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Abstract

Significant energy savings can be achieved by operating heating, ventilation and

air conditioning control systems with indoor occupancy measurement informa-

tion. This paper presents a novel plug-and-play occupancy sensing method

which will enable the temporal minimization of building energy consumption to

meet building usage behavior without privacy concerns. The proposed wireless

occupancy sensing platform is based on long-wave infra-red (LWIR) focal-plane

arrays (FPAs), or thermal imagers, that detect thermal energy rather than vis-

ible light. We developed an advanced sensor package consisting of multiple

thermal imagers with low-cost optical enhancements to increase field of view

and increase sensitivity to occupant detection (filtering building clutter). These

imagers can be coupled with radio frequency and ultrasonic-based radar to en-

hance data collection at key occupant zone boundaries to improve accuracy.

Standard filtering and estimation techniques from the image processing and

computer vision communities are introduced to overcome the accuracy issues

suffered by traditional PIR based sensing, especially when occupants remain

relatively still. Accurate low-level counting of individuals can be achieved with

minimal impact on privacy. The proposed occupancy detection method can
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work as a retrofit to enable real-time understanding of the building operational

state and usage behavior. Sensor data obtained from real test building zones

was used to test the efficacy of the method.

Keywords: Long-wave infrared (LWIR) sensor, focal plane array (FPA),

Human movement detection, Occupancy detection, Occupancy counting,

HVAC control, Sensor data.

1. Introduction

1.1. Background

Heating, ventilation, and air-conditioning (HVAC) systems consume 30% of

building energy and comprise 50% of building electricity consumption. Most

modern buildings continue to control room temperature and ventilation assum-

ing maximum occupancy rather than actual occupancy. High energy consump-

tion is largely due to conventional HVAC and lighting systems using open-loop

control strategies that cannot dynamically respond to changes in occupancy

[1]. Recent studies [2, 3, 4, 5] show that there exists a significant potential for

energy savings by temporally matching building energy consumption and build-

ing usage via occupancy-based control. With more than 134 million houses in

the United States [6], this presents a tremendous opportunity to decrease en-

ergy consumption and reduce inefficiencies. Occupancy-based control (OBC)

can achieve up to 30% energy savings by temporally matching building energy

consumption and building usage [7, 8, 9].

The goal of this paper is to design a high-performance occupancy sensor node

and optimize installation locations based on building layout in order to achieve

accurate occupancy detection and minimize installation and energy costs. Com-

monly used devices for detecting occupancy in buildings include passive infrared

and ultrasonic sensing technologies typically used for lighting or security appli-

cations. In recent years, alternative technologies for indoor occupancy sensing

have been studied, including microwave radar, acoustic, light barriers, video

cameras, biometric systems, pressure pads, and electric field sensors. Many of
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these have been used to detect occupancy for safety or security with little appli-

cation specifically toward building control due to integration cost and challenges

with respect to detection accuracy and precision.

1.2. Related Work on Occupancy Sensing

Significant work has been done to investigate the potential of improved de-

tection accuracy for real-time occupancy-based HVAC control. A comparison

of the different occupancy systems is given in Table 1 [7]. As an observation

from the table, passive infrared (PIR) sensors are relatively cheap compared to

video camera systems.

Table 1: Comparison of occupancy sensing technologies [7].

Based on the occupancy detection technique, there can be several types

of sensing systems. Common occupancy detection systems typically used in

office buildings for demand-driven applications include direct sensors such as

carbon dioxide (CO2), PIR, ultrasonic, image, pressure pads, radars and electric

field sensors; or implicit sensors such as energy consumption, phone, Wi-Fi and

computer activity detection sensors [10].

Moreover, a fusion of multiple sensors has also been studied in occupancy

detection for demand-driven applications [11, 12]. Previous research [13, 12, 14]

has introduced a system for estimating building occupancy based on data from

a sensor network including PIR, video cameras, and CO2 detectors.

It is noted that concentration of gases in a space in parts-per-million (PPM).

Hence, the CO2 detector becomes a commonly used tool for the measurement

of occupancy in buildings for demand-driven control of HVAC systems because

the amount of CO2 in a space can provide an estimate of user presence as well as
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count [15, 16, 17]. However, its application in occupancy estimation is hampered

by the relatively poor real-time performance and measurement precision due to

slow gas mixture [18, 13].

1.2.1. Vision-based Occupancy Detection

Vision-based systems which rely on camera images and video analysis tech-

niques are often used in buildings for security purposes, though their use has also

been explored for occupancy measurement in buildings. In general, computer

vision-based processing for human tracking includes following stages: modeling

of environments, detection of motions, classification of moving objects, tracking,

understanding and description of behavior, human identification, and the fusion

of data from multiple cameras [19, 20]. However, such systems can raise serious

concerns in the following aspects:

1. It is sensitive to ambient illumination, which changes during the day and

at night [21];

2. The computational/communication load for continuous visual surveillance

is heavy;

3. Using cameras may introduce privacy concerns, causing an uncomfortable

feeling or even an adverse psychological impact for the residents due to

the fact they are being observed [22].

