

Scaling Beyond Moore's Law with Processor-In-Memory-and-Storage (PIMS)

Erik P. DeBenedictis

/*No public release at the moment
SAND SAND2014-XXXXX C*/

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

What I will do in this talk

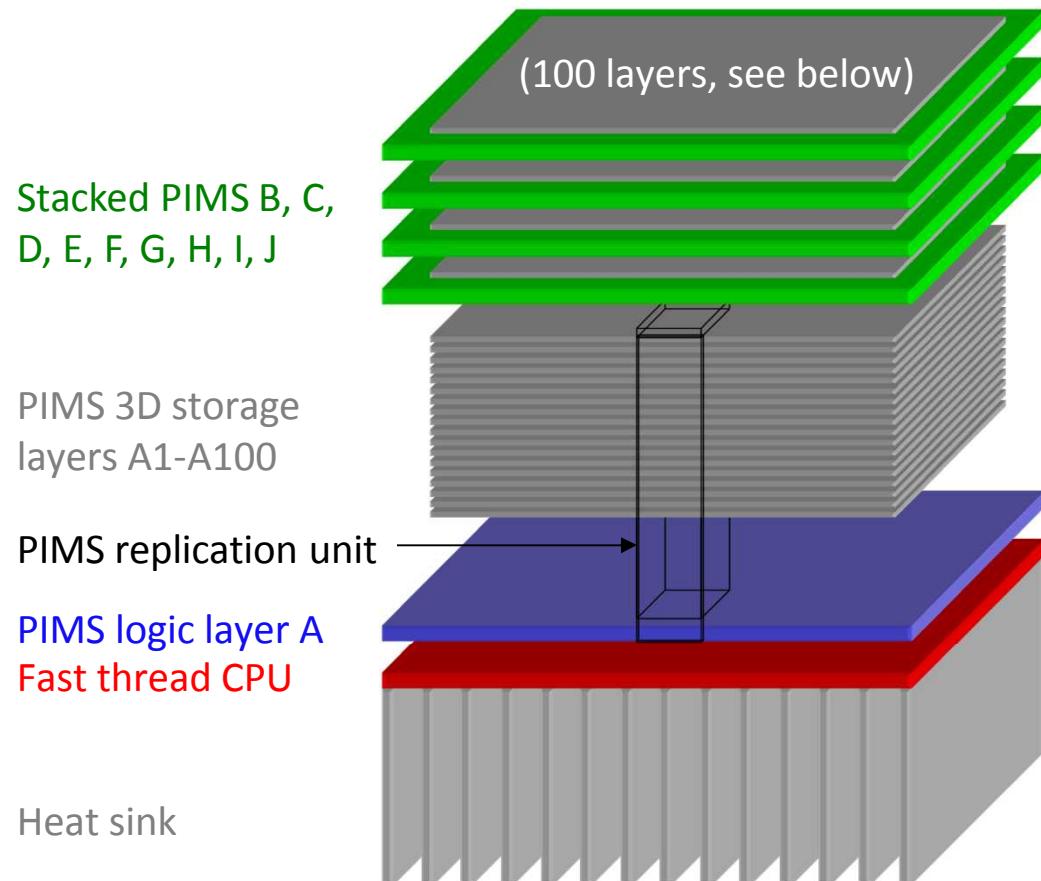
- Describe a plot line for a story
 - “With imagination, the progress of Moore’s Law can continue”
- Tell a specific story consistent with the plot
 - Optimal adiabatic scaling +
 - 3D manufacturing +
 - Processor-In-Memory-and-Storage (PIMS) +
 - Deep Learning applications example =
 - Example of Beyond Moore’s Law computing
- Challenges to audience
 - Make your own story consistent with the plot line
- Rumors of relevance to evolving events ??

*** PREVIEW ***

Fast CPU Gen 1 Gen N

	Fast CPU	Gen 1	Gen N
Clock	3 GHz	100 MHz	10 MHz
Devices	10^{10}	10^{13}	10^{15}
Stack \times Layers	1×1	10×100	Molecular assembly?
Ops/joule	1x	30x	300x
Fast thread penalty	.1		
Parallelism boost		3000	30,000
Total throughput	1x	30,000x	300,000x
Power	100W	100W	100W

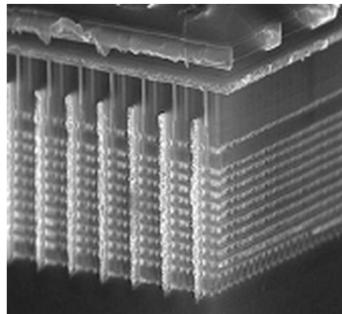
Exploded view:



Backup: stacking ≠ layering & end of Moore's Law

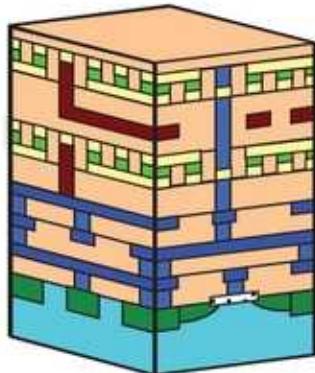
Layering adds additional layers of devices during processing

- Samsung V-NAND



<http://www.pcper.com/reviews/Storage/Samsung-850-Pro-512GB-Full-Review-NAND-Goes-3D>

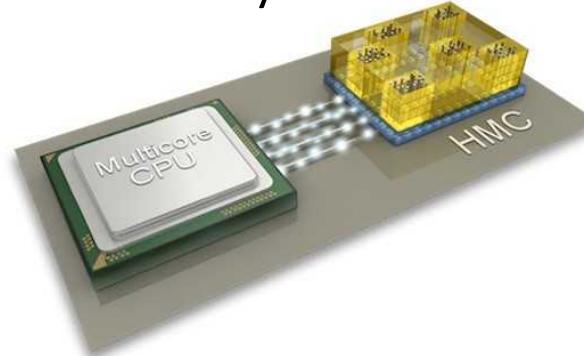
- HP Memristor



Nature

Stacking connects completed chips with Through-Silicon-Vias (TSVs) in an additional processing step

- Hybrid memory cube



<http://www.engadget.com/2013/04/03/hybrid-memory-cube-receives-its-finished-spec/>

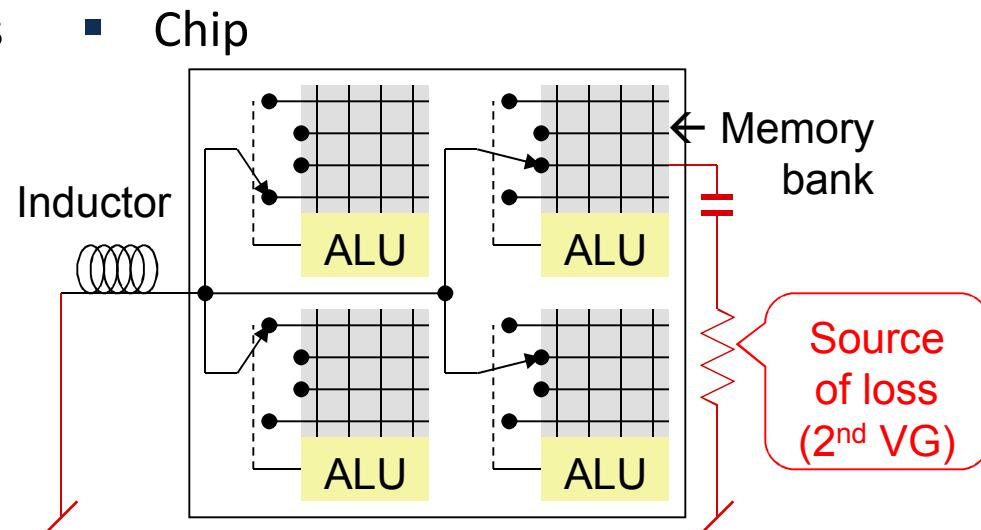
- Disagreement on end of Moore's Law
 - Some say it ended because of 2D feature limits reaching quantum scale
 - Others exploiting third dimension

Outline

- Preview
- Improving power efficiency without changing devices
- Architecture
- Programming
- Performance analysis of example
- Computer system model with integrated I/O

Design for energy management

- Design around fixing competitor's weakest features:
 - Von Neumann bus/bottleneck
 - CV^2 losses
- Make principal energy pathway into a resonant circuit
 - Recycle the energy that the competitor's system turns into heat



