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Motivation

Machining

Energetic Systems

Nanoparticle Printing
20 nm

500 nm



Laser Pulses Temporally

Compressed



Pulse Shaping

• Laser light becomes more useful for changing materials when we compress 
light into pulses.

• Intensity of the laser pulse is directly related to pulse energy and length.

• Both Gaussian and “flat-top” spatial intensity distributions are utilized.

Time

Energy

Time

Energy

Continuous Wave (CW) + Quasi-CW Ultrafast (~ 150 fs)

150 fs

~ 103 W/cm2 ~ 1012 W/cm2



Gilmer (unpublished)

Ultrafast Laser Damage in 
Bulk Materials

Pulse

Copper

• First few nanometers of material melts in ~ 3 ps.

• Rapid expansion leads to homogeneous void nucleation within melt.

• Material “breaks” where voids nucleate.



Deterministic 
Thresholds

0.71 J/cm2

Position

Intensity

5 μm

0.32 J/cm2 0.32 J/cm2
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Low Fluence Removal 
Within Film

10 μm

20 nm Ni

Glass substrate

Metal Film Surface

Substrate Surface

0.20 J/cm2

0.14 J/cm2

0.20 J/cm2

0.14 J/cm2



Interfaces Alter Material 
Removal Thresholds

0.95 J/cm2 

70 nm Ni film

diameter 
1.0 μm

0.26 J/cm20.26 J/cm2

0.95 J/cm2 



High Fluence Removal 
Within Film + at Interface

10 μm

Metal Film Surface

Substrate Surface

Glass substrate

20 nm Ni

0.40 J/cm2

0.14 J/cm2

0.40 J/cm2

0.14 J/cm2

0.36 J/cm20.36 J/cm2

Glass substrate



300 nm

Intra-film Separation
RMS Roughness = 1.27 nm 

Interface Separation
RMS Roughness = 3.06 nm

300 nm

7 nm

0 nm

Void Nucleation Controls Surface 
Roughness

10 μm 10 μm

0.40 J/cm2
0.20 J/cm2

7 nm

0 nm



Heterogeneous Nucleation 
Dominates in Thinnest Films

10 μm

Metal Film Surface

10 nm Ni

Glass substrate

Entire film melts

Heterogeneous Nucleation

Substrate Surface

0.16 J/cm2

0.12 J/cm2

0.16 J/cm2

0.12 J/cm2
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Ni Nanoparticle 
Printing

20 nm

10 J/cm2

20 nm Ni
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Surfaces Spatially Shape

Laser Pulses



Typical Laser Induced Periodic 
Surface Structures (LIPSS)

Young, et. al. Phys. Rev. B 27 (1983)

• Randomly rough surfaces couple to laser light.

• Interference pattern is formed when scattered light interferes with incident laser light. 

20 ns pulses
Incident λ = 1.06 μm
Λ ~ 1.06 μm
30 pulses

Ge

Polarization
Direction



10 μm10 μm

LIPSS After 1 Pulse

Polarization

0.64 J/cm2

Si Substrate

1 
Pulse

0.64 J/cm2

Si Substrate

1 
Pulse

• LIPSS formation observed near surface defects.



LIPSS Formation After 2 Pulses

Polarization

Si Substrate

2 
Pulses

10 μm

0.64 J/cm2

10 μm

Average Period = 757 nm
Standard Deviation = 100 nm



LIPSS Formation Near Au 
Microstructures

Si Substrate

Au Mesa

110 nm

Side View 

One
Pulse

Polarization
0.30 J/cm2

Top View 

10 μm

20 μm

• Below crater threshold

• Above melt threshold

Fundamental Wavelength = 775 nm

Au 
Mesa

Si 
Substrate

Au melt threshold ~ 0.55 J/cm2

Si melt threshold ~ 0.20 J/cm2



Diffracted Light
Side View

Si Substrate

Au Mesa

LIPSS Formation Near and 
On Top of Au Microstructures 

10 μm

0.60 J/cm2
Polarization



10 μm

Mesa Edges Act As Sources for 
1 pulse LIPSS Formation

0.75 J/cm2
Polarization



Diffracted Light
Top View

LIPSS Formation from 
Multiple Sources

Polarization

0.50 J/cm2

10 μm



Dependence on 
Polarization

10 μm 10 μm

Polarization Polarization

0.50 J/cm2



10 μm

5 μm

5 μm

Polarization

Original
Surface

Original
Surface

Average Period = 703 nm
Standard Deviation = 80 nm

0.50 J/cm2

Average Period = 757 nm
Standard Deviation = 56 nm0.34 J/cm2

Two Mechanisms Playing a Role
• Near-field diffraction

• Surface plasmon excitation
0.50 J/cm2



10 μm

LIPSS Formation:
Sources + Material Removal

Polarization

10 μm

• The active LIPSS formation mechanism depends on the angle of the polarization vector with 
respect to surface features.