Most other sensing methods involving sound, ultrasonic, electric field and all

the implicit ones suffer serious problems in accuracy, privacy and false ON/OFF

[11, 23, 24, 25, 10].

1.2.2. PIR-based Occupancy Detection

In order to overcome these weaknesses of video-based detection, some re-

searchers employ PIR sensors [26, 27, 28, 29, 30, 31]. PIR sensors are non-

intrusive and are only sensitive to changes in infrared radiation such as that

caused by human motion. This makes them robust to interference caused by

cluttered background and illumination variance [32]. PIR sensors have been

widely employed for human detection systems due to its low cost and power
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consumption, small form factor, and unobtrusive and privacy-preserving inter-

action. A multi-modal system consisting of a PIR sensor and a regular camera,

which distinguishes entry/exit motions and ordinary body movements, is pro-

posed in [33].

The PIR sensor is the most commonly used technology for occupancy sensing

in buildings, especially for lighting control [34]. Even though a solid body of

work on occupancy sensing in building environments has been conducted in

the past decades [35, 36, 37, 10, 38], there remain technical challenges with

PIR sensors that hinder the development of innovative solutions for occupancy

sensing. It is well known that the application of PIR sensing in buildings is

limited due to several major flaws (as claimed in [10, 39]): (a) PIR sensors can

only provides coarse binary information (occupied or not) [40, 20, 11]; (b) PIR

sensors require a direct line of sight between the sensor and occupants in a space;

(c) PIR sensors require continuous motion to function effectively (i.e. occupants

are seating still or the sensor’s view is impeded by other objects) [41]; (d) PIR

sensors can be triggered by alternative thermal currents from hot coffee/tea, 3D

printers, HVAC systems [20] or pets [39].

These limitations of the existing PIR-based occupancy detection systems

may lead to incorrect control actions and degraded human comfort since build-

ing HVAC control differs significantly from instantaneous lighting control. In

particular, ramping room temperature up or down is not instantaneous owing

to inertia in the underlying mechanical systems (e.g., compressors) and heat

transfer. Although an occupancy monitoring system can provide estimates in

near real time, if the estimates are used in a reactive manner, then the HVAC

control will likely leave occupants uncomfortable until target temperatures are

met. To ensure occupant comfort, robust predictors are needed to adaptively

condition a given space [42, 43].

It is worth mentioning that most of the aforementioned systems do not

provide zone level occupancy information and were not designed or tested for

tracking multiple mobile occupants [20]. Tracking mobile occupants is essential

in achieving better occupancy estimation accuracy (since historical information
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of the same occupant is used) and control efficiency (since the occupancy move-

ment should be accounted for when adjusting the HVAC operations).

1.3. Motivation and Research Objective

Given this background, we pursue in the present study a long-wave infra-

red (LWIR) focal-plane array (FPA) based occupancy detection platform to

address the major concerns presented by existing solutions. We therefore use

thermal imagery, which captures infrared radiation instead of visible light, and

creates an image whose pixel values represent temperature [44]. This is a hybrid

method that combines the benefits of both vision-based and PIR-based tech-

niques. Compared with the traditional camera-based measurement, people can

not be identified in these thermal images, eliminating potential privacy issues.

A positive side effect of thermal imaging is that detection/tracking can often be

reduced to a trivial problem by utilizing the existing large body of algorithms

for image processing and computer vision. Hence it enables more sophisticated

occupancy estimation/tracking than traditional PIR sensor measurement.

LWIR sensors have been studied in the vehicle society for occupant- and

driver-posture analysis as well as pedestrian detection [45, 46]. In the buildings’

envelope area, LWIR thermography can be employed to evaluate building mate-

rials [47], detect construction defects [48], determine the heat losses in buildings

[49], building energy diagnostics [50], and other problems relating to humidity

[51, 52]. However, to the best of our knowledge, there exist few studies in the

literature using LWIR sensors for building occupancy detection and/or tracking.

The complexity of the proposed algorithms along with memory and energy

consumption must be balanced such that the complete solution can be carried

out in an embedded architecture. The developed system must therefore be

an optimal trade-off between occupancy detection accuracy and algorithmic

complexity.

In particular, the overall objectives are:

1. To detect the presence of a person in its environment without being dis-

turbed by the presence of animals or other moving objects.
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2. The sensor must be robust to changes in illumination, ambient heat sources,

and be able to protect users’ privacy.