- Size expectations for 128 Gb
 - 1024×1024 bits/memory bank
 - 128×128 banks/chip

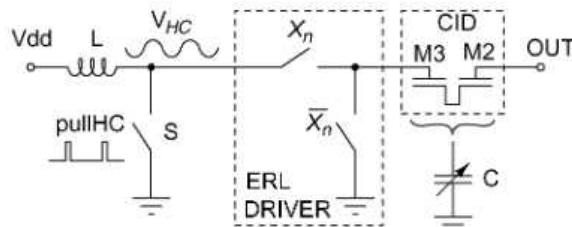
Backup: adiabatic memory (low) maturity level

- Source

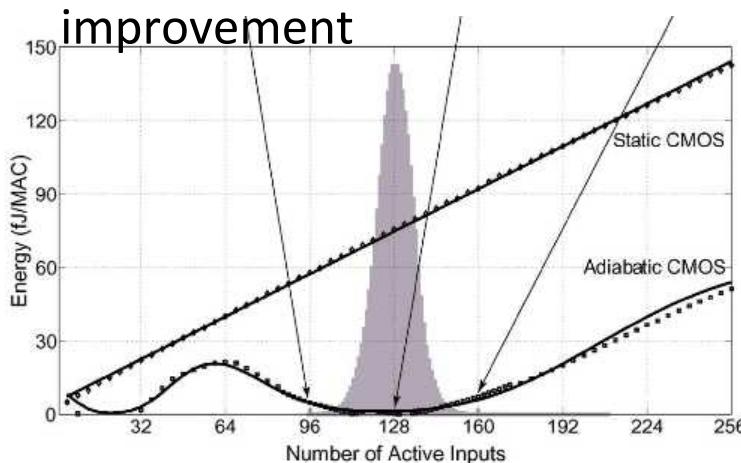
1.1 TMACS/mW Fine-Grained Stochastic Resonant Charge-Recycling Array Processor

Rafal Karakiewicz, Senior Member, IEEE, Roman Genov, Member, IEEE, and Gert Cauwenberghs, Fellow, IEEE

- Energy-recycling row drive



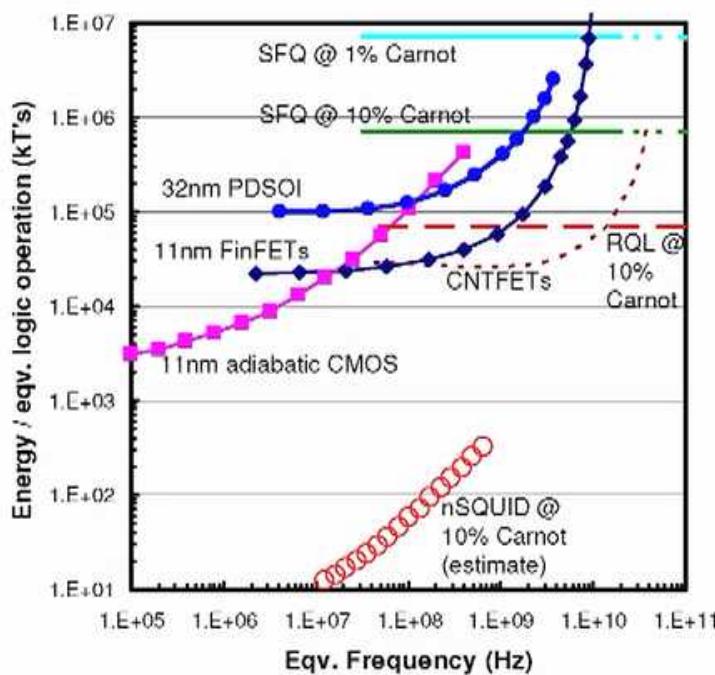
- Result 85× energy efficiency improvement



- TRL 3 or 4 for Charge Injection Devices (CID). TRL definitions:
 - 3. Analytical and experimental critical function and/or characteristic proof of concept
 - 4. Component and/or breadboard validation in laboratory environment
- Above research is for charge injection devices. Author does not see a theoretical reason why it could not work for memristors and flash
- Resonators and inductors ought to be OK

Energy efficiency can depend on clock rate

- David Frank (IBM) discussed adiabatic and reversible computing at RCS 2, where energy efficiency varies by clock rate



- Adiabatic circuits have behavior close to
 - Energy/op $\propto f$ (clock rate)
 - Power $\propto f^2$
- This would be equivalent to slope 1 on chart at left
- This effect depends on
 - Adiabatic circuitry
 - Devices – 11 nm adiabatic CMOS and nSQUID on David Frank's chart, but many other options
- Let's work with this

From David Frank's presentation at RCS 2; viewgraph 23. "Yes, I'm ok with the viewgraphs being public, so it's ok for you to use the figure. Dave" (10/31/14)

A plot will reveal what we will call “optimal adiabatic scaling”

- Impact of manufacturing cost
 - At RCS 2, David Frank put forth the idea that a computer costs should include both purchase cost and energy cost.
 - However, let's adapt this idea to a situation where manufacturing cost drops with time, as in Moore's Law
- Let's plot economic quality of a chip:

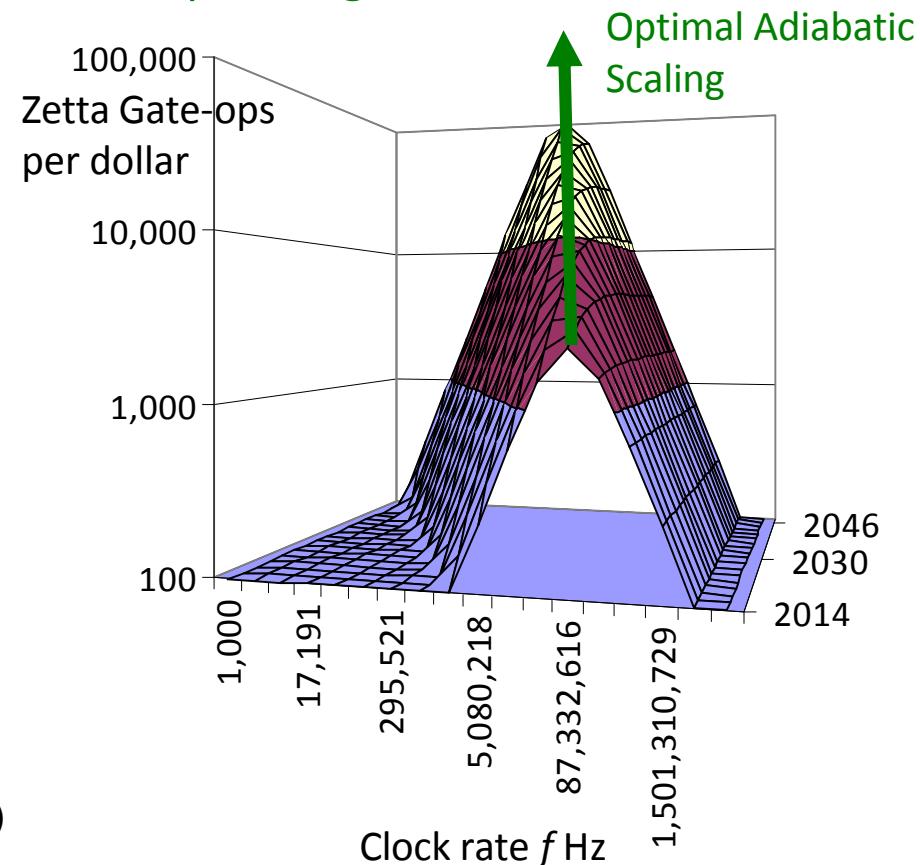
$$Q_{\text{chip}} = \frac{\text{Ops}_{\text{lifetime}}(f)}{\$_{\text{purchase}} + \$_{\text{energy}}(f^2)}$$

