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Motivation
Machining




Laser Pulses Temporally

Compressed



Pulse Shaping

e Laser light becomes more useful for changing materials when we compress
light into pulses.

* Intensity of the laser pulse is directly related to pulse energy and length.

* Both Gaussian and “flat-top” spatial intensity distributions are utilized.

Continuous Wave (CW) + Quasi-CW Ultrafast (~ 150 fs)
~ 103 W/cm? ~ 1012 W/cm?
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Ultrafast Laser Damage in
Bulk Materials

* First few nanometers of material melts in ~ 3 ps.
e Rapid expansion leads to homogeneous void nucleation within melt.

 Material “breaks” where voids nucleate.

Gilmer (unpublished)
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Low Fluence Removal
Within Film
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Interfaces Alter Material
Removal Thresholds
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70 nm Ni film
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High Fluence Removal
Within Film + at Interface

0.40J/cm?

0.14 J/cm? A \0.14 J/cm?

Height (nm)
=)

0.40J/cm?

NN NI NN SN NN AN NN EEE NN NI NN NN EEE NN EEEEENEENEEEEEEEEEEEEEEEE

Distance (pum)



Void Nucleation Controls Surface
Roughness
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Heterogeneous Nucleation
Dominates in Thinnest Films
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Ni Nanoparticle
Printing

20 nm Ni
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Surfaces Spatially Shape

Laser Pulses



Typical Laser Induced Periodic
Surface Structures (LIPSS)

®* Randomly rough surfaces couple to laser light.

* Interference pattern is formed when scattered light interferes with incident laser light.

20 ns pulses
Incident A = 1.06 um
A~ 1.06 um
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LIPSS After 1 Pulse

® LIPSS formation observed near surface defects.
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Polarization
M




LIPSS Formation After 2 Pulses

0.64)/c

_ Average Period = 757 nm
Standard Deviation = 100 nm
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LIPSS Formation Near Au
Microstructures

Side View

Fundamental Wavelength = 775 nm

0.30 J/cm?

Polarization
C—

110 nm

Au Mesa

Au melt threshold ~ 0.55 J/cm?
Si melt threshold ~ 0.20 J/cm?

®* Below crater threshold

®* Above melt threshold

Top View




LIPSS Formation Near and
On Top of Au Microstructures

Polarization
0.60 J/cm? e

Diffracted Light
Side View




Mesa Edges Act As Sources for
1 pulse LIPSS Formation

Polarization
0.75 J/cm? =




LIPSS Formation from
Multiple Sources

Diffracted Light
Top View

0.50 J/cm?

Polarization




Dependence on
Polarization

0.50 J/cm?

Polarization Polarization I




Two Mechanisms Playing a Role

Average Period = 703 nm

* Near-field diffraction Standard Deviation = 80 nm
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LIPSS Formation:
Sources + Material Removal

® The active LIPSS formation mechanism depends on the angle of the polarization vector with
respect to surface features.

® LIPSS formation is due to material removal.
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Temporal and Spatial

Pulse Shaping



Reactive Multilayers
Al + Pt > AIPt (intermetallic phase) + 100 kJ-mol--atm

« Exothermic heat generation upon ignition. Al/Pt multilayer
TEM Cross-section

» Self-propagating reaction.

 DC Magnetron sputtered layers
e 10 - 15 A thickness variation
e 1to1Al/Ptratio

* Adiabatic reaction temperature = 2798 °C

(9}
o
o

Melting not required for ignition




Ignition and
Reaction Propagation

lenition by capacitive discharge

~ 600 microseconds after ignition




Bilayer Dependence

* Propagation speed increases with decreasing bilayer
thickness.

* Shorter diffusion distances lead to shorter reaction times.

* Pre-mixing affects propagation speed of thinnest bilayers.

100 T T T T ‘
: %% tTotaI = 3.6 um |
80 - ﬁ trotar = 1.6 pm ]
2 tTotaI =1.0 pm

Average Propagation Speed (m/s)

Bilayer thickness (nm)

M. Hobbs, D.P. Adams, et al.
8t World Congress Comp.
Mech. (2008).

BL

Pt

Pt




Laser Ignition
T Joining
Laser irradiation leads to more control over energy

delivered to foil. @

Laser irradiation allows for remote ignition.

Study effects of rate of heat input on ignition. C ——7 " Reactive Foil
- =

Vary pulse length from femtosecond to millisecond
to study effects of heating rate on ignition.

Laser
Pulse

I
Product U PERIIE | 1.6
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~ 600 microseconds after ignition




Laser Irradiation

* Laser irradiation can modify foils without ignition.
e Pulse length dependent.

