
Scaling Beyond Moore's Law with
Processor-In-Memory-and-Storage (PIMS)

Erik P. DeBenedictis

1

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

/*No public release at the moment
SAND SAND2014-XXXXX C*/

SAND2014-19930PE

2

What I will do in this talk

 Describe a plot line for a story
 “With imagination, the progress of Moore’s Law can continue”

 Tell a specific story consistent with the plot
 Optimal adiabatic scaling +

 3D manufacturing +

 Processor-In-Memory-and-Storage (PIMS) +

 Deep Learning applications example =

 Example of Beyond Moore’s Law computing

 Challenges to audience
 Make your own story consistent with the plot line

 Rumors of relevance to evolving events ??

Total
throughput

3

PIMS replication unit

*** PREVIEW ***

Fast thread CPU
PIMS logic layer A

PIMS 3D storage
layers A1-A100

Stacked PIMS B, C,
D, E, F, G, H, I, J

Heat sink

Clock

Fast CPU Gen 1

Devices

Stack 
Layers

Ops/joule

Fast thread
penalty

Parallelism
boost

3 GHz 100 MHz 10 MHz

1010 1013 1015

1  1 10  100 Molecular
assembly?

1 30 300

.1

3000 30,000

1 30,000 300,000

Gen N

Power 100W 100W 100W

Exploded view:

(100 layers, see below)

 Samsung V-NAND

4

Backup: stacking  layering &
end of Moore’s Law

http://www.pcper.co
m/reviews/Storage/
Samsung-850-Pro-
512GB-Full-
Review-NAND-
Goes-3D

http://www.engadget.com/2013/04/03/hybrid-
memory-cube-receives-its-finished-spec/Nature

Layering adds additional layers of
devices during processing

Stacking connects completed chips
with Through-Silicon-Vias (TSVs) in an
additional processing step

 HP Memristor

 Hybrid memory cube

 Disagreement on end of Moore’s Law

 Some say it ended because of 2D
feature limits reaching quantum scale

 Others exploiting third dimension

5

Outline

 Preview

 Improving power efficiency without changing devices

 Architecture

 Programming

 Performance analysis of example

 Computer system model with integrated I/O

 Chip

 Size expectations for 128 Gb

 10241024 bits/memory bank

 128128 banks/chip

6

Design for energy management

ALU ALU

ALU ALU

 Design around fixing competitor’s
weakest features:

 Von Neumann bus/bottleneck

 CV 2 losses

 Make principal energy pathway
into a resonant circuit

 Recycle the energy that the
competitor’s system turns into
heat

Inductor

 Memory
bank

Source
of loss

(2nd VG)

7

Backup: adiabatic memory (low) maturity level

 TRL 3 or 4 for Charge Injection
Devices (CID). TRL definitions:

 3. Analytical and experimental
critical function and/or
characteristic proof of concept

 4. Component and/or
breadboard validation in
laboratory environment

 Above research is for charge
injection devices. Author does
not see a theoretical reason why
it could not work for memristors
and flash

 Resonators and inductors ought
to be OK

 Source

 Energy-recycling row drive

 Result 85 energy efficiency
improvement

8

Energy efficiency can depend on clock rate

 David Frank (IBM) discussed
adiabatic and reversible
computing at RCS 2, where
energy efficiency varies by clock
rate

 Adiabatic circuits have behavior
close to

 Energy/op  f (clock rate)

 Power  f 2

 This would be equivalent to slope
1 on chart at left

 This effect depends on

 Adiabatic circuitry

 Devices – 11 nm adiabatic CMOS
and nSQUID on David Frank’s
chart, but many other options

 Let’s work with this

From David Frank’s presentation at RCS 2; viewgraph 23. “Yes, I'm ok with the
viewgraphs being public, so it's ok for you to use the figure. Dave” (10/31/14)

 Impact of manufacturing cost

 At RCS 2, David Frank put forth
the idea that a computer costs
should include both purchase
cost and energy cost.