Where $\$_{\text{purchase}} = A 2^{-t_{\text{year}}/3}$

$\text{Ops}_{\text{lifetime}} = Bf$, and

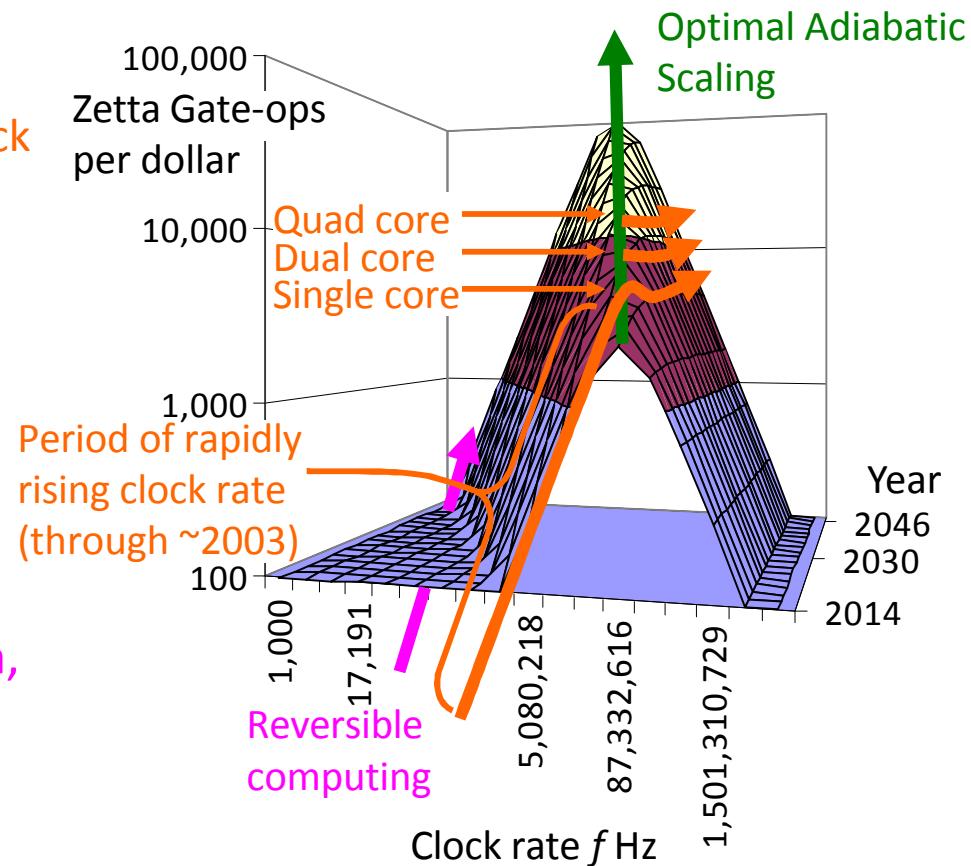
$\$_{\text{energy}} = Cf^2$ (A , B , and C constants)

- Assume manufacturing costs drops to $\frac{1}{2}$ every three years
- **Top of ridge rises with time**



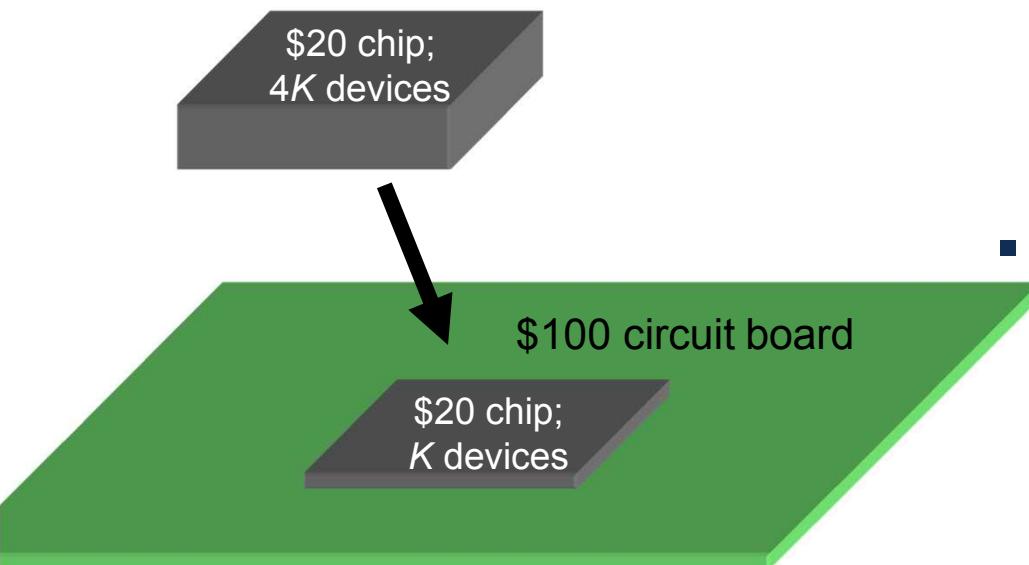
Backup: historical context and reversible computing

- Prior to around 2003, purchase costs dominated energy
 - The economically enlightened approach would be to raise clock rate, which happened
- Around 2003, technology went over the optimal point
 - Multi-core was the technical remedy to the economic problem – had lower clock rate
- Reversible computing would be an advance in the right direction, but too extreme for now



How to derive a scaling rule

- Chip vendor says: “How would you like a chip with $4\times$ as many devices for the same price?”



- Optimal adiabatic scaling says:
 - Cut clock rate to $1/\sqrt{4}\times$ (halve)
 - Power per device drops to $1/4\times$
 - Power per chip stays same
 - Throughput doubles: $4\times$ as many devices run at $1/\sqrt{4}\times$ the speed, for a net throughput increase of $\sqrt{4}\times$
- “Throughput” is in accordance with the way throughput is measured for semiconductors, which does not include effects of architecture and algorithms (which we discuss later)
- To make a scaling rule, replace “4” with α^2 (line width scaling)

Resulting scaling scenario (standard chart with additional column)

If C and V stop scaling, throughput ($f N_{tran} N_{core}$) stops scaling.

	Const field	Constant V				Optimal Adiabatic Scaling
		Max f	Const f	Const f, N_{tran}	Multi core	
L_{gate}	$1/\alpha$	$1/\alpha$	$1/\alpha$	$1/\alpha$	$1/\alpha$	1^*
W, L_{wire}	$1/\alpha$	$1/\alpha$	$1/\alpha$	1	$1/\alpha$	$N=\alpha^2$ [†]
V	$1/\alpha$	1	1	1	1	1
C	$1/\alpha$	$1/\alpha$	$1/\alpha$	1	$1/\alpha$	1
$U_{stor} = \frac{1}{2} CV^2$	$1/\alpha^3$	$1/\alpha$	$1/\alpha$	1	$1/\alpha$	$1/\sqrt{N}=1/\alpha^{\frac{1}{2}}$ [‡]
f	α	α	1	1	1	$1/\sqrt{N}=1/\alpha$
$N_{tran}/core$	α^2	α^2	α^2	1	1	1
N_{core}/A	1	1	1	1	α	$\sqrt{N}=\alpha$
P_{ckt}	$1/\alpha^2$	1	$1/\alpha$	1	$1/\alpha$	$1/\sqrt{N}=1/\alpha$
P/A	1	α^2	α	1	1	1 [§]
$f N_{tran} N_{core}$	α^3	α^3	α^2	1	α	$\sqrt{N}=\alpha$

Under optimal adiabatic scaling, throughput continues to scale even with fixed V and C

* Term redefined to be line width scaling; 1 means no line width scaling

† Term redefined to be the increase in number of layers; previously was 1 for no scaling

‡ Term redefined to be heat produced per step. Adiabatic technologies do not reduce signal energy, but “recycle” signal energy so the amount turned into heat scales down

§ Term clarified to be power per unit area including all devices stacked in 3D

Ref: T. Theis, In Quest of the “Next Switch”: Prospects for Greatly Reduced Power Dissipation in a Successor to the Silicon Field-Effect Transistor, Proceedings of the IEEE, Volume 98, Issue 12, 2010