Al/Pt Irradiated at 80% ignition threshold
150 fs pulse

Product Phase

SiO, Substrate

Picard, Yoosuf N. Ph.D. thesis University of Michigan, 2006.



Determining Laser N
.y e Laser energy is increased
Ignition Threshold until foil ignites.

Foil not on substrate * Non-irradiated region of
sample is used for each test.

Single Pulse Irradiation .
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Heat FIOW and Change interaction volume
Interaction Volume Laser Spot Size

Q;,= Laser Power 100 um 314 pm
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Intensity Threshold

Intensity (W/cm?) calculated using energy density and pulse length.

Fluence
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t = 2.88 ms Foil Ignites

Imaging Ignition

High-speed imaging of Al/Pt foil from the Al side

s Imaging
Objective

| Phantom
_ ﬂ High-Speed ) .
Camera t = 2.89 ms Entire Foil Melts

10 ms Incident Pulse

65 nm Bilayer .
619 W/cm?
t =0 ms Laser Turns On t = 2.91 ms Laser Penetrates Foil

100 pum
|



Incident Pulse Length

Laser-Foil Interaction Time

tIgnition t=0

* Effective pulse length calculated by observing when ignition begins. I
* Effective pulse length is usually shorter than incident pulse length. ‘I_
"€ >

* Shorter pulses require energy to be delivered at a higher rate (power). _
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Sub-threshold Irradiation

95% Ignition Threshold

2.94 ms Incident Pulse
65 nm Bilayer 10 ps/frame




Self-Propagating Reaction
after Ignition

10 ms Incident Pulse

164 nm Bilayer
894 W/cm? 4 ps/frame lgnition ~ 3.500 ms after laser turn on




Solid-State Reaction vs.
Self-Propagating Reaction

* Dark center suggests ignition begins as a slow, non-propagating reaction.

* Bright annulus suggests these regions are hotter than surrounding regions.
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Shorter Pulses — Mechanisms Change
150 fs Pulse

* Measured temporal distribution is Gaussian.

Ignition occurs — no annulus observed.

100 us Pulse

Central, irradiated area ignites.

Mechanisms are intensity dependent
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Fixed Interaction Volume

Ignition Threshold Ignition Threshold
€




Ignition Threshold

*  “Flat-top” beam is used for all pulse lengths — defines the interaction area

* 150 fs: mechanism changes from solid-state ignition to laser-induced melting and ablation.

Shorter Pulses
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Conclusions

LIPSS formation is affected by surface features
Diffraction and surface plasmons are responsible for LIPSS formation

LIPSS begin forming on same time scales as material removal
Laser pulse lengths ranging from femtoseconds to milliseconds can ignite foils.

Laser ignition threshold depends on pulse duration, laser spot size, and foil
bilayer thickness.

lgnition mechanism depends on the laser pulse length.
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Pump-Probe Microscopy:

Time Scales

Silicon Substrate

Crater threshold
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Faceted Nanoparticles

Atomic Resolution




Ni NanopartiC|e Print Ni Catalyst
Printing Nanoparticles
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Ni Nanoparticles

CVD Growth Furnace
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Amorphous Si Formation

0.20 J/cm?
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SPP Excitation

Au melt threshold ~ 0.55 J/cm?
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White Probe Light




LIPSS Formation Dynamics

Polarization

1st shot 2nd shot
0.45J/cm? 0.32J)/cm?
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Effective Pulse Length
Depends on Intensity

1 ms Incident Pulse

65 nm Bilayer
% Above Threshold Effective Pulse Length
(ms)
0 0.892
49 0.440
100 0.300




Diffusion Zone Size
Depends on Pulse Length

65 nm Bilayer

Incident Pulse Length Diffusion Zone Diameter (um)
(ms)

0.1, 9 mW 18
0.1, 9 mW 18

1,9 mwW a2
1,45 mW 44
1,55 mW 28
1,55 mW 22
10, 36 mW 73
10, 36 mW 36
10, 36 mW 44

164 nm Bilayer

Incident Pulse Length Diffusion Zone Diameter
(ms) (Lm)
0.1, 12 mW 0
0.1, 12 mW 0
1, 8 mW 18
1, 8 mW 22
10, 52 mW 49
10, 52 mW 52




Intensity
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Ignition and Melting

10 ms Incident Pulse
65 nm Bilayer
36 mW

~ 2.60 ms after laser turns on ~ 2.61 ms after laser turns on




Reflectance Measurements
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