 However, let’s adapt this idea to
a situation where manufacturing
cost drops with time, as in
Moore’s Law

 Let’s plot economic quality of a
chip:

1
,0

0
0

1
7

,1
9

1

2
9

5
,5

2
1

5
,0

8
0

,2
1

8

8
7

,3
3

2
,6

1
6

1
,5

0
1

,3
1

0
,7

2
9

2014

2030
2046

100

1,000

10,000

100,000

9

A plot will reveal what we will call
“optimal adiabatic scaling”

Optimal Adiabatic
Scaling

Clock rate f Hz

Zetta Gate-ops
per dollar

$purchase + $energy(f
2)

Opslifetime(f)Qchip =

$energy = Cf 2 (A, B, and C constants)

Opslifetime = Bf, and

Where $purchase = A 2-tyear/3

 Assume manufacturing costs
drops to ½ every three years

 Top of ridge rises with time

1
,0

0
0

1
7

,1
9

1

2
9

5
,5

2
1

5
,0

8
0

,2
1

8

8
7

,3
3

2
,6

1
6

1
,5

0
1

,3
1

0
,7

2
9

2014

2030
2046

100

1,000

10,000

100,000
Optimal Adiabatic
Scaling

Clock rate f Hz

Reversible
computing

Period of rapidly
rising clock rate
(through ~2003)

Dual core
Single core

Quad core

Year

Zetta Gate-ops
per dollar

 Prior to around 2003, purchase
costs dominated energy

 The economically enlightened
approach would be to raise clock
rate, which happened

 Around 2003, technology went
over the optimal point

 Multi-core was the technical
remedy to the economic
problem – had lower clock rate

 Reversible computing would be
an advance in the right direction,
but too extreme for now

Backup: historical context and
reversible computing

10

11

How to derive a scaling rule

$100 circuit board

$20 chip;
K devices

$20 chip;
4K devices

 Chip vendor says: “How would
you like a chip with 4 as many
devices for the same price?”

 Optimal adiabatic scaling says:
 Cut clock rate to 1/4 (halve)

 Power per device drops to 1/4

 Power per chip stays same

 Throughput doubles: 4 as many
devices runn at 1/4 the speed,
for a net throughput increase of
4

 “Throughput” is in accordance
with the way throughput is
measured for semiconductors,
which does not include effects of
architecture and algorithms
(which we discuss later)

 To make a scaling rule, replace
“4” with 2 (line width scaling)

12

Resulting scaling scenario
(standard chart with additional column)

Lgate

W, Lwire

V

C

Ustor = ½ CV2

f

Ntran/core

Ncore/A

Pckt

f Ntran Ncore

P/A

1/ 1/ 1/ 1/ 1/

1/ 1/ 1/ 1 1/

1/ 1 1 1 1

1/ 1/ 1/ 1 1/

1/ 1/ 1/ 1 1/

1*

N†

1/N=1/‡

1

1

 1 1 1 1/N=1/

 1 1 1

 1 1 N=

 1 1 1/N=1/

 1 1§

1  N=

Const
field

Max f Const f Const f,
Ntran

Multi
core

Constant V Optimal
Adiabatic
Scaling

Theis and Solomon

* Term redefined to be line
width scaling; 1 means no line
width scaling
† Term redefined to be the
increase in number of layers;
previously was 1 for no scaling
‡ Term redefined to be heat
produced per step. Adiabatic
technologies do not reduce
signal energy, but “recycle”
signal energy so the amount
turned into heat scales down
§ Term clarified to be power
per unit area including all
devices stacked in 3D

Ref: T. Theis, In Quest of the “Next
Switch”: Prospects for Greatly
Reduced Power Dissipation in a
Successor to the Silicon Field-Effect
Transistor, Proceedings of the IEEE,
Volume 98, Issue 12, 2010

New

If C and V stop
scaling, throughput
(f Ntran Ncore) stops
scaling.

Under optimal adiabatic
scaling, throughput
continues to scale even
with fixed V and C

13

Outline

 Preview

 Improving power efficiency without changing devices

 Architecture

 Programming

 Performance analysis of example

 Computer system model with integrated I/O

14

Need a new architecture; von Neumann
architecture won’t do

 Optimal adiabatic scaling proportions
 Device count scales up by N (N = 2)

 Clock rate scales down by 1/N

 Throughput scales up by N  1/N = N

 The von Neumann architecture cannot exploit this throughput
 Processor and memory contribute independently to performance

 Slower computer with more memory – not viable

 We need an architecture whose performance is the product
of memory size and clock rate
 Processor-in-memory?

 Easily said, but we need a specific architecture that
scales properly and has good generality

 We class this as an “ALU on column” “processor-in-memory” (PIM)
architecture, with persistent storage

 We use PIM as a descriptive phrase, but it is often used as a name for their
specific architecture (GilgaMesh, DIVA, etc.)