← Theis and Solomon → New

Outline

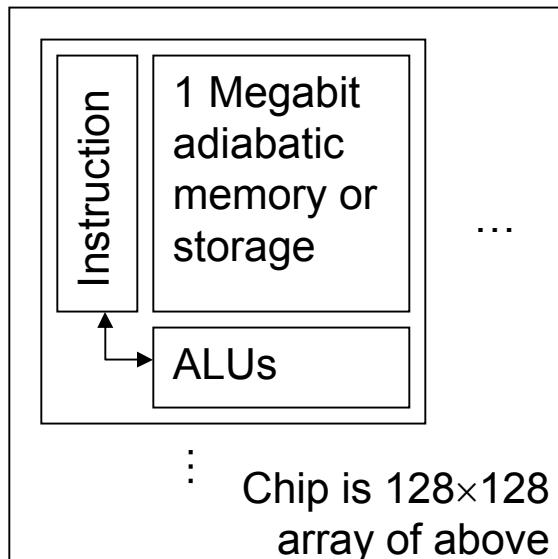
- Preview
- Improving power efficiency without changing devices
- Architecture
- Programming
- Performance analysis of example
- Computer system model with integrated I/O

Need a new architecture; von Neumann architecture won't do

- Optimal adiabatic scaling proportions
 - Device count scales up by N ($N = \alpha^2$)
 - Clock rate scales down by $1/\sqrt{N}$
 - Throughput scales up by $N \times 1/\sqrt{N} = \sqrt{N}$
- The von Neumann architecture cannot exploit this throughput
 - Processor and memory contribute independently to performance
 - Slower computer with more memory – not viable
- We need an architecture whose performance is the product of memory size and clock rate
 - Processor-in-memory?
 - Easily said, but we need a specific architecture that scales properly and has good generality

Backup: Processor-In-Memory-and-Storage (PIMS)

- We class this as an “ALU on column” “processor-in-memory” (PIM) architecture, with persistent storage
 - We use PIM as a descriptive phrase, but it is often used as a name for their specific architecture (GilgaMesh, DIVA, etc.)
- Example chip (one layer of stack):

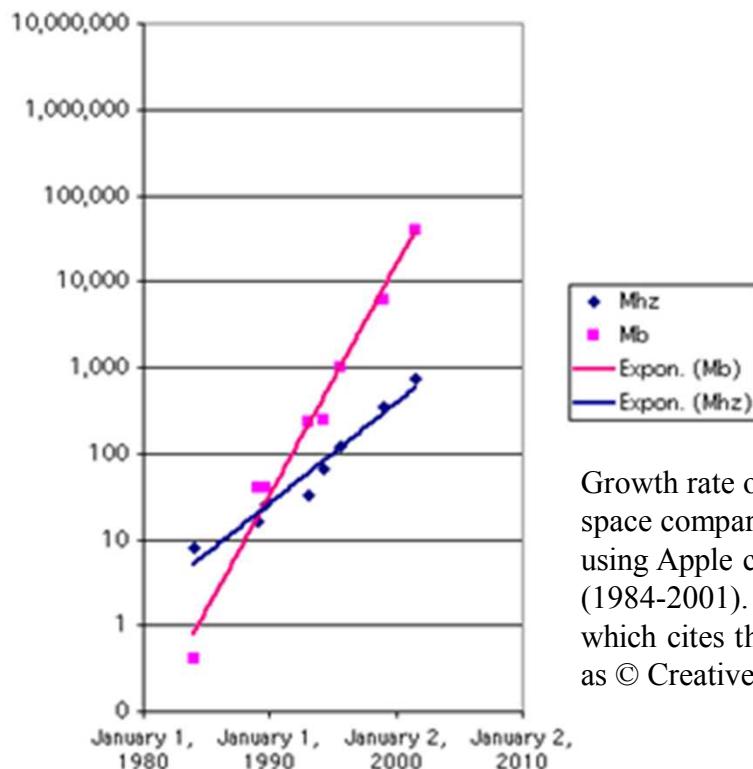


Equivalent density to 128 gb Flash

- Architecture characteristics
 - Like a storage-augmented systolic array
 - Must be adiabatically clocked, which is mainly a constraint on the memory
 - Replication unit described as GPU--

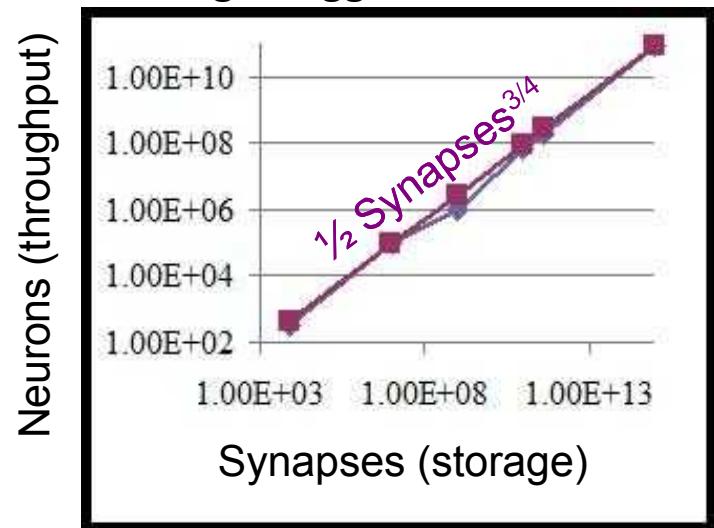
What applications scale like PIMS?

- Computer system clock rate grew at about the square root the rate of storage capacity



Growth rate of HDD storage space compared to clock rate using Apple consumer products (1984-2001). From Wikipedia, which cites the diagram to left as © Creative Commons.

- Brain CPU throughput grows at $\frac{3}{4}$ power of storage capacity
 - Which is consistent because brains get bigger too



Source:
Wikipedia

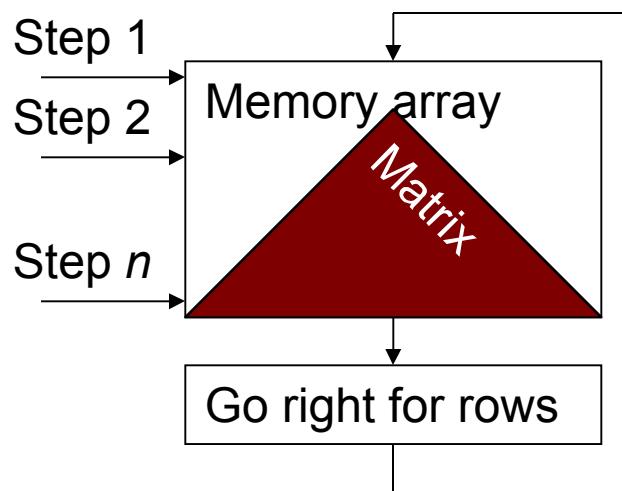
	Synapses	Neurons
Roundworm	7.50E+03	3.02E+02
Fruit fly	1.00E+07	1.00E+05
Honeybee	1.00E+09	9.60E+05
Mouse	1.00E+11	7.10E+07
Rat	4.48E+11	2.00E+08
Human	1.00E+15	8.60E+10

Outline

- Preview
- Improving power efficiency without changing devices
- Architecture
- Programming
- Performance analysis of example
- Computer system model with integrated I/O

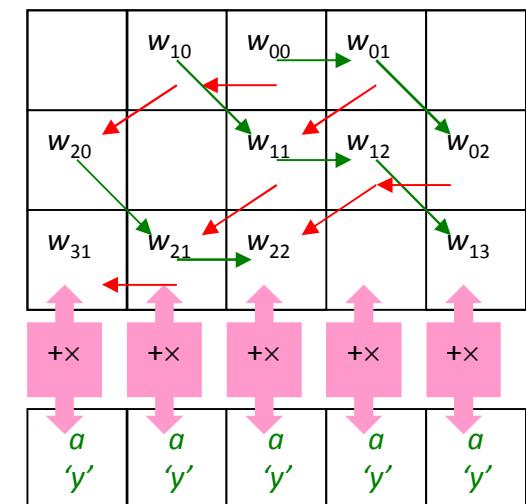
PIMS example: sparse matrix for neural networks, Deep Learning, etc.

