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What I will do in this talk

 Describe a plot line for a story
 “With imagination, the progress of Moore’s Law can continue”

 Tell a specific story consistent with the plot
 Optimal adiabatic scaling +

 3D manufacturing +

 Processor-In-Memory-and-Storage (PIMS) +

 Deep Learning applications example =

 Example of Beyond Moore’s Law computing

 Challenges to audience
 Make your own story consistent with the plot line

 Rumors of relevance to evolving events ??
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PIMS replication unit

*** PREVIEW ***

Fast thread CPU
PIMS logic layer A

PIMS 3D storage 
layers A1-A100

Stacked PIMS B, C,
D, E, F, G, H, I, J

Heat sink

Clock

Fast CPU Gen 1

Devices

Stack 
Layers

Ops/joule

Fast thread 
penalty

Parallelism 
boost

3 GHz 100 MHz 10 MHz

1010 1013 1015

1  1 10  100 Molecular
assembly?

1 30 300

.1

3000 30,000

1 30,000 300,000

Gen N

Power 100W 100W 100W

Exploded view:

(100 layers, see below)



 Samsung V-NAND
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Backup: stacking  layering &
end of Moore’s Law

http://www.pcper.co
m/reviews/Storage/
Samsung-850-Pro-
512GB-Full-
Review-NAND-
Goes-3D

http://www.engadget.com/2013/04/03/hybrid-
memory-cube-receives-its-finished-spec/Nature

Layering adds additional layers of
devices during processing

Stacking connects completed chips 
with Through-Silicon-Vias (TSVs) in an 
additional processing step

 HP Memristor

 Hybrid memory cube

 Disagreement on end of Moore’s Law

 Some say it ended because of 2D 
feature limits reaching quantum scale

 Others exploiting third dimension
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Outline

 Preview

 Improving power efficiency without changing devices

 Architecture

 Programming

 Performance analysis of example

 Computer system model with integrated I/O



 Chip

 Size expectations for 128 Gb

 10241024 bits/memory bank

 128128 banks/chip
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Design for energy management

ALU ALU

ALU ALU

 Design around fixing competitor’s 
weakest features:

 Von Neumann bus/bottleneck

 CV 2 losses

 Make principal energy pathway 
into a resonant circuit

 Recycle the energy that the 
competitor’s system turns into 
heat

Inductor

 Memory
bank

Source 
of loss

(2nd VG)
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Backup: adiabatic memory (low) maturity level

 TRL 3 or 4 for Charge Injection 
Devices (CID). TRL definitions:

 3. Analytical and experimental 
critical function and/or 
characteristic proof of concept

 4. Component and/or 
breadboard validation in 
laboratory environment

 Above research is for charge 
injection devices. Author does 
not see a theoretical reason why 
it could not work for memristors 
and flash

 Resonators and inductors ought 
to be OK

 Source

 Energy-recycling row drive

 Result 85 energy efficiency 
improvement
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Energy efficiency can depend on clock rate

 David Frank (IBM) discussed 
adiabatic and reversible 
computing at RCS 2, where 
energy efficiency varies by clock 
rate

 Adiabatic circuits have behavior 
close to

 Energy/op  f (clock rate)

 Power  f 2

 This would be equivalent to slope 
1 on chart at left

 This effect depends on

 Adiabatic circuitry

 Devices – 11 nm adiabatic CMOS 
and nSQUID on David Frank’s 
chart, but many other options

 Let’s work with this

From David Frank’s presentation at RCS 2; viewgraph 23. “Yes, I'm ok with the 
viewgraphs being public, so it's ok for you to use the figure. Dave” (10/31/14)



 Impact of manufacturing cost

 At RCS 2, David Frank put forth 
the idea that a computer costs 
should include both purchase 
cost and energy cost.

