is very encouraging.
* Next consider complex systems (e.g. tokamak, geo-dynamo, plasmoids)

 Explore application for laboratory experiments for dynamo studies.

* MHD turbulence modeling with full VMS 3D resistive MHD formulation appears very
promising. Need to apply to more challenging plasma physics systems (w/Oberai, Sondak —
RPI).

Sandia
National
Laboratories



Recent Related Publications:

 J. N. Shadid, R. P. Pawlowski, J. W. Banks, L. Chacon, P. T. Lin, R. S. Tuminaro, “Towards a Scalable Fully-
Implicit Fully-coupled Resistive MHD Formulation with Stabilized FE Methods”, JCP, 229, 20, 7649 — 7671, 2010
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