- Neural networks frequently compute as sparse matrices
 - Vector-matrix multiply
 - Delta learning rule
 - matrix $+=$ vector outer product
- Efficiency example loads sparse matrix at 45° angle



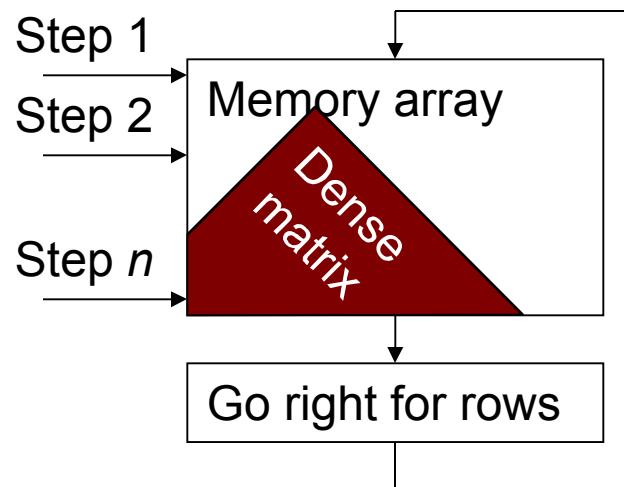
- Architecture encodes sparse matrix structure in memory/storage array
- Permits MIMD PIM operation with high power efficiency
 - Apparently novel

Memory array
ALUs
Wait zone



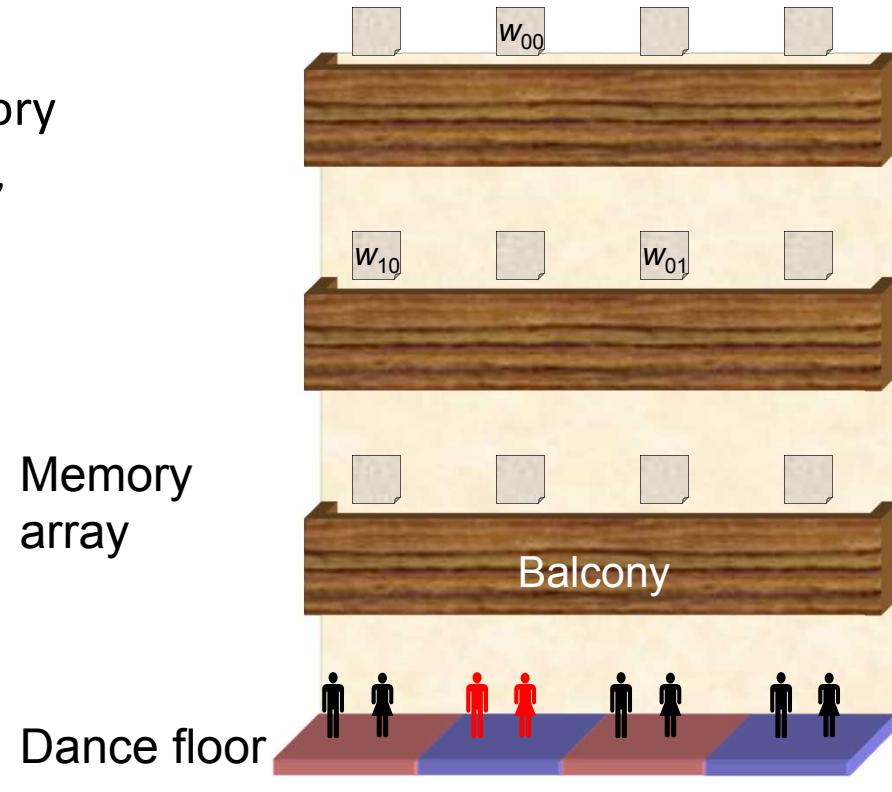
Programming a dense vector-matrix multiply

- Init: Ladies have vector element; gents have zero accumulation
- Program: Ladies multiply memory output by their vector element, pass to gent; gent adds to accumulating sum; ladies step right; gents step left



$Wx = y$; gent $w_{00} x_0$ then $w_{10} x_0$; lady $y_0 = w_{00} x_0 + w_{01} x_1$

- Dance hall model



Note: This program only uses half the memory locations; better algorithm would use a hexagonal layout, but is too complex for PowerPoint

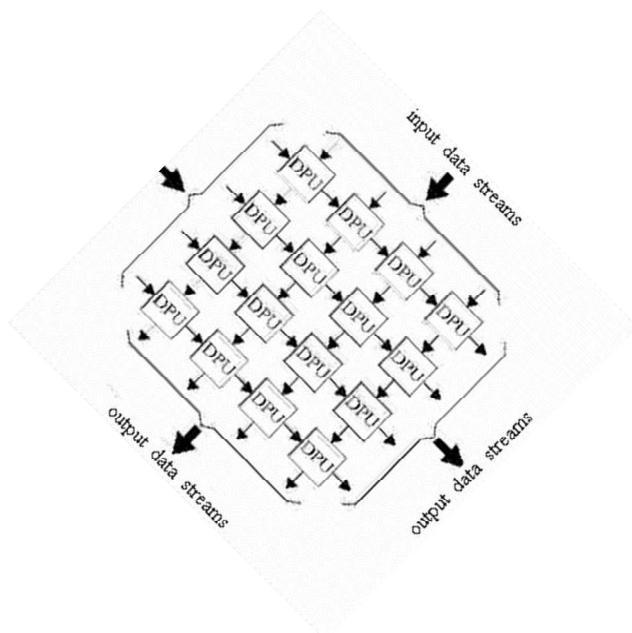
Backup (embedded spreadsheet)

x	1	2	3	4
---	---	---	---	---

A	1	0	0	2
0	0	3	0	
0	4	0	5	
6	0	0	0	

y	25	12	6	17
---	----	----	---	----

Vector-matrix multiply on left implemented by dataflow-like spreadsheet below.



Timestep 1:

$\vdash x_0$	1
--------------	---

$\vdash y_0$	0
--------------	---

Timestep 2:

$\vdash x_1$	2
--------------	---

$\vdash y_1$	0
--------------	---

Etc.

$\vdash x_2$	3
--------------	---

$\vdash y_2$	0
--------------	---

$\vdash x_3$

$\vdash x_3$	4
--------------	---

$\vdash y_3$	0
--------------	---

$\vdash y_0$

$\vdash y_0$	25
--------------	----

$\vdash y_1$	12
--------------	----

1st cell
column
above, as
it evolves
with time

$\vdash x_3$	4
--------------	---

$\vdash y_2$	6
--------------	---

2nd cell
column
above, as
it evolves
with time

$\vdash x_3$	4
--------------	---

$\vdash y_3$	17
--------------	----

3rd cell,
with time
and so on

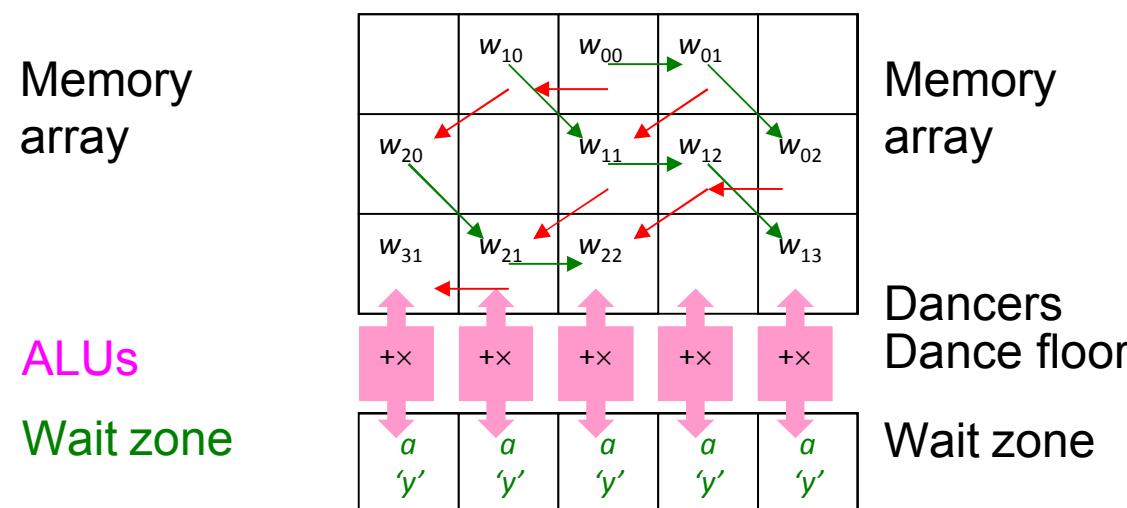
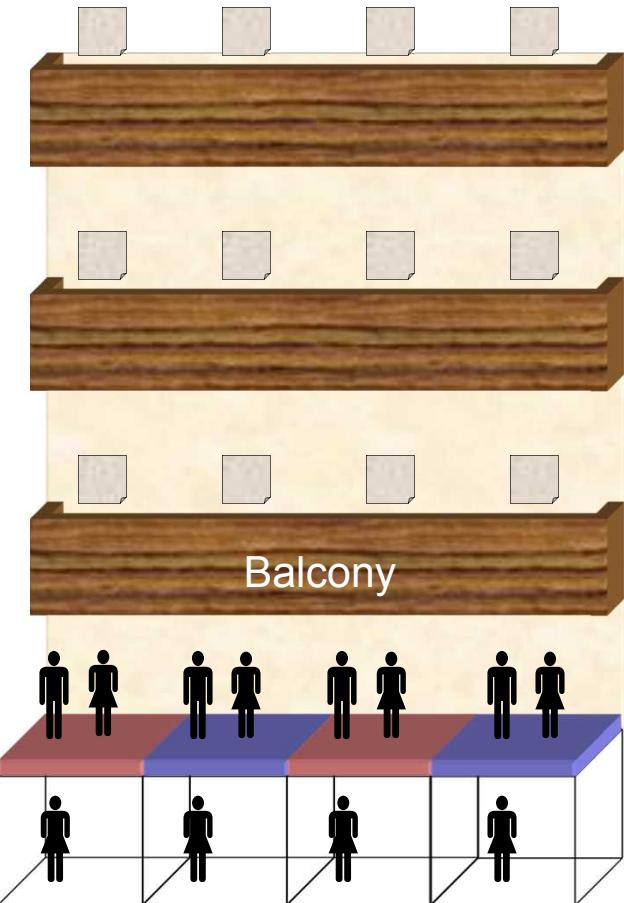
$\vdash y_3$	17
--------------	----