 Example chip (one layer of stack):

 Architecture characteristics

 Like a storage-augmented
systolic array

 Must be adiabatically clocked,
which is mainly a constraint on
the memory

 Replication unit described as
GPU--

1 Megabit
adiabatic
memory or
storage

ALUs

In
s
tr

u
c
ti
o
n

…

…

Chip is 128128
array of above

Equivalent density to 128 gb Flash

15

Backup: Processor-In-Memory-and-Storage
(PIMS)

 Computer system clock rate grew
at about the square root the rate
of storage capacity

16

What applications scale like PIMS?

Growth rate of HDD storage
space compared to clock rate
using Apple consumer products
(1984-2001). From Wikipedia,
which cites the diagram to left
as © Creative Commons.

 Brain CPU throughput grows at ¾
power of storage capacity

 Which is consistent because
brains get bigger too

Synapses Neurons
Roundworm 7.50E+03 3.02E+02
Fruit fly 1.00E+07 1.00E+05
Honeybee 1.00E+09 9.60E+05
Mouse 1.00E+11 7.10E+07
Rat 4.48E+11 2.00E+08
Human 1.00E+15 8.60E+10

Synapses (storage)

N
e
u
ro

n
s
 (

th
ro

u
g
h
p
u
t)

Source:
Wikipedia

17

Outline

 Preview

 Improving power efficiency without changing devices

 Architecture

 Programming

 Performance analysis of example

 Computer system model with integrated I/O

 Neural networks frequently
compute as sparse matrices

 Vector-matrix multiply

 Delta learning rule

 matrix += vector outer product

 Efficiency example loads sparse
matrix at 45 angle

 Architecture encodes sparse
matrix structure in
memory/storage array

 Permits MIMD PIM operation
with high power efficiency

 Apparently novel

18

Go right for rows

Memory array

Step 1

Step 2

Step n

a
‘y’

a
‘y’

w00 w01w10

w20 w02w11 w12

w21 w13w22w31

a
‘y’

a
‘y’

a
‘y’

+ + ++ +

Memory
array

ALUs

Wait zone

PIMS example: sparse matrix for
neural networks, Deep Learning, etc.

w00

w10 w01

19

Programming a dense vector-matrix multiply

 
x0


x1

 
y0

Dance floor

Balcony

Memory
array

Go right for rows

Memory array

Step 1

Step 2

Step n

 Init: Ladies have vector element;
gents have zero accumulation

 Program: Ladies multiply memory
output by their vector element,
pass to gent; gent adds to
accumulating sum; ladies step
right; gents step left

 Dance hall model

Note: This program only uses half the memory locations; better algorithm
would use a hexagonal layout, but is too complex for PowerPointWx = y; gent w00 x0 then w10 x0; lady y0 = w00 x0 + w01 x1

20

Backup (embedded spreadsheet)
x A y

1 2 3 4 1 0 0 2 = 25 12 6 17
0 0 3 0
0 4 0 5
6 0 0 0

Timestep 1:
x0 1

y0 0

Timestep 2: a00 1
x1 2 x0 1

y0 1 y1 0

Etc. a10 0 a01 0
x2 3 x1 2 x0 1

y0 1 y1 0 y2 0

a20 0 a11 0 a02 0
x3 4 x2 3 x1 2 x0 1

y0 1 y1 0 y2 0 y3 0

a30 6 a21 4 a12 3 a03 2
x3 4 x2 3 x1 2 x0 1
y0 25 y1 12 y2 6 y3 2

a31 0 a22 0 a13 0
x3 4 x2 3 x1 2

y0 25 y1 12 y2 6 y3 2

a32 0 a23 5
x3 4 x2 3

y1 12 y2 6 y3 17

a33 0
x3 4

y2 6 y3 17

y3 17

Vector-matrix multiply on left
implemented by dataflow-like spreadsheet
below.

Note: the yj's are

updated, so they do
not all have the same
value

1
st
 cell

column
above, as
it evolves
with time

2
nd

 cell
column
above, as
it evolves
with time

3rd cell,
and so on

Note on above: this diagram is
only a spreadsheet, but you
may think of a row of x's and
y's as a register that shifts right
and left each time step; the a's
do not shift (see arrows).

