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NSLS

First operated in 1982, the National Synchrotron Light
Source has accommodated more than 18,400 unique
users in its lifetime as a Department of Energy user
facility. After 32 years of distinguished operations, NSLS
was shut down on September 30, 2014. Replacing it is
NSLS-II, which, when fully built out, will accommodate
60-70 beamlines and host over 4,000 users every year.
On September 30 NSLS had its "Last Light," when the
facility was shut down for the last time.

SYNCHROTRON-BASED SURFACE SCIENCE

- UV and X-ray light produced at synchrotrons enables unique opportunities for variable energy and polarized sources

NSLS Il

To provide extremely bright x-rays for basic and applied
research in biology and medicine, materials and
chemical sciences, geosciences and environmental
sciences, and nanoscience

Sponsor

U.S. Department of Energy (DOE), Office of Science,
Office of Basic Energy Sciences

Costs

$912 million to design and build

Features

State-of-the-art, medium-energy (3-billion-electron-volt,
or GeV) electron storage ring that produces x-rays up to
10,000 times brighter than the NSLS

Advanced Synchrotron Measurement Method Development

NIST NSLS-Il Spectroscopy Beamline Suite: Soft and Tender and Microscopy
Soft and Tender Beams Together— 100 eV to 7.5 keV

High Pressure
Insitu NEXAFS j N
and Emission '

Material Measurement Laboratory

Soft Branch - 100 to 2200 eV

"NIST NSLS-II Spectroscopy Beamline Optical Plan for Soft and Tender X-ray
Spectroscopy and Microscopy (100 eV to 7.5 keV)" R. Reininger, J.C.
Woicik, S.L. Hulbert, D.A. Fischer, Nucl. Instr. and Meth. A,
doi:10.1016/j.nima.2010.11.172, (2010).

*Soft X-ray NEXAFS microscope
SBIR Phase 3 ARRA funded
under development at NSL$
micron scale resolution
20x20 mm area

Existing U7A NEXAFS/XPS Endstation
high throughput(x10 NSLS) / insitu
world class detectors

Tender Branch -1 to 7.5 keV

Existing X24A HAXPES/NEXAFS Endstation
high throughput (10x NSLS) / in situ
world class detectors
soft and tender beams

XPS/HAXPES microscope
SBIR Phase 3 funded
under development at NSLS
nano-scale resolution
soft and tender beams

High Pressure
Insitu NEXAFS

NSLS-II
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— “Interface effect” e /o short period of time prior to reducing the temperature for a substz "‘I d . :fl o he surface b Similarly, work on interfacial oxides has led to increased efficiencies  bulk sensitive can confound these attempts to evaluate the ITO
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is well known that prior to the hydrogen loading process an

H-loading for a longer period of time. If activation is not per-
formed, hydride formation of the bulk film is prohibitively
slow.” Despite the routine use of the thermal activation pro-
cess, little 1s known about the chemical, physical, and/or
electronic changes that occur during activation. Results for
erbium discussed herein should be applicable more generally
across other rare earth and transition metal systems used for
hydrogen storage. Additionally, this work has intentionally
evaluated the activation process under similar vacuum condi-
tions as those likely to be encountered in a hydriding system,
thereby giving a more accurate description of the activation
process as it relates to real applications.

Miiller er al. have demonstrated the fast rate and large
capacity of Ha gettering for erbium films.® Additionally, they
found that an erbium film exposed to oxygen would not get-
ter hydrogen, while an erbium film exposed to hydrogen

*Author to whom correspondence should be addressed. Electronic mail:
mthrumb(@ sandiagov
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dride as would be expected at room temperature.’* Auger

led to a greater concentration of oxygen through the bulk.
Hydrogen loading led to a significant increase in total oxy-
gen, at the surface and throughout the bulk, however there
was no clear source for oxygen. Parish et al. have also
observed a thick oxide layer (30-130 nm thick) in their
hydrided erbium films." These investigations have demon-
strated the importance of the passive surface oxide but do
not give clear explanations for the role it plays on the mecha-
nisms of adsorption, dissociation, absorption, and/or desorp-
tion of hydrogen.