Note: the y_j 's are updated, so they do not all have the same value

Note on above: this diagram is only a spreadsheet, but you may think of a row of x's and y's as a register that shifts **right** and **left** each time step; the a's do not shift (see arrows).

Extreme Multiple Instruction Multiple Data (MIMD)

- Ladies and gents are additionally given an “appointment card” telling them to appear n_1 steps away n_2 steps later
- The appointment card may require them to wait in a wait zone



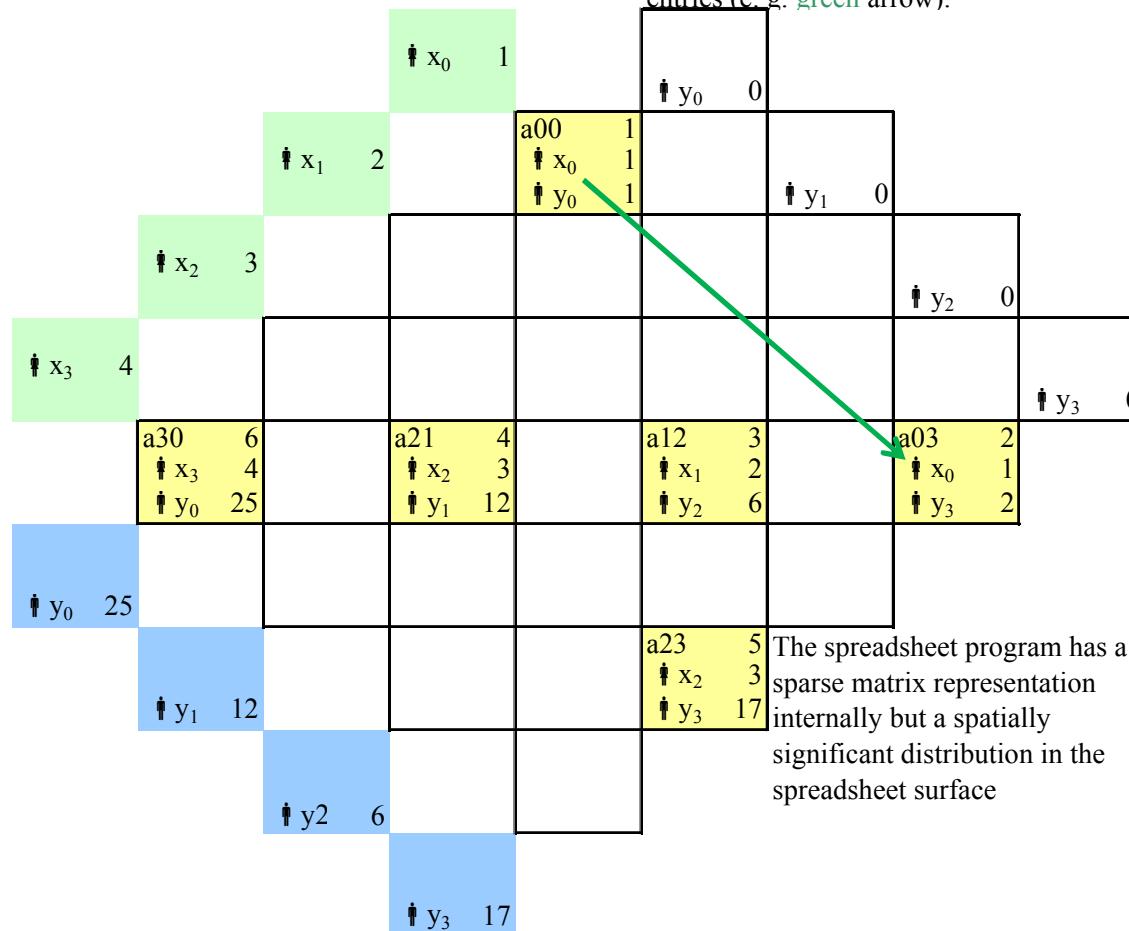
Backup (embedded spreadsheet)

X	1	2	3	4

A	1	2
		3
	4	5
6		

y	25	12	6	17
---	----	----	---	----

Previous matrix has been made sparse. Expressions in the yellow spreadsheet cells have been changed to jump over zero entries (e. g. green arrow).



General programming

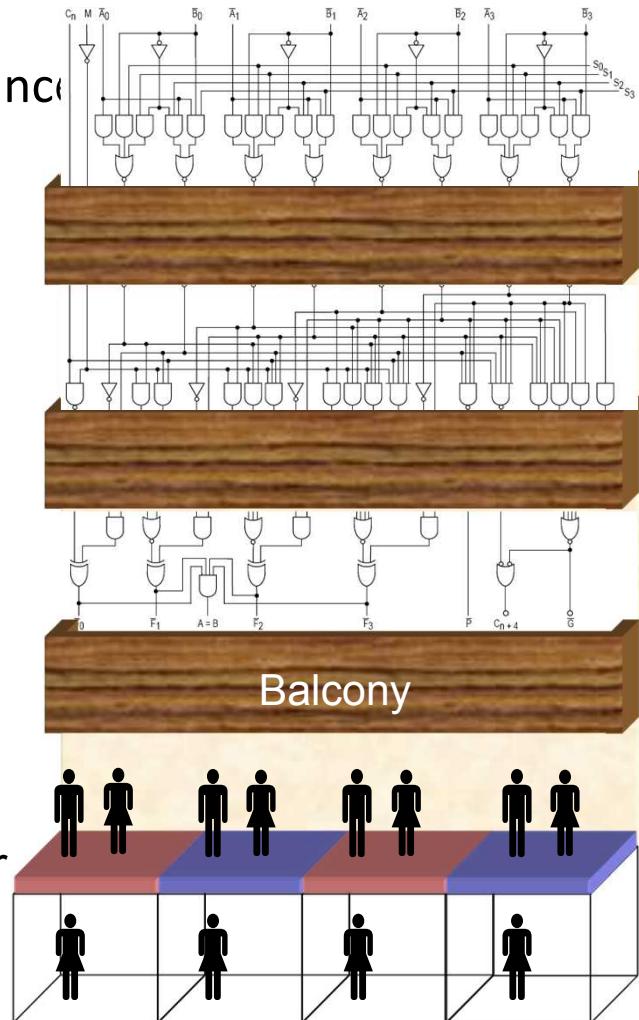
- The memory array holds a representation of a general function, using operators and communications.
- Ladies, gents, dogs, cats, etc. implement the primitive operators and interconnect
- Possible types of operators
 - Booleans logic gates (FPGA)
 - Arithmetic (register transfer)
 - Perceptrons (neural network)