 However, let’s adapt this idea to 
a situation where manufacturing 
cost drops with time, as in 
Moore’s Law

 Let’s plot economic quality of a 
chip:
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A plot will reveal what we will call
“optimal adiabatic scaling”

Optimal Adiabatic 
Scaling

Clock rate f Hz

Zetta Gate-ops
per dollar

$purchase + $energy(f 
2)

Opslifetime(f)Qchip = 

$energy = Cf 2 (A, B, and C constants)

Opslifetime = Bf, and

Where $purchase = A 2-tyear/3

 Assume manufacturing costs 
drops to ½ every three years

 Top of ridge rises with time
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Optimal Adiabatic 
Scaling

Clock rate f Hz

Reversible 
computing

Period of rapidly
rising clock rate
(through ~2003)

Dual core
Single core

Quad core

Year

Zetta Gate-ops
per dollar

 Prior to around 2003, purchase 
costs dominated energy

 The economically enlightened 
approach would be to raise clock 
rate, which happened

 Around 2003, technology went 
over the optimal point

 Multi-core was the technical 
remedy to the economic 
problem – had lower clock rate

 Reversible computing would be 
an advance in the right direction, 
but too extreme for now

Backup: historical context and
reversible computing
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How to derive a scaling rule

$100 circuit board

$20 chip;
K devices

$20 chip;
4K devices

 Chip vendor says: “How would 
you like a chip with 4 as many 
devices for the same price?”

 Optimal adiabatic scaling says:
 Cut clock rate to 1/4 (halve)

 Power per device drops to 1/4

 Power per chip stays same

 Throughput doubles: 4 as many 
devices runn at 1/4 the speed, 
for a net throughput increase of 
4

 “Throughput” is in accordance 
with the way throughput is 
measured for semiconductors, 
which does not include effects of 
architecture and algorithms 
(which we discuss later)

 To make a scaling rule, replace 
“4” with 2 (line width scaling)



12

Resulting scaling scenario
(standard chart with additional column)

Lgate

W, Lwire

V

C

Ustor = ½ CV2

f

Ntran/core

Ncore/A

Pckt

f Ntran Ncore

P/A

1/ 1/ 1/ 1/ 1/

1/ 1/ 1/ 1 1/

1/ 1 1 1 1

1/ 1/ 1/ 1 1/

1/ 1/ 1/ 1 1/

1*

N†

1/N=1/‡

1

1

 1 1 1 1/N=1/

 1 1 1

 1 1 N=

 1 1 1/N=1/

 1 1§

1  N=

Const
field

Max f Const f Const f,
Ntran

Multi
core

Constant V Optimal 
Adiabatic 
Scaling

Theis and Solomon

* Term redefined to be line 
width scaling; 1 means no line 
width scaling
† Term redefined to be the 
increase in number of layers; 
previously was 1 for no scaling 
‡ Term redefined to be heat 
produced per step. Adiabatic 
technologies do not reduce 
signal energy, but “recycle” 
signal energy so the amount 
turned into heat scales down
§ Term clarified to be power 
per unit area including all 
devices stacked in 3D

Ref: T. Theis, In Quest of the “Next 
Switch”: Prospects for Greatly 
Reduced Power Dissipation in a 
Successor to the Silicon Field-Effect 
Transistor, Proceedings of the IEEE, 
Volume 98, Issue 12, 2010

New

If C and V stop 
scaling, throughput
(f Ntran Ncore) stops 
scaling.

Under optimal adiabatic 
scaling, throughput 
continues to scale even 
with fixed V and C
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Outline

 Preview

 Improving power efficiency without changing devices

 Architecture

 Programming

 Performance analysis of example

 Computer system model with integrated I/O
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Need a new architecture; von Neumann 
architecture won’t do

 Optimal adiabatic scaling proportions
 Device count scales up by N (N = 2)

 Clock rate scales down by 1/N

 Throughput scales up by N  1/N = N

 The von Neumann architecture cannot exploit this throughput
 Processor and memory contribute independently to performance

 Slower computer with more memory – not viable

 We need an architecture whose performance is the product 
of memory size and clock rate
 Processor-in-memory?

 Easily said, but we need a specific architecture that
scales properly and has good generality



 We class this as an “ALU on column” “processor-in-memory” (PIM) 
architecture, with persistent storage

 We use PIM as a descriptive phrase, but it is often used as a name for their 
specific architecture (GilgaMesh, DIVA, etc.)

 Example chip (one layer of stack):

 Architecture characteristics

 Like a storage-augmented 
systolic array

 Must be adiabatically clocked, 
which is mainly a constraint on 
the memory

 Replication unit described as 
GPU--

1 Megabit 
adiabatic 
memory or 
storage

ALUs

In
s
tr

u
c
ti
o
n

…

…

Chip is 128128
array of above

Equivalent density to 128 gb Flash
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Backup: Processor-In-Memory-and-Storage
(PIMS)



 Computer system clock rate grew 
at about the square root the rate 
of storage capacity
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What applications scale like PIMS?