3. The complexity of the proposed algorithms should be considered with lim-

ited computational and energy resources, allowing the system to function

in an embedded architecture without external power.

To address the challenge of minimizing the required number of sensors for

any given building, a graph-based optimal sensor placement algorithm is pro-

posed in this paper. In addition to this optimal design in placement, we have

also developed our own embedded board integrating LWIR and PIR sensors

with wireless capabilities to provide energy saving occupancy monitoring and

estimation services.

There is a desire with any sensing system to achieve perfect accuracy in

the detections and/or decisions that it makes. However, it is important to also

realize that the quest for perfection can come at a cost of additional algorithm

complexity, increased sensor cost, and greater energy consumption at the sensor

node itself. These tradeoffs need to be considered in the larger picture in com-

bination with the building control system with which the sensor will eventually

be integrated. A typical building control system will have a minimum control

resolution which may correspond to more than one person. Therefore any sens-

ing accuracy/resolution that is finer than that of the control system provides

no additional benefit toward total building energy reduction.

For example, the sensor node described here has been shown to perform well

for detection and counting of humans entering and leaving different zones within

a building. In its current instantiation it may not be able to differentiate a cat,

or perhaps a large dog, from a human. In an office environment this is perhaps

not as significant an issue as in a home environment. However, the fact that an

FPA sensor is used can allow additional algorithmic improvements to be made

to potentially address that issue. Additionally, sensor fusion methods making

use of multiple sensors on the platform along with machine learning could be

investigated as a way to disambiguate various thermal bodies in the field of view
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of the sensor.

The rest of the paper is organized as follows. In the remainder of the In-

troduction, we review related literature on technologies that underlie the con-

sidered occupancy sensor solutions and developments. The proposed wireless

sensor-driven occupancy detection system provides a complete infrastructure to

realize sensor placement as well as development. We present the architecture

of the occupancy detection system in Section 2 to realize the system solutions

and services. A technical realization to realize the services is then described

in the following three sections. In Section 3, we consider optimal placement of

occupancy sensors to cover the entire area of interest. A solution for offering

accurate low-level counting of individuals is described in Section 4. Services

for utilizing the developed occupancy detection algorithm and analytics using

collected sensor data are described in Section 5. Conclusions and discussions

are provided in Section 6.

2. System Architecture

A straightforward approach currently used to add smart OBC to a building

is to simply place a sensor in every room and hallway. However, this approach is

expensive, requiring many more sensors than are potentially necessary. Indeed,

the largest gains in building efficiency can typically be achieved not at the indi-

vidual room level, but at the zone level. Sensors necessary to provide sufficient

information for adaptive control at the zone level can reduce installation cost

significantly while still allowing measurement of system state and detection of

abnormalities. An optimal distribution of sensing nodes will also consider the

lowest-cost sensing option for each specific node necessary to meet the required

accuracy goals. There are several architectures that the sensing system could

follow with respect to integration into the building. Centralized architectures

use significant energy for communication from node to central location, but min-

imal energy in computation at node level. Distributed architectures expend less

energy on communication and increased energy for node-level data processing.
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In designing the sensing nodes and the resulting system architecture, it is

important to consider the physical distribution of the nodes along with the

local sensing requirements at each node. Some nodes may require a simple PIR

and temperature sensor (e.g., a discrete entrance), whereas others may require a

thermal imager (e.g., large cafeteria). Irrespective of the type of low-level sensor

on each node, the core information that each node obtains from the sensors

would ideally be the same. Architectures for deployment, data processing, and

control hierarchy will drive the cost-effectiveness of the solution.

2.1. Wireless Sensor Node

Figure 1: Wireless sensor node for advanced occupancy sensing and control.

To help foster a similar culture and capability for occupancy sensing a com-

mon sensing platform is developed with which researchers can test and validate

distributed multi-modal sensing algorithms. The sensor node that has been de-

signed and fabricated as part of this project is shown in Figure 1. The sensor

node includes several LWIR sensors (thermal imagers), a PIR sensor, as well

as sensors for temperature, relative humidity, and ambient light. A sub-GHz

radio is also included to allow communication back to a central control unit to

update occupancy count. As the capabilities and performance of the sensing

node progresses, a more abstract interface will be developed though which vari-

ous sensors and algorithms can be easily integrated into the node with minimal
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necessary low-level hardware or software knowledge.

Each node can be powered on in one of two modes: (1) Control, and (2)

Sense. The desired mode is chosen by pressing one of the buttons on the node

while powering it up.

Control nodes can plug into a USB port on a computer, providing a serial in-

terface through which to allow wireless control of multiple sense nodes. Control

actions that are currently defined include sensor selection, sensor orientation,

begin occupancy sensing, and querying of occupancy count. Additional actions

are being added to complete a minimal functional set for testing.

