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Abstract

Significant energy savings can be achieved by operating heating, ventilation and
air conditioning control systems with indoor occupancy measurement informa-
tion. This paper presents a novel plug-and-play occupancy sensing method
which will enable the temporal minimization of building energy consumption to
meet building usage behavior without privacy concerns. The proposed wireless
occupancy sensing platform is based on long-wave infra-red (LWIR) focal-plane
arrays (FPAs), or thermal imagers, that detect thermal energy rather than vis-
ible light. We developed an advanced sensor package consisting of multiple
thermal imagers with low-cost optical enhancements to increase field of view
and increase sensitivity to occupant detection (filtering building clutter). These
imagers can be coupled with radio frequency and ultrasonic-based radar to en-
hance data collection at key occupant zone boundaries to improve accuracy.
Standard filtering and estimation techniques from the image processing and
computer vision communities are introduced to overcome the accuracy issues
suffered by traditional PIR based sensing, especially when occupants remain
relatively still. Accurate low-level counting of individuals can be achieved with

minimal impact on privacy. The proposed occupancy detection method can
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work as a retrofit to enable real-time understanding of the building operational
state and usage behavior. Sensor data obtained from real test building zones
was used to test the efficacy of the method.

Keywords: Long-wave infrared (LWIR) sensor, focal plane array (FPA),
Human movement detection, Occupancy detection, Occupancy counting,

HVAC control, Sensor data.

1. Introduction

1.1. Background

Heating, ventilation, and air-conditioning (HVAC) systems consume 30% of
building energy and comprise 50% of building electricity consumption. Most
modern buildings continue to control room temperature and ventilation assum-
ing maximum occupancy rather than actual occupancy. High energy consump-
tion is largely due to conventional HVAC and lighting systems using open-loop
control strategies that cannot dynamically respond to changes in occupancy
[1]. Recent studies [2, 3, 4, 5] show that there exists a significant potential for
energy savings by temporally matching building energy consumption and build-
ing usage via occupancy-based control. With more than 134 million houses in
the United States [6], this presents a tremendous opportunity to decrease en-
ergy consumption and reduce inefficiencies. Occupancy-based control (OBC)
can achieve up to 30% energy savings by temporally matching building energy
consumption and building usage [7, 8, 9].

The goal of this paper is to design a high-performance occupancy sensor node
and optimize installation locations based on building layout in order to achieve
accurate occupancy detection and minimize installation and energy costs. Com-
monly used devices for detecting occupancy in buildings include passive infrared
and ultrasonic sensing technologies typically used for lighting or security appli-
cations. In recent years, alternative technologies for indoor occupancy sensing
have been studied, including microwave radar, acoustic, light barriers, video

cameras, biometric systems, pressure pads, and electric field sensors. Many of



these have been used to detect occupancy for safety or security with little appli-
cation specifically toward building control due to integration cost and challenges

with respect to detection accuracy and precision.

1.2. Related Work on Occupancy Sensing

Significant work has been done to investigate the potential of improved de-
tection accuracy for real-time occupancy-based HVAC control. A comparison
of the different occupancy systems is given in Table 1 [7]. As an observation
from the table, passive infrared (PIR) sensors are relatively cheap compared to

video camera systems.

Type of sensor Resolution Number of Person Person Initial cost
occupants identification localisation

PIR Low No No No Low
Ultrasonic Low No No No Low
Microwave Low No No No Low
Sound Low No No No Low

Light barriers Low Yes No No Low
Video Very high Yes Yes Yes High
Biometric High Yes Yes No High
Pressure Low No No No Medium

Table 1: Comparison of occupancy sensing technologies [7].

Based on the occupancy detection technique, there can be several types
of sensing systems. Common occupancy detection systems typically used in
office buildings for demand-driven applications include direct sensors such as
carbon dioxide (CO3), PIR, ultrasonic, image, pressure pads, radars and electric
field sensors; or implicit sensors such as energy consumption, phone, Wi-Fi and
computer activity detection sensors [10].

Moreover, a fusion of multiple sensors has also been studied in occupancy
detection for demand-driven applications [11, 12]. Previous research [13, 12, 14]
has introduced a system for estimating building occupancy based on data from
a sensor network including PIR, video cameras, and CO; detectors.

It is noted that concentration of gases in a space in parts-per-million (PPM).
Hence, the CO2 detector becomes a commonly used tool for the measurement
of occupancy in buildings for demand-driven control of HVAC systems because

the amount of CO5 in a space can provide an estimate of user presence as well as



count [15, 16, 17]. However, its application in occupancy estimation is hampered
by the relatively poor real-time performance and measurement precision due to

slow gas mixture [18, 13].