Growth rate of HDD storage 
space compared to clock rate 
using Apple consumer products 
(1984-2001). From Wikipedia, 
which cites the diagram to left 
as © Creative Commons.

 Brain CPU throughput grows at ¾ 
power of storage capacity

 Which is consistent because 
brains get bigger too

Synapses Neurons
Roundworm 7.50E+03 3.02E+02
Fruit fly 1.00E+07 1.00E+05
Honeybee 1.00E+09 9.60E+05
Mouse 1.00E+11 7.10E+07
Rat 4.48E+11 2.00E+08
Human 1.00E+15 8.60E+10

Synapses (storage)

N
e
u
ro

n
s
 (

th
ro

u
g
h
p
u
t)

Source:
Wikipedia
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Outline

 Preview

 Improving power efficiency without changing devices

 Architecture

 Programming

 Performance analysis of example

 Computer system model with integrated I/O



 Neural networks frequently 
compute as sparse matrices

 Vector-matrix multiply

 Delta learning rule

 matrix += vector outer product

 Efficiency example loads sparse 
matrix at 45 angle

 Architecture encodes sparse 
matrix structure in 
memory/storage array

 Permits MIMD PIM operation 
with high power efficiency

 Apparently novel
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Go right for rows

Memory array

Step 1

Step 2

Step n

a
‘y’

a
‘y’

w00 w01w10

w20 w02w11 w12

w21 w13w22w31

a
‘y’

a
‘y’

a
‘y’

+ + ++ +

Memory
array

ALUs

Wait zone

PIMS example: sparse matrix for
neural networks, Deep Learning, etc.



w00

w10 w01
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Programming a dense vector-matrix multiply

 
x0


x1

 
y0

Dance floor

Balcony

Memory
array

Go right for rows

Memory array

Step 1

Step 2

Step n

 Init: Ladies have vector element; 
gents have zero accumulation

 Program: Ladies multiply memory 
output by their vector element, 
pass to gent; gent adds to 
accumulating sum; ladies step 
right; gents step left

 Dance hall model

Note: This program only uses half the memory locations; better algorithm 
would use a hexagonal layout, but is too complex for PowerPointWx = y; gent w00 x0 then w10 x0; lady y0 = w00 x0 + w01 x1
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Backup (embedded spreadsheet)
x A y

1 2 3 4 1 0 0 2 = 25 12 6 17
0 0 3 0
0 4 0 5
6 0 0 0

Timestep 1:
x0 1

y0 0

Timestep 2: a00 1
x1 2 x0 1

y0 1 y1 0

Etc. a10 0 a01 0
x2 3 x1 2 x0 1

y0 1 y1 0 y2 0

a20 0 a11 0 a02 0
x3 4 x2 3 x1 2 x0 1

y0 1 y1 0 y2 0 y3 0

a30 6 a21 4 a12 3 a03 2
x3 4 x2 3 x1 2 x0 1
y0 25 y1 12 y2 6 y3 2

a31 0 a22 0 a13 0
x3 4 x2 3 x1 2

y0 25 y1 12 y2 6 y3 2

a32 0 a23 5
x3 4 x2 3

y1 12 y2 6 y3 17

a33 0
x3 4

y2 6 y3 17

y3 17

Vector-matrix multiply on left 
implemented by dataflow-like spreadsheet 
below.

Note: the yj's are 

updated, so they do 
not all have the same 
value

1
st
 cell 

column 
above, as 
it evolves 
with time

2
nd

 cell 
column 
above, as 
it evolves 
with time

3rd cell, 
and so on

Note on above: this diagram is 
only a spreadsheet, but you 
may think of a row of x's and 
y's as a register that shifts right 
and left each time step; the a's 
do not shift (see arrows).