Dance floor

Balcony

Memory
array

Dancers

Wait zonea
‘y’

a
‘y’

w00 w01w10

w20 w02w11 w12

w21 w13w22w31

a
‘y’

a
‘y’

a
‘y’

+ + ++ +

Memory
array

ALUs

Wait zone



21

  

 

 Ladies and gents are additionally
given an “appointment card”
telling them to appear n1 steps
away n2 steps later

 The appointment card may
require them to wait in a wait
zone

 Dance hall model

Extreme Multiple Instruction
Multiple Data (MIMD)

22

Backup (embedded spreadsheet)
x A y

1 2 3 4 1 2 = 25 12 6 17
3

4 5
6

x0 1
y0 0

a00 1
x1 2 x0 1

y0 1 y1 0

x2 3
y2 0

x3 4
y3 0

a30 6 a21 4 a12 3 a03 2
x3 4 x2 3 x1 2 x0 1
y0 25 y1 12 y2 6 y3 2

y0 25

a23 5
x2 3

y1 12 y3 17

y2 6

y3 17

Previous matrix has been made sparse.
Expressions in the yellow spreadsheet
cells have been changed to jump over zero
entries (e. g. green arrow).

The spreadsheet program has a
sparse matrix representation
internally but a spatially
significant distribution in the
spreadsheet surface

 Dance hall model

Dance floor

Balcony

Memory
array

Dancers

Wait zone

23

 The memory array holds a
representation of a general
function, using operators and
communications.

 Ladies, gents, dogs, cats, etc.
implement the primitive
operators and interconnect

 Possible types of operators

 Booleans logic gates (FPGA)

 Arithmetic (register transfer)

 Perceptrons (neural network)

General programming

 

   

24

Compiling

h

c

g

ed

f

a

b



h

c g

ed

f

a

b

 Dance hall model

Add 

 System has graph layout
functions built in

 Sugiyama (GraphViz)-type
algorithms

 With dynamic addition/
removal

 Activities illustrated

 Layout a parse tree

 Add a new operation to an
existing parse tree
(animation)

Parse tree Control codes
in PIMS
memory

25

Backup (embedded spreadsheet)
x A y

1 2 3 4 1 2 = 25 12 6 17
3

4 5
6

Step 1. Initializaton/input Zeros

x2 3 x1 2 x0 1
y0 0

Step 2. Execution and additional input
a00 1 a12 3

x3 4 x0 1 x1 2
y0 1 y2 6 y1 0

w z (x2) w z

Step 3. Execution only
a30 6 a03 2
x3 4 x0 1
y0 25 y3 2 y2 0

w z (x2) w z (y2')

Step 4. Execution and output
a21 4 a23 5
x2 3 x2 3
y1 12 y3 17 y3 0

y0 25 w z w z (y2')

Step 5. Output

y1 12 y2 6 y3 17

Arrows indicate data flow; wth no data flow
faster than nearest neighbor per step. Sometimes
dance steps for ladies and gents.

GraphViz:

Programming model

 Like a neural network

 You don’t just store collections of
data to be perused by a von
Neumann machine somewhere
else

 Instead, you store data in the
form of its use, such as storing a
table of data along with
instructions on how to search it

 Like a self-modifying FPGA

 You start with the equivalent of
an empty FPGA

 To program it, you feed it a list of
gates to be added incrementally
to the gate diagram inside

 May also delete gates

 The PIMS chip itself optimizes
the placement in real time

 When done programming, you
can run the PIMS like an FPGA

27

Outline

 Preview

 Improving power efficiency without changing devices

 Architecture

 Programming

 Performance analysis of example

 Computer system model with integrated I/O

28

Performance on Deep Learning example

 Scale to human brain size of 1011 neurons and 1015 synapses

 Energy subdivides into two components
 Memory access energy (energy per bit  bits)

 Options: non-adiabatic DRAM PIM, adiabatic memory, NVIDIA GTX 750 Ti

 Synapse evaluation energy (depends on number of bits precision)

 Options: TFET and extrapolated CMOS , NVIDIA GTX 750 Ti

 Result
 Non-adiabatic DRAM about 2000 more energy efficient than GPU

 Additional 50 more efficient with adiabatic memory

29

Exemplary ALU

 Note that this is neither a microprocessor nor a GPU

8-bit


16-bit
+

16-bit t0

16-bit t1

16-bit register

Array 
read data

 Array write
data

Left
shift
out;
right
shift in

Right
shift
out;
left
shift in

Control unit

 Array
code words

Green
pointer
code
word

Red
pointer
code
word

Synapse value: 8 bits as signed integer, but
often interpreted at a higher level as a
fixed point number

