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What | will do in this talk

= Describe a plot line for a story

= “With imagination, the progress of Moore’s Law can continue”

= Tell a specific story consistent with the plot

Optimal adiabatic scaling +

3D manufacturing +
Processor-In-Memory-and-Storage (PIMS) +
Deep Learning applications example =
Example of Beyond Moore’s Law computing

= Challenges to audience

Make your own story consistent with the plot line

= Rumors of relevance to evolving events ??
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*%% PREVIEW ***

FastCPU Gen1l Gen N Exploded view:
Clock 3GHz | 100 MHz | 10 MHz (100 layers, see below)
Devices 1010 10%3 10%°
Stack x 1x1 |10x100 | Molecular|  Stacked PIMSB,C,
Layers assembly? D,EFGHIJ
Ops/joule | 1x 30x 300x
PIMS 3D storage

Fast thread | .1 layers A1-A100
penalty
Parallelism 3000 30,000 PIMS replication unit
boost

008 PIMS logic layer A
Total 1x 30,000x | 300,000x Fast thread CPU
throughput
Power 100W | 100W 100W

Heat sink




Backup: stacking # layering &

end of Moore’s Law

Layering adds additional layers of
devices during processing
= Samsung V-NAND

http://www.pcper.co
m/reviews/Storage/
Samsung-850-Pro-
512GB-Full-
Review-NAND-
Goes-3D

Nature
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Stacking connects completed chips
with Through-Silicon-Vias (TSVs) in an
additional processing step

= Hybrid memory cube

http://www.engadget.com/2013/04/03/hybrid-
memory-cube-receives-its-finished-spec/
=  Disagreement on end of Moore’s Law

= Some say it ended because of 2D
feature limits reaching quantum scale

= QOthers exploiting third dimension
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Outline

" Preview

= Architecture
= Programming

= Performance analysis of example
= Computer system model with integrated |I/O
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Design for energy management

= Design around fixing competitor’'s = Chip

weakest features: ® ® ,
Von N bus/bottl k o e ¥ Memory
= Von Neumann bus/bottlenec . o .
CV % losses inductor X - = 7
- — ALU | — ALU
(O l
| ® Source
= Make principal energy pathway j . _/': of loss
1 @ 1@
into a resonant circuit _AlU — ALU (2 VG)
= Recycle the energy that the /
competitor’s system turns into
heat = Size expectations for 128 Gb

* 1024x1024 bits/memory bank
= 128x128 banks/chip
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Backup: adiabatic memory (low) maturity level

= Source = TRL 3 or 4 for Charge Injection
1.1 TMACS/mW Fine-Grained Stochastic Resonant Devices (Cl D) . TRL definitions:
Ch -R ling A p . .
Rafal Karakiewicz, SminraA‘:;%:/: ]EEEe'.(l:lzin (l}eI:(% MeniL’I::a].EyEE. anId'OG:IiaSuirg:;rghs. Fellow, IEEE . 3 . An a Iyt I Ca I a n d eX pe rl m e nta I

critical function and/or

" Energy-recycling row drive characteristic proof of concept

Y CIiD
vid L AL % LTl our = 4. Component and/or
v ==L . . .
A breadboard validation in
pulHC « g .’ X : — .
e | L l % & laboratory environment
=  IDRIVER = |

= Result 85x energy efficiency = Above research is for charge

. injection devices. Author does
Improvement | / :
‘ not see a theoretical reason why

it could not work for memristors

%—gao- and flash
Se0 = Resonators and inductors ought
30 to be OK

22 64 % 126 160 192 224 256
Number of Active Inputs
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Energy efficiency can depend on clock rate

= David Frank (IBM) discussed = Adiabatic circuits have behavior
adiabatic and reversible close to
computing at RCS 2, where = Energy/op o f(clock rate)
energy efficiency varies by clock = Power ot f2
rate -