Dance floor

Balcony

Memory
array

Dancers

Wait zonea
‘y’

a
‘y’

w00 w01w10

w20 w02w11 w12

w21 w13w22w31

a
‘y’

a
‘y’

a
‘y’

+ + ++ +

Memory
array

ALUs

Wait zone


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  

 

 Ladies and gents are additionally 
given an “appointment card” 
telling them to appear n1 steps 
away n2 steps later

 The appointment card may 
require them to wait in a wait 
zone

 Dance hall model

Extreme Multiple Instruction
Multiple Data (MIMD)
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Backup (embedded spreadsheet)
x A y

1 2 3 4 1 2 = 25 12 6 17
3

4 5
6

x0 1
y0 0

a00 1
x1 2 x0 1

y0 1 y1 0

x2 3
y2 0

x3 4
y3 0

a30 6 a21 4 a12 3 a03 2
x3 4 x2 3 x1 2 x0 1
y0 25 y1 12 y2 6 y3 2

y0 25

a23 5
x2 3

y1 12 y3 17

y2 6

y3 17

Previous matrix has been made sparse. 
Expressions in the yellow spreadsheet 
cells have been changed to jump over zero 
entries (e. g. green arrow).

The spreadsheet program has a 
sparse matrix representation 
internally but a spatially 
significant distribution in the 
spreadsheet surface



 Dance hall model

Dance floor

Balcony

Memory
array

Dancers

Wait zone
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 The memory array holds a 
representation of a general 
function, using operators and 
communications.

 Ladies, gents, dogs, cats, etc. 
implement the primitive 
operators and interconnect

 Possible types of operators

 Booleans logic gates (FPGA)

 Arithmetic (register transfer)

 Perceptrons (neural network)

General programming

 

   



24

Compiling

h

c

g

ed

f

a

b



h

c g

ed

f

a

b

 Dance hall model

Add 

 System has graph layout 
functions built in

 Sugiyama (GraphViz)-type 
algorithms

 With dynamic addition/
removal

 Activities illustrated

 Layout a parse tree

 Add a new operation to an 
existing parse tree
(animation)

Parse tree Control codes 
in PIMS 
memory
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Backup (embedded spreadsheet)
x A y

1 2 3 4 1 2 = 25 12 6 17
3

4 5
6

Step 1. Initializaton/input Zeros

x2 3 x1 2 x0 1
y0 0

Step 2. Execution and additional input
a00 1 a12 3

x3 4 x0 1 x1 2
y0 1 y2 6 y1 0

w z (x2) w z

Step 3. Execution only
a30 6 a03 2
x3 4 x0 1
y0 25 y3 2 y2 0

w z (x2) w z (y2')

Step 4. Execution and output
a21 4 a23 5
x2 3 x2 3
y1 12 y3 17 y3 0

y0 25 w z w z (y2')

Step 5. Output

y1 12 y2 6 y3 17

Arrows indicate data flow; wth no data flow 
faster than nearest neighbor per step. Sometimes 
dance steps for ladies and gents.

GraphViz:



Programming model

 Like a neural network

 You don’t just store collections of 
data to be perused by a von 
Neumann machine somewhere 
else

 Instead, you store data in the 
form of its use, such as storing a 
table of data along with 
instructions on how to search it

 Like a self-modifying FPGA

 You start with the equivalent of 
an empty FPGA

 To program it, you feed it a list of 
gates to be added incrementally 
to the gate diagram inside

 May also delete gates

 The PIMS chip itself optimizes 
the placement in real time

 When done programming, you 
can run the PIMS like an FPGA
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Outline

 Preview

 Improving power efficiency without changing devices

 Architecture

 Programming

 Performance analysis of example

 Computer system model with integrated I/O
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Performance on Deep Learning example

 Scale to human brain size of 1011 neurons and 1015 synapses

 Energy subdivides into two components
 Memory access energy (energy per bit  bits)

 Options: non-adiabatic DRAM PIM, adiabatic memory, NVIDIA GTX 750 Ti

 Synapse evaluation energy (depends on number of bits precision)

 Options: TFET and extrapolated CMOS , NVIDIA GTX 750 Ti

 Result
 Non-adiabatic DRAM about 2000 more energy efficient than GPU

 Additional 50 more efficient with adiabatic memory
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Exemplary ALU

 Note that this is neither a microprocessor nor a GPU

8-bit 


16-bit
+

16-bit t0

16-bit t1

16-bit register

Array 
read data

 Array write 
data

Left 
shift 
out; 
right 
shift in

Right 
shift 
out; 
left 
shift in

Control unit

 Array
code words

Green 
pointer 
code 
word

Red 
pointer 
code 
word

Synapse value: 8 bits as signed integer, but 
often interpreted at a higher level as a 
fixed point number