- Dancers

Memory array

Dancers
Dance floor

Wait zone



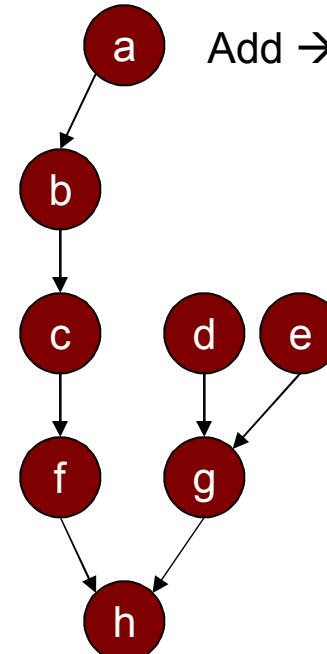
Compiling

- System has graph layout functions built in

- Sugiyama (GraphViz)-type algorithms
- With dynamic addition/removal

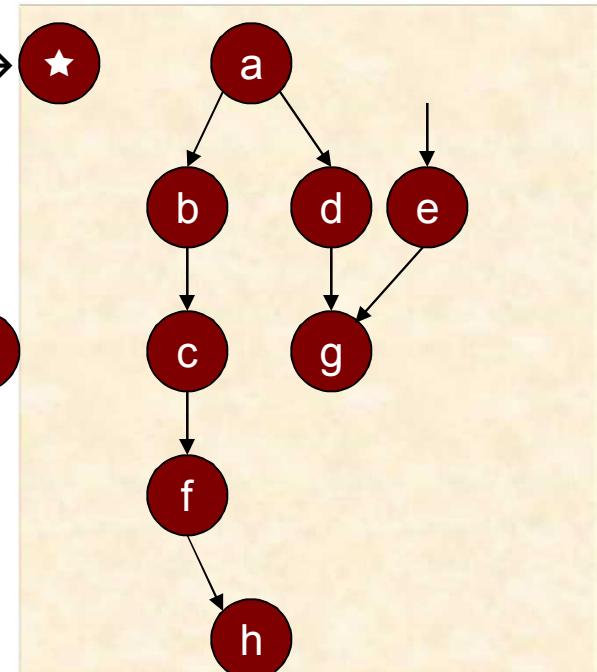
- Activities illustrated

- Layout a parse tree
- Add a new operation to an existing parse tree (animation)



Parse tree

- Dance hall model



Control codes
in PIMS
memory

Backup (embedded spreadsheet)

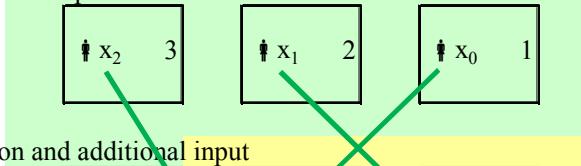
x	1	2	3	4
---	---	---	---	---

A	1		2
		3	
	4		5
	6		

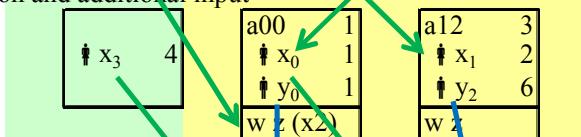
y	25	12	6	17
---	----	----	---	----

Arrows indicate data flow; wth no data flow
faster than nearest neighbor per step. Sometimes
dance steps for ladies and gents.

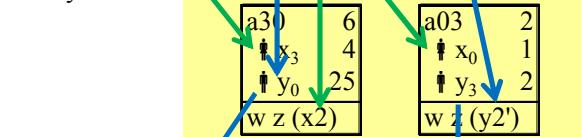
Step 1. Initialization/input



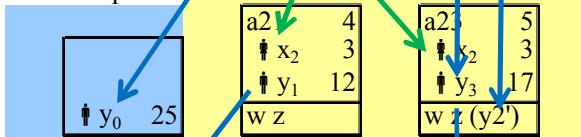
Step 2. Execution and additional input



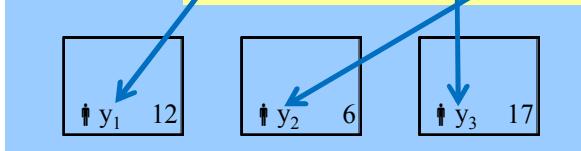
Step 3. Execution only



Step 4. Execution and output

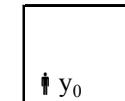
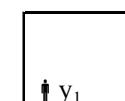
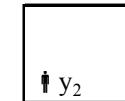
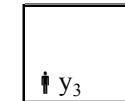
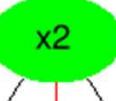
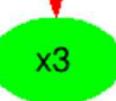
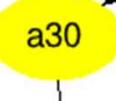
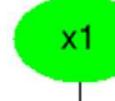


Step 5. Output



GraphViz:

Zeros



Programming model

- Like a self-modifying FPGA
 - You start with the equivalent of an empty FPGA
 - To program it, you feed it a list of gates to be added incrementally to the gate diagram inside
 - May also delete gates
 - The PIMS chip itself optimizes the placement in real time
 - When done programming, you can run the PIMS like an FPGA
- Like a neural network
 - You don't just store collections of data to be perused by a von Neumann machine somewhere else
 - Instead, you store data in the form of its use, such as storing a table of data along with instructions on how to search it

Outline

- Preview
- Improving power efficiency without changing devices
- Architecture
- Programming
- Performance analysis of example
- Computer system model with integrated I/O

Performance on Deep Learning example

- Scale to human brain size of 10^{11} neurons and 10^{15} synapses
- Energy subdivides into two components
 - Memory access energy (energy per bit \times bits)
 - Options: non-adiabatic DRAM PIM, adiabatic memory, NVIDIA GTX 750 Ti
 - Synapse evaluation energy (depends on number of bits precision)
 - Options: TFET and extrapolated CMOS , NVIDIA GTX 750 Ti
- Result
 - Non-adiabatic DRAM about $2000\times$ more energy efficient than GPU
 - Additional $50\times$ more efficient with adiabatic memory

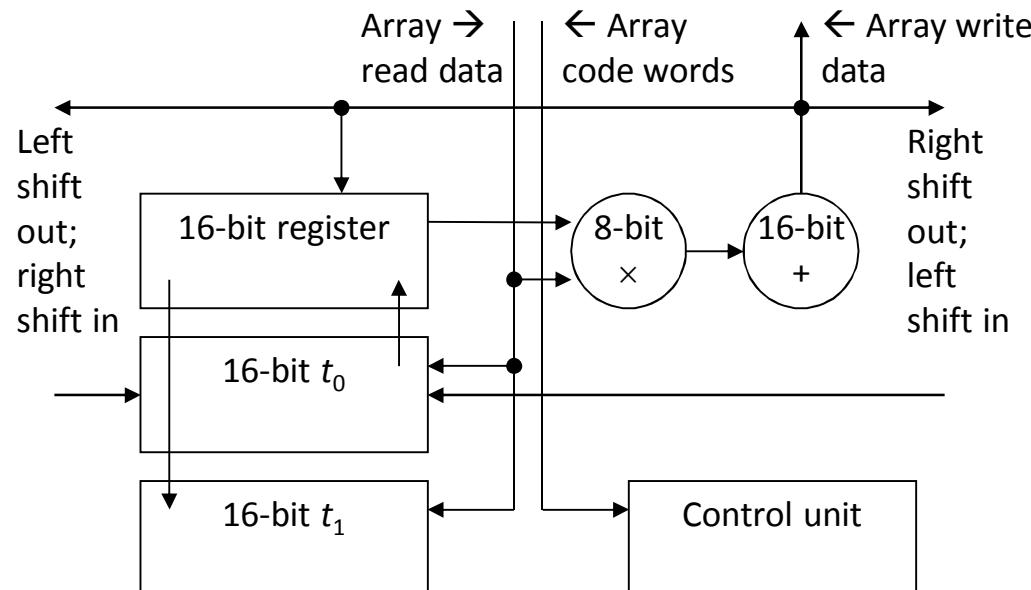
Exemplary ALU

- Note that this is neither a microprocessor nor a GPU

Storage array format:

Synapse value: 8 bits as signed integer, but often interpreted at a higher level as a fixed point number	Green pointer code word	Red pointer code word
12 bits total: 8 bits + 2 bits + 2 bits		

ALU (one for each 12 storage bits):