This would be equivalent to slope
1 on chart at left

= This effect depends on

LEI07 g ;
SFQ @ 1% Carmnot

1LE108 F—SFQ—@A*G%-GEH’ &
b 320m PDSOI z

LE10S
E 11nm FinFETs

e = Adiabatic circuitry
CNTRETS 10% = Devices — 11 nm adiabatic CMOS
and nSQUID on David Frank’s

chart, but many other options
= Let’s work with this

Inm adiabatic CMOS
1.L+03

Energy / eqv. logic operation (KT's)
P
+
E

1LE.02 cgr'nSQUID @
) 10% Camaot
ﬁy 3 (estimate)

1.E+t1
1TE+05  1.E+06 1.E+07 1LE+08 1.E+09 1E+10 LE+N

Eqv. Frequency (Hz)
From David Frank’s presentation at RCS 2; viewgraph 23. “Yes, I'm ok with the

viewgraphs being public, so it's ok for you to use the figure. Dave” (10/31/14)
I ———————



A plot will reveal what we will call
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“optimal adiabatic scaling”

= |mpact of manufacturing cost

= At RCS 2, David Frank put forth
the idea that a computer costs
should include both purchase
cost and energy cost.

= However, let’s adapt this idea to
a situation where manufacturing
cost drops with time, as in
Moore’s Law

= Let’s plot economic quality of a

chip:
Qunip = OPSitetime()
$purchase + $energy(f 2)
Where $,,chase = A 27

OPSjitetime = Bf, and

$energy = Cf2 (A, B, and C constants)

= Assume manufacturing costs
drops to % every three years
= Top of ridge rises with time

Optimal Adiabatic
Scaling

100,000
Zetta Gate-ops
per dollar

10,000 |

1,000 | %/

/ n & Wt
/4//;77// \\\\\\\\\\\\

4/

- 2046
2030

2014

295,52
5,080,218
87,332,616

1,501,310,729

Clock rate f Hz




Backup: historical context and ) e,
reversible computing

"  Prior to around 2003, purchase

costs dominated energy Optimal Adiabatic

Scaling

. _ .
= The economically enlightened 00,000

: Zetta Gate-ops
approach would be to raise clock oer dollar P / \
rate, which happened
PP 10,000-tQuad core it \§\\\
* Around 2003, technology went Eitr’]ag'lgocgere
over the optimal point A
= Multi-core was the technical ~ 1,000~
: Period of rapidly
remedy to the economic . Y,
rising clock rate ear
problem — had lower clock rate (through ~2003) - 2046
2030
- - 100
= Reversible computing would be 2014

an advance in the right direction,

—
but too extreme for now Reversible

%
—
N
o
(o0]
o
. LN
computing

87,332,616
1,501,310,729

Clock rate f Hz




How to derive a scaling rule

=  Chip vendor says: “How would :

you like a chip with 4x as many
devices for the same price?”

$20 chip;
4K devices

$20 chip;
K devices
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Optimal adiabatic scaling says:
= Cut clock rate to 1/V4x (halve)
= Power per device drops to 1/4x
= Power per chip stays same

= Throughput doubles: 4x as many
devices runn at 1/V4x the speed,
for a net throughput increase of

\/4><

“Throughput” is in accordance

"~ with the way throughput is

measured for semiconductors,
which does not include effects of
architecture and algorithms
(which we discuss later)

To make a scaling rule, replace
“4” with o (line width scaling)




Resulting scaling scenario ) S
(standard chart with additional column)