2 bits + 2 bits8 bits +12 bits total:

Storage array format:

ALU (one for each 12 storage bits):

30

Performance on Deep Learning example

0.1 nj/bit 46.0 fj/bit 0.9 fj/bit
Logic type
TFET 1.0 nj 552.0 fj 10.9 fj

1.3 fj/synapse 0.0 j 1.3 fj 1.3 fj
12 bits needed 1.0 nj 553.3 fj 12.2 fj

20.8 mw 11.1 kw 244.3 w
CMOS HP 1.0 nj 552.0 fj 10.9 fj

21.8 fj/synapse 0.0 j 21.8 fj 21.8 fj
12 bits needed 1.0 nj 573.7 fj 32.7 fj

20.8 mw 11.5 kw 653.2 w
TFET 21 bits 2.2 nj 1150.0 fj 22.7 fj

7.7 fj/synapse 0.0 j 7.7 fj 7.7 fj

25 bits needed 2.2 nj 1157.6 fj 30.4 fj
43.4 mw 23.2 kw 607.9 w

CMOS HP 21 bits 2.2 nj 1150.0 fj 22.7 fj
127.8 fj/synapse 0.0 j 127.8 fj 127.8 fj

25 bits needed 2.2 nj 1277.7 fj 150.5 fj

43.4 mw 25.6 kw 3010.2 w
Line 1: Femto joules to access memory for one synapse
Line 2: Femto joules logic energy to act on one synapse
Line 3: Sum of previous two lines

Line 4: System energy (watts, kilowatts, megawatts)

Adiabatic MemDRAMGTX 750 TiMemory
Note: NVIDIA
GTX 750 Ti is
memory
bandwidth
limited so the
logic energy is
ignored.

31

Outline

 Preview

 Improving power efficiency without changing devices

 Architecture

 Programming

 Performance analysis of example

 Computer system model with integrated I/O

32

Data model for Processor-In-Memory-and-
Storage (PIMS)

A. von Neumann model with input/output:

B. Processor-In-Memory-and-Storage:

C. Persistent object store of data in form for optimal access:

Read input
Parse
Process with N efficiency boost
Format
Write output

Read input
Parse
Process with N efficiency boost
Format
Write output

Read input
Parse
Process with N efficiency boost
Format
Write output

33

Is this a memory technology or a
processor technology?

Answer: Both

 PIMS + optimal adiabatic scaling applies to processing node
and memory
 If problem AND DATA have parallelism, PIMS + optimal adiabatic

scaling can exploit it with full power-efficiency boost discussed

 If problem, data, or algorithm lack parallelism, the available
throughput boost shifts from N to 1 uniformly

 Actually N/2, where data dimensionality is 

 A fully serial program has =0

 Brains get away without a fast thread accelerator, but it
became an impediment so we invented the computer

 So I propose a system with a spectrum of speeds

Total
throughput

34

PIMS replication unit

Final summary

Fast thread CPU
PIMS logic layer A

PIMS 3D storage
layers A1-A100

Stacked PIMS B, C,
D, E, F, G, H, I, J

Heat sink

Clock

Fast CPU Gen 1

Devices

Stack 
Layers

Ops/joule

Fast thread
penalty

Parallelism
boost

3 GHz 100 MHz 10 MHz

1010 1013 1015

1  1 10  100 Molecular
assembly?

1 30 300

.1

3000 30,000

1 30,000 300,000

Gen N

Power 100W 100W 100W

Exploded view:

(100 layers, see below)

35

Conclusions

 Is “Moore’s Law ending”?
 Continued manufacturing cost reductions by exploiting 3D have a lot of upside
 Whether to call it Moore’s Law is a marketing decision

 3D and new device
 A new transistor-like device is unlikely to restart Moore’s Law (not in talk)
 However, 3D manufacture could restart Moore’s Law even with CMOS
 New devices could be useful for other reasons

 Devices for other functions, like memory
 New transistor-like devices whose benefit is more efficient manufacture

 Programming
 Presented one programming example in this talk (deep neural network)
 One example meets programmability standard of parallel computers at

introduction
 Question: Is a deep learning neural network Turing complete? Hmmm. Alan

Turing used his deep learning neural network to create the Turing Machine as
a tool, forming an argument that a neural network is as general as a Turing
Machine