• LIPSS formation is due to material removal.

Fresnel
Diffraction

Surface 
Plasmon 

Excitation

Surface 
Plasmon 

Excitation



Temporal and Spatial 

Pulse Shaping



500 nm

Al + Pt → AlPt (intermetallic phase) + 100 kJ·mol-1·atm-1

• Exothermic heat generation upon ignition.  

• Self-propagating reaction.

• DC Magnetron sputtered layers

• 10 - 15 Å thickness variation

• 1 to 1 Al/Pt ratio

• Adiabatic reaction temperature = 2798 °C

• Melting not required for ignition

Al/Pt multilayer 
TEM Cross-section

Reactive Multilayers



Ignition by capacitive discharge

Ignition and 

Reaction Propagation

1 cm

~ 600 microseconds after ignition
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Bilayer thickness (nm)

Al

Bilayer Dependence

• Propagation speed increases with decreasing bilayer 
thickness.

• Shorter diffusion distances lead to shorter reaction times.

• Pre-mixing affects propagation speed of thinnest bilayers. 

0       50        100       150        200       250        300

Al
Pt

BL

Al
Pt

M. Hobbs, D.P. Adams, et al. 
8th World Congress Comp. 

Mech. (2008).

tTotal = 1.0 m

tTotal = 1.6 m

tTotal = 3.6 m

AlxPty

Pt

10 nm



• Laser irradiation leads to more control over energy 
delivered to foil.

• Laser irradiation allows for remote ignition.

• Study effects of rate of heat input on ignition.

• Vary pulse length from femtosecond to millisecond 
to study effects of heating rate on ignition.

Laser Ignition

Laser 
Pulse

Product

Pt

Pt

Al

Al
1.6 µm

~ 600 microseconds after ignition

Reactive Foil

1 cm

Joining



1.0 m

Al/Pt Irradiated at 80% ignition threshold

Laser Irradiation

150 fs pulse

SiO2 Substrate

Product Phase

Foil

Picard, Yoosuf N. Ph.D. thesis University of Michigan, 2006. 

• Laser irradiation can modify foils without ignition.

• Pulse length dependent.



• Foil not on substrate

• Single Pulse Irradiation

• “Flat-top” Beam Profile

• Irradiate Pt side
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Determining Laser 

Ignition Threshold

Laser 
Pulse

Foil

Focused Beam “Flat-top”

• Laser energy is increased 
until foil ignites.

• Non-irradiated region of 
sample is used for each test.

Foil
Pt Face

Test 1 Test 2 Test 3
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Change interaction volume 

Laser Spot Size

Bilayer Thickness

�̇��= Laser Power

�̇���������= Reaction 

Heat Generation Rate

�̇���= Conduction

�̇���= Radiation

100 μm 314 μm

40 nm

65 nm

Pt
Al

Pt

Al

Heat Flow and

Interaction Volume

Total thickness = 1.6 µm

164 nm
Pt

Al

% R



FluenceIntensity Threshold
• Intensity (W/cm2) calculated using energy density and pulse length.

• Ignition threshold depends on intensity.

• Longer pulse lengths lower the intensity threshold.

• Longer pulse length may increase interaction volume via conduction.

�̇��= Laser Power

�̇���������

�̇���������
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Imaging Ignition

High-speed imaging of Al/Pt foil from the Al side

Phantom 
High-Speed

Camera

Imaging
Objective

10 ms Incident Pulse
65 nm Bilayer

619 W/cm2

t = 2.88 ms Foil Ignites

100 µm

t = 2.89 ms Entire Foil Melts

100 µm

t =  2.91 ms Laser Penetrates Foil 

100 µm

t = 0 ms Laser Turns On

100 µm



Laser-Foil Interaction Time

• Effective pulse length calculated by observing when ignition begins.

• Effective pulse length is usually shorter than incident pulse length.

• Shorter pulses require energy to be delivered at a higher rate (power).
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Sub-threshold Irradiation

2.94 ms Incident Pulse
65 nm Bilayer 10 µs/frame

95% Ignition Threshold

100 µm



Self-Propagating Reaction 

after Ignition

10 ms Incident Pulse
164 nm Bilayer

894 W/cm2 Ignition ~ 3.500 ms after laser turn on

40 µm40 µm

4 µs/frame



Solid-State Reaction vs. 

Self-Propagating Reaction

• Dark center suggests ignition begins as a slow, non-propagating reaction.