1.2.1. Vision-based Occupancy Detection

Vision-based systems which rely on camera images and video analysis tech-
niques are often used in buildings for security purposes, though their use has also
been explored for occupancy measurement in buildings. In general, computer
vision-based processing for human tracking includes following stages: modeling
of environments, detection of motions, classification of moving objects, tracking,
understanding and description of behavior, human identification, and the fusion
of data from multiple cameras [19, 20]. However, such systems can raise serious

concerns in the following aspects:

1. Tt is sensitive to ambient illumination, which changes during the day and
at night [21];

2. The computational /communication load for continuous visual surveillance
is heavy;

3. Using cameras may introduce privacy concerns, causing an uncomfortable
feeling or even an adverse psychological impact for the residents due to

the fact they are being observed [22].

Most other sensing methods involving sound, ultrasonic, electric field and all
the implicit ones suffer serious problems in accuracy, privacy and false ON/OFF

[11, 23, 24, 25, 10].

1.2.2. PIR-based Occupancy Detection

In order to overcome these weaknesses of video-based detection, some re-
searchers employ PIR sensors [26, 27, 28, 29, 30, 31]. PIR sensors are non-
intrusive and are only sensitive to changes in infrared radiation such as that
caused by human motion. This makes them robust to interference caused by
cluttered background and illumination variance [32]. PIR sensors have been

widely employed for human detection systems due to its low cost and power



consumption, small form factor, and unobtrusive and privacy-preserving inter-
action. A multi-modal system consisting of a PIR sensor and a regular camera,
which distinguishes entry/exit motions and ordinary body movements, is pro-
posed in [33].

The PIR sensor is the most commonly used technology for occupancy sensing
in buildings, especially for lighting control [34]. Even though a solid body of
work on occupancy sensing in building environments has been conducted in
the past decades [35, 36, 37, 10, 38], there remain technical challenges with
PIR sensors that hinder the development of innovative solutions for occupancy
sensing. It is well known that the application of PIR sensing in buildings is
limited due to several major flaws (as claimed in [10, 39]): (a) PIR sensors can
only provides coarse binary information (occupied or not) [40, 20, 11]; (b) PIR
sensors require a direct line of sight between the sensor and occupants in a space;
(c) PIR sensors require continuous motion to function effectively (i.e. occupants
are seating still or the sensor’s view is impeded by other objects) [41]; (d) PIR
sensors can be triggered by alternative thermal currents from hot coffee/tea, 3D
printers, HVAC systems [20] or pets [39].

These limitations of the existing PIR-based occupancy detection systems
may lead to incorrect control actions and degraded human comfort since build-
ing HVAC control differs significantly from instantaneous lighting control. In
particular, ramping room temperature up or down is not instantaneous owing
to inertia in the underlying mechanical systems (e.g., compressors) and heat
transfer. Although an occupancy monitoring system can provide estimates in
near real time, if the estimates are used in a reactive manner, then the HVAC
control will likely leave occupants uncomfortable until target temperatures are
met. To ensure occupant comfort, robust predictors are needed to adaptively
condition a given space [42, 43].

It is worth mentioning that most of the aforementioned systems do not
provide zone level occupancy information and were not designed or tested for
tracking multiple mobile occupants [20]. Tracking mobile occupants is essential

in achieving better occupancy estimation accuracy (since historical information



of the same occupant is used) and control efficiency (since the occupancy move-

ment should be accounted for when adjusting the HVAC operations).

1.3. Motivation and Research Objective

Given this background, we pursue in the present study a long-wave infra-
red (LWIR) focal-plane array (FPA) based occupancy detection platform to
address the major concerns presented by existing solutions. We therefore use
thermal imagery, which captures infrared radiation instead of visible light, and
creates an image whose pixel values represent temperature [44]. This is a hybrid
method that combines the benefits of both vision-based and PIR-based tech-
niques. Compared with the traditional camera-based measurement, people can
not be identified in these thermal images, eliminating potential privacy issues.
A positive side effect of thermal imaging is that detection/tracking can often be
reduced to a trivial problem by utilizing the existing large body of algorithms
for image processing and computer vision. Hence it enables more sophisticated
occupancy estimation/tracking than traditional PIR sensor measurement.

LWIR sensors have been studied in the vehicle society for occupant- and
driver-posture analysis as well as pedestrian detection [45, 46]. In the buildings’
envelope area, LWIR thermography can be employed to evaluate building mate-
rials [47], detect construction defects [48], determine the heat losses in buildings
[49], building energy diagnostics [50], and other problems relating to humidity
[51, 52]. However, to the best of our knowledge, there exist few studies in the
literature using LWIR sensors for building occupancy detection and/or tracking.