Sensor nodes are expected to run headless, however if powered through USB

connected to a computer then debugging and other information about its oper-

ational state can be obtained through its serial interface.

2.2. Sensors

The highest resolution sensor being considered is the FLIR Lepton which

is an 80x60 microbolometer based imager available with either a 50 or 25 de-

gree field of view and a maximum frame rate of 8.6 frames per second (FPS).

This sensor has the highest power consumption out of all the sensors described

drawing approximately 150 mW. One particularly interesting feature with this

sensor is that in addition to outputting data as a single 8-bit or 14-bit value for

each pixel representing radiated temperature, it can also automatically apply

colorization to the sensed temperature data and output the data in an RGB

format which can greatly assist in later processing tasks such as clustering that

would be used for detection and tracking of occupants using standard image

processing methods.

In addition to the bolometer based Lepton sensor, two thermopile based

devices are available, the Melexis MLX90621 which features a 16x4 pixel array,

and the Panasonic AMG883X which features an 8x8 pixel array. These sensors

are much lower resolution compared to the Lepton, however in the case of the

Melexis offerings are available in much wider and narrower fields of view which

may be useful depending on the local building geometry where the sensor node
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will be installed. In addition, the non-square aspect ratio of the Melexis sensors

means that they are highly orientation dependent.

To enable comparisons between various sensors and to allow for multi-modal

sensing as the project progresses, all of the sensors listed in Table 2 were selected

to be integrated into the node Figure 2. Current cost estimates are also included,

however it should be noted that only a subset of these sensors would be used

in an actual commercial node offering and an industrial manufacturer could

typically receive even lower quantity pricing.

Figure 2: Close look at the sensor node.

2.3. Node Architecture

The node must utilize wireless communication and be low-power being able

to operate on an internal battery for a reasonable length of time, or permanently

by using one or more energy harvesting methods.

The board that was selected for construction of the sensor node is the

Freescale/NXP FRDM-KL46Z evaluation board. This board is built around

a Freescale/NXP KL46Z256 micro-controller which contains a low-power ARM
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Table 2: Selected sensors for sensor node implementation

Type Manufacturer Model Array size Cost

LWIR FLIR Lepton 80×60 $175

LWIR Melexis MLX90621 16×4 $52

LWIR Panasonic AMG88 8×8 $16

PIR Panasonic AMN32111 NA $11

Temperature + RH Silicon Labs Si7006-A20 NA $1

Temperature Texas Instruments TMP!23 NA $1

Ambient Light ON Semiconductor NOA1212 NA $0.21

Cortex-M0+ processing core with 256 kB of program memory, 32 kB of RAM,

and a maximum clock rate of 48MHz. Included on the board are a built-in

debug interface, an ambient light sensor, and a LCD display that can be used

to display the node status while in operation. Although the micro-controller

on this board is potentially larger (with respect to memory) and more powerful

than absolutely required, it does allow rapid algorithm development after which

algorithm efficiency and code minimization can be pursued to allow a smaller

less powerful, and cheaper, micro-controller to be used in the final node design

if required to meet cost or other design goals.

The Freescale/NXP Kinetis micro-controllers have been selected for several

reasons. These micro-controllers are some of the lowest cost ARM based micro-

controllers available on the market and are available in a wide array of physical

sizes and packages that allow better matching to the specific set of sensors and

board layout eventually used. In addition, the Freescale development tools are

one of the few that do not restrict code size and other capabilities without a paid

license. This is especially important when considering that the algorithms and

source code for the developed platform will be shared with collaborators and
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will need to be accessible to other parties for testing, verification, and integra-

tion without undue difficulty. Another reason to select these specific evaluation

boards is that they are supported by the ARM Mbed platform and operating

system which is designed to simplify the development of devices for the Inter-

net of Things (IoT) and enable code reuse across ARM devices. The complete

node is packed with a 3D-printed case (as shown in Figure 3), which is lo-

cally manufactured at Oak Ridge National Laboratory (ORNL)’s Manufactuing

Demonstration Facility.

The first step in creation of the sensing node is to determine an appropriate

mapping between each sensor and the selected development boards available

interfaces. A connectivity diagram of the selected sensors and how they inter-

face with the FRDM-KL46Z development platform is shown in Figure 4. The

development platform is the block in the center, and all the blocks surrounding

it are the sensors that are externally interfaced to it.

3. Sensor Placement

To determine the ideal or optimal placement of sensors for determining the

system state, it is important to understand what the underlying causes of the

state changes are and how they evolve the system state. Observation of state

changes, such as a person passing between zones or exiting the building, pro-

vides information on the current state. As advanced estimation methods are

developed, the goal is to be able to operate with a number of sensors at or

below the number needed for full state capture.