If C and V stop : Under optimal adiabatic
scaling, throughput ]E;cinSt Constant V ggﬁ'rgall scaling, throughput
(f Nyran Nooro) StOPS <_| ield Max f | Const f| Constf| Multi labatic | /1 continues to scale even
l Scaling P
scaling. \ Nyar core with fixed Vand C
L gate 1/a 1/a 1/a 1/a 1/a 1
\ " Term redefined to be line
W, L, 1/a 1/a 1/a 1 1/a N=0? width scaling; 1 means no line
\ width scaling
4 /o 1 1 L 1 1 1 t Term redefined to be the
increase in number of layers;
C 1/a. 1/a. 1/a. 1 1/a 1 previously was 1 for no scaling
+ Term redefined to be heat
Ugor =% CV2 | 13 1o /o1 1 1/ |1NN=1/od | produced per step. Adiabatic
technologies do not reduce
f a 1 1 1 1/NN=1/ signal energy, but “recycle”
signal energy so the amount
N... /core o2 o2 1 1 1 turned into heat scales down
tran § Term clarified to be power
N__JA 1 1 1 N= per unit area including all
corel ¢ v devices stacked in 3D
2 —
Pt Lo 1 1 Lo 1NN= Ref: T. Theis, In Quest of the “Next
Switch”: Prospects for Greatly
PIA 1 o2 1 1 18 Reduced Power Dissipation in a
Successor to the Silicon Field-Effect
3 3 2 — Transistor, Proceedings of the IEEE,
thran Ncore o o a 1 a \/N_OL Volume 98, Issue 12, 2010

< Theis and Solomon » New
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Outline

= Preview

= |mproving power efficiency without changing devices
= Programming

= Performance analysis of example

= Computer system model with integrated |I/O




Need a new architecture; von Neumann ) o
architecture won’t do

= Optimal adiabatic scaling proportions
= Device count scales up by N (N = a?)
= Clock rate scales down by 1/\N
= Throughput scales up by N x 1/\N = VN

= The von Neumann architecture cannot exploit this throughput

" Processor and memory contribute independently to performance

= Slower computer with more memory — not viable

= We need an architecture whose performance is the product
of memory size and clock rate

= Processor-in-memory?

= Easily said, but we need a specific architecture that
scales properly and has good generality



Backup: Processor-In-Memory-and-Storage (T,
(PIMS)

n u

= We class this as an “ALU on column
architecture, with persistent storage

= We use PIM as a descriptive phrase, but it is often used as a name for their
specific architecture (GilgaMesh, DIVA, etc.)

processor-in-memory” (PIM)

= Example chip (one layer of stack):

= Architecture characteristics

5 || 1 Megabit = Like a storage-augmented
g || @diabatic systolic arra
2 || memory or Y y
‘g storage = Must be adiabatically clocked,
. which is mainly a constraint on
» ALUs the memory
= Replication unit described as

Chip is 128x128 GPU--
array of above

Equivalent density to 128 gb Flash
I ———————



What applications scale like PIMS?

=  Computer system clock rate grew
at about the square root the rate
of storage capacity

10,000,000 -
1,000,000
100,000
10,000 //’
* Mhz
s Mo
1,000 Expon. (Mb)
= Exppon. (MhZ)
100

10

Growth rate of HDD storage
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Brain CPU throughput grows at %

power of storage capacity

Neurons (throughput)

space compared to clock rate

7

7
-

as © Creative Commons.

0

January 1, Jenuary 1, January 2, January 2,

1980

1990 2000 2010

using Apple consumer products
(1984-2001). From Wikipedia,
which cites the diagram to left

Source:
Wikipedia

Which is consistent because
brains get bigger too

1. 00E+10

1.00E+O8

1.00E+06 -

1.00E+04

1.00E+02

1.00E+03 1.00E+08 1.00E+13

Synapses (storage)

Synapses Neurons
Roundworm 7.50E+03 3.02E+02
Fruit fly 1.00E+07 1.00E+05
Honeybee 1.00E+09 9.60E+05
Mouse 1.00E+11 7.10E+07
Rat 4 48E+11 2.00E+08
Human 1.00E+15 8.60E+10
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Outline

= Preview
= |mproving power efficiency without changing devices
= Architecture

= Performance analysis of example

= Computer system model with integrated |I/O




Sandia
"1 National

Laboratories

PIMS example: sparse matrix for
neural networks, Deep Learning, etc.