• Bright annulus suggests these regions are hotter than surrounding regions.

t = 3.500 ms

40 µm

�̇~0

t = 3.518 ms

40 µm

�̇~	0�̇>0 �̇>0�̇>0 �̇>0�̇ >0

t < Ignition

40 µm

10 ms Incident Pulse
164 nm Bilayer



~ 30% Intensity Variation

Shorter Pulses – Mechanisms Change

100 μs Pulse 150 fs Pulse
• Ignition occurs – no annulus observed.

• Central, irradiated area ignites.

• Mechanisms are intensity dependent
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• Measured temporal distribution is Gaussian.

• “Flat-top” spatial distribution.
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Ignition Threshold Ignition Threshold

Fixed Interaction Volume



Ignition Threshold

• “Flat-top” beam is used for all pulse lengths – defines the interaction area

• 150 fs:  mechanism changes from solid-state ignition to laser-induced melting and ablation.

1.E+03

1.E+05

1.E+07

1.E+09

1.E+11

1.E+13

1.00E-14 1.00E-11 1.00E-08 1.00E-05 1.00E-02

Th
re

sh
o

ld
 In

te
n

si
ty

 (
W

/c
m

2 )

Pulse Length (s)

65 nm

40 nm
Ablation Threshold

�̇��= Laser Power

�̇���������

�̇��= Laser Power

�̇���������

Shorter Pulses

Longer Pulses



• Material removal occurs at interfaces

• Void nucleation linked to surface roughness

• LIPSS formation is affected by surface features

• Diffraction and surface plasmons are responsible for LIPSS formation

• LIPSS begin forming on same time scales as material removal

• Laser pulse lengths ranging from femtoseconds to milliseconds can ignite foils.

• Laser ignition threshold depends on pulse duration, laser spot size, and foil 
bilayer thickness.

• Ignition mechanism depends on the laser pulse length.

Conclusions
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30 μm 

0 ps 3.3 ps 33 ps

59 ps 1.7 ns

Resulting Crater

Pump-Probe Microscopy:
Time Scales

Pump Beam
0.60 J/cm2

Silicon Substrate

Crater threshold 
0.32 J/cm2

Melt threshold
0.20 J/cm2

Probe beam wavelength = 390 nm

Beamsplitter

Probe Beam
Delay Line

BBO 
Crystal

f = 40 cm

f = 20 cm

Sample

CCD Camera

5X
Objective 

Pump 
Beam



1 nm1 nm

Atomic Resolution

Faceted Nanoparticles



Ni Nanoparticle 
Printing

20 nm

Gas In

CVD Growth Furnace

Si Substrate
10 nm Alumina Film 

Ni Nanoparticles

Print Ni Catalyst 
Nanoparticles

10 J/cm2

20 nm Ni
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10 μm10 μm

Polarization

Amorphous Si Formation

0.20 J/cm2

Polarization



10 μm

2 μm

Original 
Au Surface

0.20 J/cm2

Au melt threshold ~ 0.55 J/cm2

SPP Excitation 

Polarization



20 μm

20 μm20 μm

White Probe Light

Water

Pump Beam

Probe Beam

Sample50X 
NA = 0.55

f = 5 cm

f = 10 cm

CCD

Polarization



10 μm

0 ps

11 ps

53 ps

Polarization

LIPSS Formation Dynamics

10 μm

1st shot 
0.45 J/cm2

10 μm

2nd shot
0.32 J/cm2

10 μm

10 μm
Resulting LIPSS
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Effective Pulse Length 

Depends on Intensity

% Above Threshold Effective Pulse Length 
(ms)

0 0.892

49 0.440

100 0.300

1 ms Incident Pulse
65 nm Bilayer



Diffusion Zone Size 

Depends on Pulse Length

Incident Pulse Length
(ms)

Diffusion Zone Diameter (µm)

0.1, 9 mW
0.1, 9 mW

18
18

1, 9 mW
1, 4.5 mW
1, 5.5 mW
1, 5.5 mW

42
44
28
22

10, 36 mW
10, 36 mW
10, 36 mW

73
36
44

65 nm Bilayer

Incident Pulse Length
(ms)

Diffusion Zone Diameter 
(µm)

0.1, 12 mW
0.1, 12 mW

0
0

1, 8 mW
1, 8 mW

18
22

10, 52 mW
10, 52 mW

49
52

164 nm Bilayer



Ignition Threshold

Ignition Threshold

Distance

Intensity

Distance

Intensity

Defined

Defined



10 ms Incident Pulse
65 nm Bilayer

36 mW

100 µm100 µm

~ 2.60 ms after laser turns on 

Ignition and Melting

~ 2.61 ms after laser turns on 



40 µm

Reflectance Measurements

t = 0 ms

Background
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