The complexity of the proposed algorithms along with memory and energy
consumption must be balanced such that the complete solution can be carried
out in an embedded architecture. The developed system must therefore be
an optimal trade-off between occupancy detection accuracy and algorithmic
complexity.

In particular, the overall objectives are:

1. To detect the presence of a person in its environment without being dis-

turbed by the presence of animals or other moving objects.



2. The sensor must be robust to changes in illumination, ambient heat sources,
and be able to protect users’ privacy.

3. The complexity of the proposed algorithms should be considered with lim-
ited computational and energy resources, allowing the system to function

in an embedded architecture without external power.

To address the challenge of minimizing the required number of sensors for
any given building, a graph-based optimal sensor placement algorithm is pro-
posed in this paper. In addition to this optimal design in placement, we have
also developed our own embedded board integrating LWIR and PIR sensors
with wireless capabilities to provide energy saving occupancy monitoring and
estimation services.

There is a desire with any sensing system to achieve perfect accuracy in
the detections and/or decisions that it makes. However, it is important to also
realize that the quest for perfection can come at a cost of additional algorithm
complexity, increased sensor cost, and greater energy consumption at the sensor
node itself. These tradeoffs need to be considered in the larger picture in com-
bination with the building control system with which the sensor will eventually
be integrated. A typical building control system will have a minimum control
resolution which may correspond to more than one person. Therefore any sens-
ing accuracy/resolution that is finer than that of the control system provides
no additional benefit toward total building energy reduction.

For example, the sensor node described here has been shown to perform well
for detection and counting of humans entering and leaving different zones within
a building. In its current instantiation it may not be able to differentiate a cat,
or perhaps a large dog, from a human. In an office environment this is perhaps
not as significant an issue as in a home environment. However, the fact that an
FPA sensor is used can allow additional algorithmic improvements to be made
to potentially address that issue. Additionally, sensor fusion methods making
use of multiple sensors on the platform along with machine learning could be

investigated as a way to disambiguate various thermal bodies in the field of view



of the sensor.

The rest of the paper is organized as follows. In the remainder of the In-
troduction, we review related literature on technologies that underlie the con-
sidered occupancy sensor solutions and developments. The proposed wireless
sensor-driven occupancy detection system provides a complete infrastructure to
realize sensor placement as well as development. We present the architecture
of the occupancy detection system in Section 2 to realize the system solutions
and services. A technical realization to realize the services is then described
in the following three sections. In Section 3, we consider optimal placement of
occupancy sensors to cover the entire area of interest. A solution for offering
accurate low-level counting of individuals is described in Section 4. Services
for utilizing the developed occupancy detection algorithm and analytics using
collected sensor data are described in Section 5. Conclusions and discussions

are provided in Section 6.

2. System Architecture

A straightforward approach currently used to add smart OBC to a building
is to simply place a sensor in every room and hallway. However, this approach is
expensive, requiring many more sensors than are potentially necessary. Indeed,
the largest gains in building efficiency can typically be achieved not at the indi-
vidual room level, but at the zone level. Sensors necessary to provide sufficient
information for adaptive control at the zone level can reduce installation cost
significantly while still allowing measurement of system state and detection of
abnormalities. An optimal distribution of sensing nodes will also consider the
lowest-cost sensing option for each specific node necessary to meet the required
accuracy goals. There are several architectures that the sensing system could
follow with respect to integration into the building. Centralized architectures
use significant energy for communication from node to central location, but min-
imal energy in computation at node level. Distributed architectures expend less

energy on communication and increased energy for node-level data processing.



In designing the sensing nodes and the resulting system architecture, it is
important to consider the physical distribution of the nodes along with the
local sensing requirements at each node. Some nodes may require a simple PIR
and temperature sensor (e.g., a discrete entrance), whereas others may require a
thermal imager (e.g., large cafeteria). Irrespective of the type of low-level sensor
on each node, the core information that each node obtains from the sensors
would ideally be the same. Architectures for deployment, data processing, and

control hierarchy will drive the cost-effectiveness of the solution.

2.1. Wireless Sensor Node

Figure 1: Wireless sensor node for advanced occupancy sensing and control.

To help foster a similar culture and capability for occupancy sensing a com-
mon sensing platform is developed with which researchers can test and validate
distributed multi-modal sensing algorithms. The sensor node that has been de-
signed and fabricated as part of this project is shown in Figure 1. The sensor
node includes several LWIR sensors (thermal imagers), a PIR sensor, as well
as sensors for temperature, relative humidity, and ambient light. A sub-GHz
radio is also included to allow communication back to a central control unit to
update occupancy count. As the capabilities and performance of the sensing
node progresses, a more abstract interface will be developed though which vari-

ous sensors and algorithms can be easily integrated into the node with minimal



necessary low-level hardware or software knowledge.