= Neural networks frequently = Architecture encodes sparse
compute as sparse matrices matrix structure in
= Vector-matrix multiply memory/storage array
= Delta learning rule =  Permits MIMD PIM operation
= matrix += vector outer product with high power efficiency
= Efficiency example loads sparse = Apparently novel
matrix at 45° angle
Step 1 v Memory Wi | Woo | Wou
——> array —
Step 2 Memory rray Wzox Wy “ Wi, Wo
BN At S
W3y 21 4 Wi “ 13
Step n 47T
LN |
ALUs +X +X +X +X +X
Go right for rows Wait zone T T T .
vl vl vy




it
Programming a dense vector-matrix multiply
= |nit: Ladies have vector element; = Dance hall model
gents have zero accumulation 3 T

Program: Ladies multiply memory
output by their vector element,

pass to gent; gent adds to F3] £

accumulating sum; ladies step
right; gents step left

Step 1 v Memory E B B B

) Balcony
Step n ;
Dance floor ANl

Go right for rows
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Note: This program only uses half the memory locations; better algorithm
Wx =y; gent wy, X, then wyq Xo; lady yo = Wyg Xo + Woq X4 would use a hexagonal layout, but is too complex for PowerPoint
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Backup (embedded spreadsheet)

Yy
L 2f 3] 4 1] o of 2= [25] 12 | 17|
0O 0 3 0 Vector-matrix multiply on left
o 4 0 5 implemented by dataflow-like spreadsheet
6/l 0 0 0 below.
Timestep 1: Note: the yj's are
tx 1 updated, so they do
ty, 0 not all have the same
Timestep 2: a00 1 value
L X1 2 1 X0 1
f Yo 1 f Y1 0
Etc. al0 0 a0l 0
tx, 3 tx, 2 1 x, 1
Pyo 1 tyr O fy, 0
a20 0 all 0 a02 0
fx3 4 fx, 3 fx, 2 1 x 1
fyo 1 ty:, O ty. O ty; O
a30 6 a2l 4 al2 3 a03 2
tx; 4 tx, 3 tx, 2 Px, 1
by, 25 by, 12 1y, \ 6 ty, 2
a3l 0 a22 0 Nel3 /
tx; 4 ix, 3 tx,,/2
tyo 25 by, 12 fy, 6 by;- 2
1% cell a32 0 a23 5|Note on above: this diagram is
column tx; 4 ¥ X2 3lonly a spreadsheet, but you
above, as ty, 12 ty, 6 tys 17 may think of a row of x's and
it evolves 2" cell a33 0 y's as a register that shifts right
with time column tx; 4 and left each time step; the a's
above, as ty, 6 ty, 17 do not shift (see arrows).
it evolves 3" cell,
with time and so on by, 17
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Extreme Multiple Instruction
Multiple Data (MIMD)

= Ladies and gents are additionally = Dance hall model
given an “appointment card” R W W B
telling them to appear n, steps
away n, steps later

"= The appointment card may ] & =5 ]
require them to wait in a wait
zone
Wio Woo |, Wos
Memory = Memory B B B B
A1 A1
array WZO 11__»W1§\ L i array
W3y 2;,W22X 13 °o o ° o ) °* o
IS Dancers
ALUs +X +X +X +X +X Dance floor

Wait zone |70 o | a | a | a | Waitzone




Backup (embedded spreadsheet)

y
L i 2of 3[ 4 1 2= [ 23] 12f o 17]
3 Previous matrix has been made sparse.
4 5 Expressions in the yellow spreadsheet
6 cells have been changed to jump over zero
entries (e, @. ereen arrow).
tx, 1
f Yo 0
a00 1
tx, 2 tx, 1
f Yo \1 f Y1 0
N
* Xy 3
\ f Y2 0
N
tx; 4
\ f Y3 0
a30 6 a2l 4 al2 3 03 2
* X3 4 * Xy 3 * X1 2 y* Xo 1
fy, 25 fy, 12 fy, 6 fy; 2
f Yo 25
a23 5| The spreadsheet program has a
¥ X2 3|sparse matrix representation
ty: 12 tys 17 internally but a spatially
significant distribution in the
spreadsheet surface
fy2 6

Sandia
National _
Laboratories




General programming

= The memory array holds a
representation of a general
function, using operators and
communications.