The proposed innovation will be threefold:

• First, we provide efficient approximation algorithms that select a small

number of sensors to optimize the estimation error based on real occupancy

across different zones.

• Second, we develop an optimal deployment algorithm for the occupancy

sensors (the number of sensors is the optimized result from the first ac-

complishment).
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(a) (b)

(c)

Figure 3: Packed node inside 3D-printed cases

• Third, we solve the scheduling problem to improve the lifetime of such a

sensor network based on the deployment scheme.

Any building can be modeled as an un-directed graph depicting zone connect-

edness within the building and the external environment. Consider an arbitrary

floor plan for an office building. An automated graph model can be directly

generated based on the connectedness of each zone. Figure 5 shows a graph

model for a floor plan with four zones. Each vertex of the graph represents a

zone, and every connection between zones is represented by an edge. The outer

gold boundary is the boundary of the system delineating between the interior
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Figure 4: Connectivity diagram of sensor node.

of the building and the exterior. Each zone is depicted as a node in the graph,

shown as Zi. It should be mentioned that it is possible for multiple edges to

connect each zone such as illustrated between Zone 4 and the exterior of the

system.

Each edge represents a boundary between zones that people can cross, such

as a door or a point along a hallway. Note that the aggregate system occupancy

is determined solely by information available on the green edges. Zone i occu-

pancy, Zi, is solely determined by information available on those edges with a

vertex on Zi, which includes both inter-zone boundaries and system boundaries.

The total number of people in the system is then the sum of all the individual

zone counts ‖Z‖1 or simply ‖Z‖ from hereon.

Note that the entire state of the system is given by the zone count vector

Z and that the system state is only affected by movement of people across the

edges of the graph. In particular, the system occupancy ‖Z‖ is only affected by

movement across the system boundary (green edges), whereas each individual

zone occupancy Zi is affected by movement across inter-zone boundaries (blue

edges) as well as system boundaries. Given these observations it is arguable that
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Figure 5: Sensor Placement.

information available through observation of the zone boundaries is sufficient to

completely determine the system state.

Each boundary is typically representative of a physical boundary in a build-

ing such as a doorway, or a virtual boundary such as a specific location such as

where two hallways meet or join together. It can be assumed that there exists a

small area within each zone from which each connected edge or boundary can be

observed. The majority of any given zone potentially provides no information

about edge behavior since the boundaries may not be observable such as from

inside an office or closet. Figure 6 shows a closeup view of Zone 2 from Figure 5.

The dashed lines delineate the areas within the zone from which the associated

edges are observable. The system boundary in this case is observable from a

small area, and the two inter-zone boundaries are both observable from another

small area.

It can be argued that within a zone, one sensor per boundary is sufficient to
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Figure 6: Closeup view of Zone 2.

capture occupancy count for that zone. Minimizing the number of sensors nec-

essary to provide zone count information is therefore inherently upper bounded

by the number of edges at a given vertex (3 in this case). In this case since

the two inter-zone boundaries are potentially both visible using a single sen-

sor reducing the sensor count by 1 (down to 2 sensors). Reducing the sensor

count further in this case requires estimating occupancy based on data from

a single sensor somewhere within the zone. Based on this proposed placement

algorithm, we will discuss two use cases, one for office environments and another

for warehouse environments.

3.1. Edge Coverage for Office

Considering the limited geometrical size of normal offices and the detection

range of PIR sensors, we can directly deploy single sensor for each concerned

boundary as shown in Figure 7. We use the same floor plan as mentioned

earlier in Figure 5, where four interconnected zones are involved. As shown in

the figure, all the potential edges and door entrances are monitored by sensors

denoted by blue S1, S2, S3, S4. Here we assume the field of view of each sensor

is larger than 90 degrees, allowing the use of as few as four sensors to cover the

entire office area. Several observations are noted below:
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1. By tuning the direction of Sensor 1 (S1), it is potentially able to observe

both Door 1 and the zone boundary between Zone 3 and Zone 1;

2. Though there are two paths connecting Zone 3 and Zone 4, its possible

to use Sensor 2 ( S2) alone to monitor the edge as long as the detection

range is long enough;

3. Sensor 3 (S3), with an appropriate field of view, can view the boundary

between Zone 2 and Zone 3, and also Door 2 which crosses the system

boundary;

4. Sensor 4 (S4) will cover all the possible paths from Zone 1 to Zone 2

including the hallway and a door to one of the offices in Zone 2.

Figure 7: Example sensor deployment in an office.

It should be remarked that the aforementioned sensor placement is based on

the assumption that the detection range and field of view meet the correspond-
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ing requirements, respectively. Additional sensors may be necessary if these

condition are not satisfied. For example, if S2 is not able detect movement at

the far hallway, then a separate senor should be placed close to that hallway. Or

if S3 is unable to view both Door 2 and the hallway transition simultaneously,

then two vertically oriented sensors may be considered instead of one single

sensor.