This work presents a thorough characterization of the in
situ activation of erbium to determine the mechanisms for
defect generation and mediated transport accelerated by the
thermal activation step. Varable kinetic energy X-ray photo-
electron spectroscopy (VKE-XPS) provides the ability to
perform nondestructive depth profiling with high energy
resolution to evaluate chemical changes in the near surface
region. Valence band (VB) spectra were used to observe
electronic changes upon activation. Composition was

@ 2011 American Institute of Physics
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FIG. 7. (Color) The activation of erbium films requires a
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ramp and hold at

for a short period of time. The temperature is subse-

quently lowered and hydrogen is introduced to load the film for an extended period of time. In the as received condition the erbium film contzins a passive, spontane-
ously formed surface oxide with additional adventitious contaminants. After initial heating the contaminants and much of the hydroxides are removed, and the oxide
undergpes partial reerystallization during Stage | activation. With continued annealing oxygen begins 1o diffuse into the bulk giving an interfacial boundary where ox-
ygen transitions between the oxide and the metal, Stage 11 activation. The total oxygen content in the near surface begins 1o deplete with further amealing and the ox-
ide/metal boundary moves toward the surface. When the boundary is at or near the surface the film is activated, Le., the passive oxide is degraded, allowing for
electronic trnsport to the surface for H, dissociation, as well as for facile H transport into the bulk.
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Pamerned SAM imaging and UPS characterianion

chemical species at the interface. Interfacial modifications and/or  measurements have been performed to obtain more surface sen-

can help guide rational design of interfaces to improve the
efficiency of organic electronic devices. Here, the presence of the organic film allowed for the tuning of

The nature of the interface in real devices is often unknown,  the high-energy X-rays to act as both a surface-sensitive probe
since the interface is buried and cannot be strictly characterized.  at the ITO surface, as well as a deeper probe into the substrate,
For many studies, characterization relies on separate analyses of  while in the presence of the organic semiconductor.2% 2% Three
the bare surfaces of the substrate and of the bulk organic films.  cases were examined where the ITO surface was pretreated to
Results from the two components are then combined to give 2 give varying surface chemistries. ITO surface chemistry is known
description of the interface and are assumed to remain to be affected by cleaning processes and can have dramatic
unchanged when the materials are contacted. More rigorous  impacts on device performance.>%) The depth discrimination
strategies for evaluating interfaces are to do sequential analyses  accessed by HAXPES allowed for the observation of a very thin,
of varying thickness films under highly controlled conditions."*!
For the case of conducting polymers on an inorganic substrate,
the analysis is complicated by the difficulty of depositing polymer
layers in the absence of adventitious contaminants. Additionally,
polymer deposition introduces solvent interactions with the
substrate. Recently, a polymer/oxide interface was thoroughly
examined by use of multiple samples with varying thickness
polymer films under the assumption that the substrate surfaces
were the same for all samples.” Schlaf and coworkers have also

surface, without an actual interface with an organic material.

* Correspondence to: Michael T. Brumbach, Materials Characterization Depar-
ment, Sandia National Laboratories, Albuguerque, NM 87185, USA. E-mail
mtbrumb@sandia.gov

a Materials Characterization Department, Sandia National Laboratories,
Albuguerque, NM 87185, USA

b Nationai institute of Standards and Technology, Gaithersburg, MD 20899, USA
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Introduction

¥ was used as a novel method for investigating the resslting beterngenesus SAM films. Comp osition
and work function were characterized via X+ay and ultraviolet photosectron spectroscopy, respectively. Imaging NEXAFS
charsct erization of these hetern ganeous fims cleady shows the displacement of oxidized thiok sfter coonolysis pat terning.
Changes in the SAM st patteming, and sfter digplaceanent from back-filling thiok, can be infered from changes in the
affective work function. Larger chan gesin work fun ction were obasrved for caes where thiols were deposited after oz onolysis
g geding thet the displacing SAM wes denser andior more ordered than s-deposited films. These results i ghlight one of
the firgt demonsirations of imaging NEXAFS and present meassraments of effective work function on intention adly heteroge
oo s SAM films. Copyright © 2013 John Wiley & Sons, Ltd,
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Figure 5. The information depth of XPS can be tuned in HAXPES by changing the energy of the illuminating X-ray. For the P3HT films investigated in
this work, the films were suffidently thin to allow for examination of the P3HT/ITO interface using three different Xray energies. HAXPES revealed a
thicker surface oxidized layer in the [TO films cleaned using solvent and UV/ozone treatments.
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