2 bits + 2 bits8 bits +12 bits total:

Storage array format:

ALU (one for each 12 storage bits):
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Performance on Deep Learning example

0.1 nj/bit 46.0 fj/bit 0.9 fj/bit
Logic type
TFET 1.0 nj 552.0 fj 10.9 fj

1.3 fj/synapse 0.0 j 1.3 fj 1.3 fj
12 bits needed 1.0 nj 553.3 fj 12.2 fj

20.8 mw 11.1 kw 244.3 w
CMOS HP 1.0 nj 552.0 fj 10.9 fj

21.8 fj/synapse 0.0 j 21.8 fj 21.8 fj
12 bits needed 1.0 nj 573.7 fj 32.7 fj

20.8 mw 11.5 kw 653.2 w
TFET 21 bits 2.2 nj 1150.0 fj 22.7 fj

7.7 fj/synapse 0.0 j 7.7 fj 7.7 fj

25 bits needed 2.2 nj 1157.6 fj 30.4 fj
43.4 mw 23.2 kw 607.9 w

CMOS HP 21 bits 2.2 nj 1150.0 fj 22.7 fj
127.8 fj/synapse 0.0 j 127.8 fj 127.8 fj

25 bits needed 2.2 nj 1277.7 fj 150.5 fj

43.4 mw 25.6 kw 3010.2 w
Line 1: Femto joules to access memory for one synapse
Line 2: Femto joules logic energy to act on one synapse
Line 3: Sum of previous two lines

Line 4: System energy (watts, kilowatts, megawatts)

Adiabatic MemDRAMGTX 750 TiMemory
Note: NVIDIA 
GTX 750 Ti is 
memory 
bandwidth 
limited so the 
logic energy is 
ignored.
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Outline

 Preview

 Improving power efficiency without changing devices

 Architecture

 Programming

 Performance analysis of example

 Computer system model with integrated I/O
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Data model for Processor-In-Memory-and-
Storage (PIMS)

A. von Neumann model with input/output:

B. Processor-In-Memory-and-Storage:

C. Persistent object store of data in form for optimal access:

Read input
Parse
Process with N efficiency boost
Format
Write output

Read input
Parse
Process with N efficiency boost
Format
Write output

Read input
Parse
Process with N efficiency boost
Format
Write output
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Is this a memory technology or a
processor technology?

Answer: Both

 PIMS + optimal adiabatic scaling applies to processing node 
and memory
 If problem AND DATA have parallelism, PIMS + optimal adiabatic 

scaling can exploit it with full power-efficiency boost discussed

 If problem, data, or algorithm lack parallelism, the available 
throughput boost shifts from N to 1 uniformly

 Actually N/2, where data dimensionality is 

 A fully serial program has =0

 Brains get away without a fast thread accelerator, but it 
became an impediment so we invented the computer

 So I propose a system with a spectrum of speeds



Total
throughput

34

PIMS replication unit

Final summary

Fast thread CPU
PIMS logic layer A

PIMS 3D storage 
layers A1-A100

Stacked PIMS B, C,
D, E, F, G, H, I, J

Heat sink

Clock

Fast CPU Gen 1

Devices

Stack 
Layers

Ops/joule

Fast thread 
penalty

Parallelism 
boost

3 GHz 100 MHz 10 MHz

1010 1013 1015

1  1 10  100 Molecular
assembly?

1 30 300

.1

3000 30,000

1 30,000 300,000

Gen N

Power 100W 100W 100W

Exploded view:

(100 layers, see below)
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Conclusions

 Is “Moore’s Law ending”?
 Continued manufacturing cost reductions by exploiting 3D have a lot of upside
 Whether to call it Moore’s Law is a marketing decision

 3D and new device
 A new transistor-like device is unlikely to restart Moore’s Law (not in talk)
 However, 3D manufacture could restart Moore’s Law even with CMOS
 New devices could be useful for other reasons

 Devices for other functions, like memory
 New transistor-like devices whose benefit is more efficient manufacture

 Programming
 Presented one programming example in this talk (deep neural network)
 One example meets programmability standard of parallel computers at 

introduction
 Question: Is a deep learning neural network Turing complete? Hmmm. Alan 

Turing used his deep learning neural network to create the Turing Machine as 
a tool, forming an argument that a neural network is as general as a Turing 
Machine