3.2. Edge Coverage for Warehouse

Now, we will study the second example about deployment in a warehouse. A

top view of a typical warehouse floor plan is depicted in Figure 8. The warehouse

is divided into 6 zones denoted with different colors. There are several shelving

units placed in each zone. The warehouse has two main entrances at the bottom,

and 5 emergency exits around the other three sides of the building. Notice that

the dotted red line connecting Ex 1 and Ex 5 (in Figure 8), as well as the vertical

zone boundaries, can reach over 100 ft in length.

For simplicity, we focus on the red dotted line in Figure 8. It can be easily

generalized to any boundary/edge between zones. After abstraction, the red

dotted line can be viewed as the horizontal black line in Figure 9. Several pairs

of sensors can be placed along the line to cover the entire boundary. To achieve

the best coverage performance, two sensors are deployed side by side towards

opposite directions. Particularly, the red ones face toward the left, while the

blue ones to the right in Figure 9.

4. Occupancy Counting Algorithm

Image and video processing is well studied and many methods exist for object

detection, segmentation, and tracking.Accurate low-level counting of individuals

can be achieved through standard particle or Kalman filtering or particle flow

methods to eliminate certain errors obtained with other methodologies using

a similar combination of sensors. Depending on the geometry of a building,

it is also possible for an imager to sense a much larger area, allowing much
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Figure 8: Example sensor deployment in a warehouse.

Figure 9: Sensor coverage of the long edge.

higher-order occupancy statistics to be obtained. Additionally, a 3-dimensional

thermal profile of a building can be achieved through a low-complexity template

matching method to obtain these pieces of information from the thermal image

at the sensor node itself with little computation. A volumetric thermal profile of

the building can be constructed in real time through sensor data fusion that can

be used to identify register outflow temperature, leaks around doors or windows,

and stratification. The combination sensor can be realized in a small form factor

(< 1 in.2) at low cost.
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4.1. Control Logic

Appropriate software control of each node is necessary to meet the various

requirements including low power operation and multiple sensor support. A

flowchart outlining the basic ideal operation of a sensing node is illustrated in

Figure 10. When the node first powers up, it will begin by initializing all the

peripherals within the MCU itself which includes the various communication

buses necessary to communicate with each sensor. The node will then register

itself on the sensing network indicating to the control node that it is active and

present, and afterward place the radio in a standby mode until it is needed

again.

All of the Tier 1 sensors will then be enabled and the MCU will be placed in

a low-power sleep state. At this point the only significant power consumption

will be by the Tier 1 sensors including PIR, temperature, humidity, and illumi-

nation. Each of these sensors can be configured to trigger an interrupt when

a certain threshold is met waking up the MCU. The thresholds at which each

sensor triggers can be selected based on motion or other state changes (such

as temperature) in the sensing region that may be indicative of an impending

change in occupancy.

Once the MCU awakens it will immediately enable the Tier 2 sensor(s), in

this case one or more LWIR FPAs. The data from the FPA is processed frame

by frame. A frame is captured from the FPA and detection of occupants is

performed. If no occupants are detected and no activity has been recorded

by either the Tier 1 or Tier 2 sensors for some predefined period of time then

the Tier 2 sensors are disabled and the MCU goes back to the sleep state to

await further activity. If instead occupants are detected, then each occupant

is individually tracked. If the result of the tracking between the current and

previous frame indicates a change in zone count then an appropriate message

is sent to the control node indicating the change. Otherwise another frame is

captured from the FPA and processing continues again at the detection stage.
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4.2. Occupancy Detection Algorithm

The algorithm for detection and tracking is based on basic image process-

ing methods including thresholding, region growing, and blob detection. These

methods have existed since at least the 1960s and are well covered in any in-

troductory image processing textbook. The application of these algorithms for

the goals of this project are described below for the case where the sensor is

mounted above a walkway looking straight down.

The acquired sensor data can be viewed as an image in which each pixel’s

value is a temperature of some object in the scene. The objects of interest in

this case are people who are assumed to be at a higher temperature than the

surrounding objects in an office environment. Given this observation the first

step in the processing chain is to threshold the image by setting any pixel value

below some threshold temperature to 0, and all other pixels to 1.

One way to do this would be to select a fixed threshold temperature just be-

low human body temperature. However, a fixed threshold will not work reliably

in this case due to the fact that radiated body temperature is in general lower

than internal body temperature and may vary significantly between individuals.

The temperature distribution in a scene without any humans present may also

vary between pixels and over time either triggering false detections when no

humans are present, or by missing detections due to a human appearing below

the selected temperature threshold due to circumstances such as just walking

indoors on a cold day.