= Ladies, gents, dogs, cats, etc.
implement the primitive
operators and interconnect
= Possible types of operators
= Booleans logic gates (FPGA)
= Arithmetic (register transfer)
= Perceptrons (neural network)
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"=  Danc Bl

Memory
array
[ ] [ ] [ ) [ ] [ ) [ ] [ ] [ ]
Dancers
Dance floor
. [ ] @ (] [ ]
Wait zone
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Compiling
=  System has graph layout = Dance hall model
functions built in
Add 9°

= Sugiyama (GraphViz)-type
algorithms

=  With dynamic addition/
removal

= Activities illustrated
= Layout a parse tree

= Add a new operation to an
existing parse tree
(animation)

Parse tree Control codes
in PIMS
memory



Sandia
rh National

Laboratories

Backup (embedded spreadsheet)

L 2 3 2|= \I 25| 12] 6] 17]
3 Arrows indicate data flow; wth no data flow
4 S|faster than nearest neighbor per step. Sometimes
6 dance steps for ladies and gents.
GraphViz:
Step 1. Initializaton/input Zeros

*Xz 3 *Xl 2 *XO 1 .
\ \\ 4 0

i Yo
Step 2. Execution and addi%qal input
N a00 /1 al2
L] X3 4 L X0 1 aOO
\ Py | iy, iy, O
w b (XN w X l

Step 3. Execution only | \ Y

g | Y\ 1 a30 a03 a12

tyo 25 ty;§ 2 fy, ©

w % (y2") /
az23

=8
24
N W

[*))

Step 4. Execution and output / |

fy, 25 W Z
Step 5. Output /

fy, 12 ty, 6 ty; 17




Programming model

= Like a self-modifying FPGA

= You start with the equivalent of
an empty FPGA
= To program it, you feed it a list of
gates to be added incrementally
to the gate diagram inside
= May also delete gates

= The PIMS chip itself optimizes
the placement in real time

= When done programming, you
can run the PIMS like an FPGA
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= Like a neural network

You don’t just store collections of
data to be perused by a von
Neumann machine somewhere
else

Instead, you store data in the
form of its use, such as storing a
table of data along with
instructions on how to search it
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Outline

= Preview
= |mproving power efficiency without changing devices
= Architecture

= Programming

= Computer system model with integrated |I/O
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Performance on Deep Learning example

= Scale to human brain size of 10! neurons and 10> synapses
= Energy subdivides into two components

= Memory access energy (energy per bit x bits)
" Options: non-adiabatic DRAM PIM, adiabatic memory, NVIDIA GTX 750 Ti

= Synapse evaluation energy (depends on number of bits precision)
= Options: TFET and extrapolated CMOS, NVIDIA GTX 750 Ti

= Result
= Non-adiabatic DRAM about 2000x more energy efficient than GPU
= Additional 50x more efficient with adiabatic memory
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Exemplary ALU

= Note that this is neither a microprocessor nor a GPU

Storage array format:

Synapse value: 8 bits as signed integer, but | Green Red
often interpreted at a higher level as a pointer pointer
fixed point number code code
word word
12 bits total: 8 bits + 2 bits + 2 bits
ALU (one for each 12 storage bits):
Array 2> < Array < Array write
read data| | code words data
Left I Right
shift shift
out; 16-bit register out;
right A left
shift in shift in
16-bitt, ' [+
—> <