Performance on Deep Learning example

Memory	GTX 750 Ti 0.1 nj/bit	DRAM 46.0 fj/bit	Adiabatic Mem 0.9 fj/bit
Logic type			
TFET 1.3 fj/synapse 12 bits needed	1.0 nj 0.0 j 1.0 nj 20.8 mw	552.0 fj 1.3 fj 553.3 fj 11.1 kw	10.9 fj 1.3 fj 12.2 fj 244.3 w
CMOS HP 21.8 fj/synapse 12 bits needed	1.0 nj 0.0 j 1.0 nj 20.8 mw	552.0 fj 21.8 fj 573.7 fj 11.5 kw	10.9 fj 21.8 fj 32.7 fj 653.2 w
TFET 21 bits 7.7 fj/synapse 25 bits needed	2.2 nj 0.0 j 2.2 nj 43.4 mw	1150.0 fj 7.7 fj 1157.6 fj 23.2 kw	22.7 fj 7.7 fj 30.4 fj 607.9 w
CMOS HP 21 bits 127.8 fj/synapse 25 bits needed	2.2 nj 0.0 j 2.2 nj 43.4 mw	1150.0 fj 127.8 fj 1277.7 fj 25.6 kw	22.7 fj 127.8 fj 150.5 fj 3010.2 w
Line 1: Femto joules to access memory for one synapse Line 2: Femto joules logic energy to act on one synapse Line 3: Sum of previous two lines Line 4: System energy (watts, kilowatts, megawatts)			

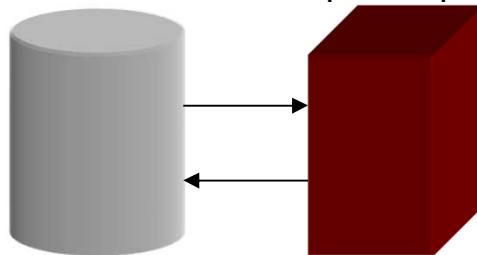
Note: NVIDIA GTX 750 Ti is memory bandwidth limited so the logic energy is ignored.

Outline

- Preview
- Improving power efficiency without changing devices
- Architecture
- Programming
- Performance analysis of example
- Computer system model with integrated I/O

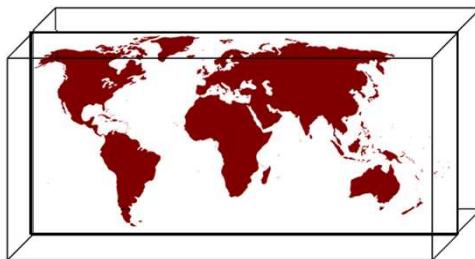
Data model for Processor-In-Memory-and-Storage (PIMS)

A. von Neumann model with input/output:



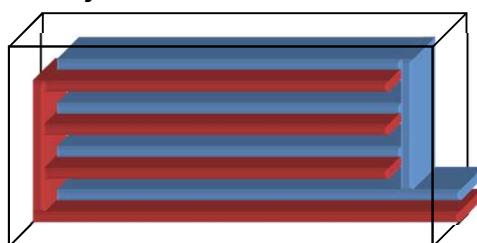
Read input
 Parse
 Process with \sqrt{N} efficiency boost
 Format
 Write output

B. Processor-In-Memory-and-Storage:



~~Read input~~
 Parse
 Process with \sqrt{N} efficiency boost
 Format
~~Write output~~

C. Persistent object store of data in form for optimal access:



~~Read input~~
~~Parse~~
 Process with \sqrt{N} efficiency boost
~~Format~~
~~Write output~~

Is this a memory technology or a processor technology?

Answer: Both

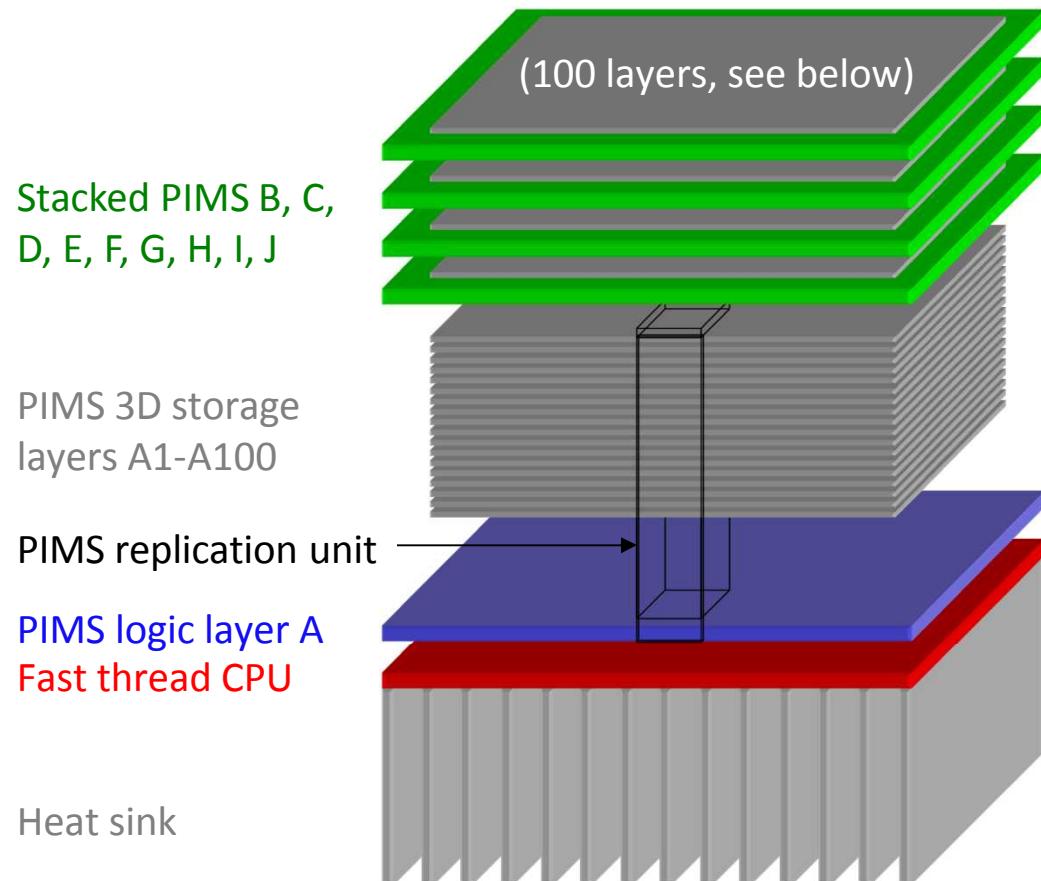
- PIMS + optimal adiabatic scaling applies to processing node and memory
 - If problem AND DATA have parallelism, PIMS + optimal adiabatic scaling can exploit it with full power-efficiency boost discussed
 - If problem, data, or algorithm lack parallelism, the available throughput boost shifts from \sqrt{N} to 1 uniformly
 - Actually $N^{\delta/2}$, where data dimensionality is δ
 - A fully serial program has $\delta=0$
- Brains get away without a fast thread accelerator, but it became an impediment so we invented the computer
- So I propose a system with a spectrum of speeds

Final summary

Fast CPU Gen 1 Gen N

	Fast CPU	Gen 1	Gen N
Clock	3 GHz	100 MHz	10 MHz
Devices	10^{10}	10^{13}	10^{15}
Stack x Layers	1×1	10×100	Molecular assembly?
Ops/joule	1x	30x	300x
Fast thread penalty	.1		
Parallelism boost		3000	30,000
Total throughput	1x	30,000x	300,000x
Power	100W	100W	100W

Exploded view:



Conclusions

- Is “Moore’s Law ending”?
 - Continued manufacturing cost reductions by exploiting 3D have a lot of upside
 - Whether to call it Moore’s Law is a marketing decision
- 3D and new device
 - A new transistor-like device is unlikely to restart Moore’s Law (not in talk)
 - However, 3D manufacture could restart Moore’s Law even with CMOS
 - New devices could be useful for other reasons
 - Devices for other functions, like memory
 - New transistor-like devices whose benefit is more efficient manufacture
- Programming
 - Presented one programming example in this talk (deep neural network)
 - One example meets programmability standard of parallel computers at introduction
 - Question: Is a deep learning neural network Turing complete? Hmm. Alan Turing used his deep learning neural network to create the Turing Machine as a tool, forming an argument that a neural network is as general as a Turing Machine