Instead of a fixed threshold, a per-pixel adaptive threshold is used. The

threshold at each pixel in this case is set as 2 °C above a rolling average over a

fixed number of frames. In our implementation we have chosen to average over

20 frames, and only those frames with no detected blobs (background only)

are used in the calculation. Setting the threshold slightly above the average

allows small variations in the background temperature without triggering a false

detection. The assumption here is that the majority of the variation is from the

sensor itself, and that the background is only slowly varying in time.
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After thresholding, a blob detection algorithm is used to find all the contigu-

ous regions in the image that were identified as non-background. As part of the

blob detection, each blob is assigned a unique label and statistics are obtained

including its centroid and size. As the detected blobs move through the scene,

they cross several virtual boundaries that are used to determine whether a blob

needs to be actively tracked, as well as whether the blob has contributed to a

change in occupancy.

For the doorway installation scenario the occupancy count would change as

individuals walk through the doorway. Assuming that the doorway lies vertically

in the center of the image, that means occupancy changes as individuals move

between the left and right halves of the image. To assist in the detection of these

transitions the image is split as shown in Figure 11. The zone boundary in this

case lies vertically through the center of the image. The two zones are labeled

Zone 1 and Zone 2 on the left and right sides of the zone boundary respectively.

Both zones are separated by a transition region that straddles the physical zone

boundary.

This is done for two reasons. The first is that the transition sub-region defines

a region of interest (ROI) outside of which any detected blobs can be ignored.

Any blob that crosses the doorway threshold must pass through the ROI, and

restricting the tracking algorithm to only this region reduces computation time.

The second reason for using two boundaries is that it introduces hysteresis into

the tracking, allowing a blob to potentially cross the doorway threshold multiple

times without affecting the occupancy count until that blob fully enters or exits

into one of the adjacent zones. An example of this would be a person standing

in the doorway itself while talking to a colleague.

Any blob that is detected within the ROI is tracked. This means that its

position when initially found is stored along with its most current position. The

zone from which the blob entered the ROI is assumed to be the zone that it

is closest to upon entry. When a tracked blob exits the ROI through either

boundary it is removed from the list of tracked blobs and the occupancy count

is appropriately updated. Any movement of the blob within the ROI itself does

23



not affect the occupancy count.

Blob tracking is performed using the blob statistics mentioned earlier. Those

statistics allow determination to be made as to whether a blob in the current

frame overlaps with a blob in the previous frame. If any overlap exists it is

assumed that both are the same blob which has simply moved between frames.

If the matching blob in the previous frame is being tracked, then its current

location is updated. If there is no matching blob and it is in the ROI in the

current frame, then it is added to the list of actively tracked blobs until it exits

the ROI.

As the blob centroid moves across some defined boundary in the image the

zone count is either incremented or decremented appropriately.

4.3. On-board Communication Solution

For delivering a complete plug-and-play occupancy detection solution, each

occupancy sensor node can be selected as control or sense mode during the

power-on process. As shown in Figure 12, occupancy measurement collected

from the three grey-colored sensors will be transmitted back to the control red-

colored node using wireless communication. The control node can be connected

to any computer or energy management systems via USB. This hierarchical

structure enables the sensor platform to be conveniently deployed at any location

without relying on other communication infrastructure.

This dedicated communication capability has several advantages over the

WiFi-dependant solution.

• Simplify the platform setup since it avoids requirement and procedure of

getting the WiFi connection ready.

• Power conserving since the wireless communication is only activated when

there is an occupancy count change as described in the main sensing logic

(Figure 10).

• Cyber-resilient since this will be separated from the main network which
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is fragile to outside intruder. This helps protect potentially sensitive oc-

cupancy information.

5. Real-field Test and Results

This section presents results for validating the hardware and software de-

signs including the occupancy counting performance, accuracy, communication

and calculation capabilities. To cover different scenarios of human crossing zone

boundaries, we tested people enter/leave the zone separately as well as simul-

taneously.

It is worth mentioning that there are no existing practical solutions for mul-

tiple people tracking and counting since the commercial ready ones (laser beam

based) can count one person at a time, while the camera based solutions have se-

rious concerns related with privacy. Therefore, we want to show our occupancy

detection node fills this gap in state of the art.

Testing occured in a typical office building at ORNL. The developed occu-

pancy sensor node was installed on the top jamb of a doorway (7 ft high) looking

directly down at the floor and covering an approximate region size of 16 sq.ft.

(at floor level). The node was powered by a USB battery bank and connected

to a control node using on-board radio communication as discussed in Section

4.3.