A

v 16-bitt, < Control unit




Performance on Deep Learning example

Memory GTX 750 Ti DRAM Adiabatic Mem
0.1 nj/bit 46.0 fj/bit 0.9 fj/bit
Logic type
TFET 1.0 nj 552.0 fj 10.9 fj
1.3 fj/synapse 0.0] 1.3 fj 1.3 1]
12 bits needed 1.0 nj 553.3 fj 12.2 fj
20.8 mw 11.1 kw 244.3 w
CMOS HP 1.0 n; 552.0 fj 10.9 fj
21.8 fj/synapse 0.0] 21.8 fj 21.8 fj
12 bits needed 1.0 nj 573.7 fj 32.7 fj
20.8 mw 11.5 kw 653.2 w
TFET 21 bits 2.2 nj 1150.0 fj 22.7 fj
7.7 fi/synapse 0.0] 7.7 fj 7.7 fj
25 bits needed 2.2 nj 1157.6 fj 30.4 fj
43.4 mw 23.2 kw 607.9 w
CMOS HP 21 bits 2.2 nj 1150.0 fj 22.7 fj
127.8 fj/synapse 0.0 127.8 fj 127.8 fj
25 bits needed 2.2 nj 1277.7 fj 150.5 fj
43.4 mw 25.6 kw 3010.2 w

Line 1: Femto joules to access memory for one synapse
Line 2: Femto joules logic energy to act on one synapse
Line 3: Sum of previous two lines
Line 4: System energy (watts, kilowatts, megawatts)
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Note: NVIDIA
GTX 750 Tiis
memory
bandwidth
limited so the
logic energy is
ignored.
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Outline

= Preview

= |mproving power efficiency without changing devices
= Architecture

= Programming

= Performance analysis of example




Data model for Processor-In-Memory-and-
Storage (PIMS)

A. von Neumann model with input/output:

O

B. Processor-In-Memory-and-Storage:

Read input

Parse

Process with YN efficiency boost
Format

Write output

Vi —Read- ot
Parse
Process with YN efficiency boost

Format

—yriteoutpot

C. Persistent object store of data in form for optimal access:

—Read- ot
—Rearse—

Process with YN efficiency boost
—Format—

—Arite-ottput
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Is this a memory technology or a
processor technology?

Answer: Both
= PIMS + optimal adiabatic scaling applies to processing node

and memory

= |f problem AND DATA have parallelism, PIMS + optimal adiabatic
scaling can exploit it with full power-efficiency boost discussed

= |f problem, data, or algorithm lack parallelism, the available
throughput boost shifts from VN to 1 uniformly
= Actually N%2, where data dimensionality is &
= A fully serial program has 6=0
= Brains get away without a fast thread accelerator, but it

became an impediment so we invented the computer
= So | propose a system with a spectrum of speeds
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Final summary

FastCPU Gen1l Gen N Exploded view:
Clock 3GHz | 100 MHz | 10 MHz (100 layers, see below)
Devices 1010 10%3 10%°
Stack x 1x1 |10x100 | Molecular|  Stacked PIMSB,C,
Layers assembly? D,EFGHIJ
Ops/joule | 1x 30x 300x
PIMS 3D storage

Fast thread | .1 layers A1-A100
penalty
Parallelism 3000 30,000 PIMS replication unit
boost

008 PIMS logic layer A
Total 1x 30,000x | 300,000x Fast thread CPU
throughput
Power 100W | 100W 100W

Heat sink
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Conclusions

= |s “Moore’s Law ending”?
= Continued manufacturing cost reductions by exploiting 3D have a lot of upside
= Whether to call it Moore’s Law is a marketing decision
= 3D and new device
= A new transistor-like device is unlikely to restart Moore’s Law (not in talk)
= However, 3D manufacture could restart Moore’s Law even with CMQOS
= New devices could be useful for other reasons
= Devices for other functions, like memory
= New transistor-like devices whose benefit is more efficient manufacture
= Programming
= Presented one programming example in this talk (deep neural network)

= One example meets programmability standard of parallel computers at
introduction

= Question: Is a deep learning neural network Turing complete? Hmmm. Alan
Turing used his deep learning neural network to create the Turing Machine as
a tool, forming an argument that a neural network is as general as a Turing
Machine