As mentioned before, to minimize communication and centralized computa-

tion, our design distributes all the detection, tracking, and occupancy counting

to the occupancy sensor nodes. Various requirements including low power oper-

ation and multiple sensor support can be met following the control logic defined

in Section 4.1. It should be mentioned that we only implemented it in a office

hallway which can be considered as a typical zone boundary. This works as a

basic proof of concept in that it can count the number of people entering/leaving

the zone by sensing only the boundary itself. For more general deployment with

a wider doorway or larger area, similar results are expected to be achievable by

using higher resolution sensors with an appropriately selected field of view.

25



A novel blob tracking algorithm is applied based on adaptive thresholds for

accurate and reliable detection and tracking of human movement. The images

in the first rows of Figures 13 - 15 show the raw sensor output as one or more

individuals cross the observed zone boundary. This data uses only the Panasonic

Grid-Eye 8x8 pixel thermal imager to show what can be achieved with a minimal

number of pixels on target. Any blob that is detected within the ROI is tracked

and compared with historical data log until they completely leave the transition

region. This enables us to handle the case of more than one object entering

the scene at the same time, which is an open question for most of the existing

occupancy detection solutions.

In particular, Figure 13 represents a simple case, where only one human

crosses the boundary. While Figures 14 and 15 show the scenario when there are

two persons present in the scene. Testing results from Figures 14 and 15 show

that our proposed algorithms can deal with the complicated scenarios where

multiple people crossing the boundary at the same time. In Case 1, one person

first entered the scene from the left, then a second people entered from the right.

Our occupancy detection algorithm correctly reported two occupants during

the test. Similarly, in Case 2, we switched the order of two persons entering

the scene. Our algorithm has also succeeded in reporting correct number of

occupancy in this case.

The data acquisition frequency used while obtaining these results was ap-

proximately 10 frames/sec. It should be mentioned that the sensor was asleep

by default, only waking up when a person approached within view of the 170 de-

gree PIR sensor contained within it, at which point a quick rolling multi-frame

background estimation was performed and continually updated until either a

target entered view or a timeout period with no motion (LWIR or PIR) was

reached.

It is worth mentioning that the neither the raw nor processed images in

Figures 13 - 15 involve any personally identifying information, which meets our

design requirement for privacy protection.
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6. Conclusion and Future Directions

In this work we have presented the design and architecture of a novel plug-

and-play occupancy sensor that enables temporal minimization of building en-

ergy consumption to meet building usage behavior without privacy concerns. We

developed an advanced sensor package consisting of multi-pixel thermal imagers

with low-cost optical enhancements to increase field of view and increase sensi-

tivity to occupant detection (filtering building clutter). Furthermore, standard

filtering and estimation techniques from the image processing and computer

vision communities were introduced to overcome the accuracy issues suffered

by traditional PIR based sensing, especially when occupants remain relatively

still. Accurate low-level counting of individuals has been demonstrated while

maintaining minimal impact on privacy. In addition to the occupancy sensor

node, we have also introduced a practical graph-based optimal sensor placement

algorithm to minimize number and optimize location of the occupancy sensors.

The developed occupancy detection method advances the state-of-the-art

by overcoming multiple challenges including accuracy, cost, energy efficiency,

and privacy preservation, which makes it suitable as a retrofit device to enable

real-time understanding of the building operational state and usage behavior.

Contrary to existing methods, the proposed method is immediately operational

(plug-and-play) as it does not require time-consuming gathering of detailed in-

formation about the physical conditions of the room or the need to wait for ex-

tensive training data prior to reliable operation. This will greatly contribute to

bridge the gap between occupancy detection and occupancy-based control, espe-

cially the emerging model predictive control (MPC). Moreover, our solution will

help evaluate the flexibility and possibility of using buildings for grid-efficient

interactive purposes.

One immediate step in making this occupancy sensor more popular would be

to work with other partners and organizations to test as many of these specific

mechanisms as possible, to confirm that they work as expected and evaluate

any outstanding issues. The content of this report could then be expanded and
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converted into a more comprehensive guide on how to customize and enhance the

platform for various scenarios. This would provide a rich resource for building

owners and researchers who would like to make use of occupancy data. Finally,

there is a need to disseminate case studies, data, and results of this work to

the building energy efficiency community to share the opportunities described

in this study. Many building owners and operators are unaware of the value of

and technical methods to gather these occupancy data.
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Figure 10: State diagram for sensing node operation.

Figure 11: Logical boundaries defined within the sensor’s field-of-view.
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Figure 12: Communication between the nodes.

Figure 13: Raw and processed sensor output as individual modes between zones showing one

person crossing from Zone 1 to Zone 2.
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Figure 14: Raw and processed sensor output as individual modes between zones showing two

persons crossing Zones (Case 1).

Figure 15: Raw and processed sensor output as individual modes between zones showing two

persons crossing Zones (Case 2).
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