Each node can be powered on in one of two modes: (1) Control, and (2)
Sense. The desired mode is chosen by pressing one of the buttons on the node
while powering it up.

Control nodes can plug into a USB port on a computer, providing a serial in-
terface through which to allow wireless control of multiple sense nodes. Control
actions that are currently defined include sensor selection, sensor orientation,
begin occupancy sensing, and querying of occupancy count. Additional actions
are being added to complete a minimal functional set for testing.

Sensor nodes are expected to run headless, however if powered through USB
connected to a computer then debugging and other information about its oper-

ational state can be obtained through its serial interface.

2.2. Sensors

The highest resolution sensor being considered is the FLIR Lepton which
is an 80x60 microbolometer based imager available with either a 50 or 25 de-
gree field of view and a maximum frame rate of 8.6 frames per second (FPS).
This sensor has the highest power consumption out of all the sensors described
drawing approximately 150 mW. One particularly interesting feature with this
sensor is that in addition to outputting data as a single 8-bit or 14-bit value for
each pixel representing radiated temperature, it can also automatically apply
colorization to the sensed temperature data and output the data in an RGB
format which can greatly assist in later processing tasks such as clustering that
would be used for detection and tracking of occupants using standard image
processing methods.

In addition to the bolometer based Lepton sensor, two thermopile based
devices are available, the Melexis ML.X90621 which features a 16x4 pixel array,
and the Panasonic AMG883X which features an 8x8 pixel array. These sensors
are much lower resolution compared to the Lepton, however in the case of the
Melexis offerings are available in much wider and narrower fields of view which

may be useful depending on the local building geometry where the sensor node
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will be installed. In addition, the non-square aspect ratio of the Melexis sensors
means that they are highly orientation dependent.

To enable comparisons between various sensors and to allow for multi-modal
sensing as the project progresses, all of the sensors listed in Table 2 were selected
to be integrated into the node Figure 2. Current cost estimates are also included,
however it should be noted that only a subset of these sensors would be used
in an actual commercial node offering and an industrial manufacturer could

typically receive even lower quantity pricing.

Silicon Labs Si7006-A20
Temperature and RH Sensor

Texas Instruments TMP123
Temperature Sensor

Panasonic AMN32111
PIR Sensor

Nordic Semiconductor
NRFxx Radio Header

Melexis MLX90621
16x4 Thermal Imager

Microchip MRF89XAMO9A
915MHz Radio

Panasonic Grid-Eye
8x8 Thermal Imager

FLIR Lepton ON Semiconductor NOA1212
80x60 Thermal Imager Ambient Light Sensor

Figure 2: Close look at the sensor node.

2.8. Node Architecture

The node must utilize wireless communication and be low-power being able
to operate on an internal battery for a reasonable length of time, or permanently
by using one or more energy harvesting methods.

The board that was selected for construction of the sensor node is the
Freescale/NXP FRDM-KL46Z evaluation board. This board is built around
a Freescale/NXP KIL467256 micro-controller which contains a low-power ARM

11



Table 2: Selected sensors for sensor node implementation

Type Manufacturer Model Array size | Cost
LWIR FLIR Lepton 80%60 $175
LWIR Melexis MLX90621 16x4 $52
LWIR Panasonic AMGS8S8 8x8 $16
PIR Panasonic AMN32111 NA $11
Temperature + RH Silicon Labs Si7006-A20 NA $1
Temperature Texas Instruments TMP!23 NA $1
Ambient Light ON Semiconductor | NOA1212 NA $0.21

Cortex-M0+ processing core with 256 kB of program memory, 32 kB of RAM,
and a maximum clock rate of 48MHz. Included on the board are a built-in
debug interface, an ambient light sensor, and a LCD display that can be used
to display the node status while in operation. Although the micro-controller
on this board is potentially larger (with respect to memory) and more powerful
than absolutely required, it does allow rapid algorithm development after which
algorithm efficiency and code minimization can be pursued to allow a smaller
less powerful, and cheaper, micro-controller to be used in the final node design
if required to meet cost or other design goals.

The Freescale/NXP Kinetis micro-controllers have been selected for several
reasons. These micro-controllers are some of the lowest cost ARM based micro-
controllers available on the market and are available in a wide array of physical
sizes and packages that allow better matching to the specific set of sensors and
board layout eventually used. In addition, the Freescale development tools are
one of the few that do not restrict code size and other capabilities without a paid
license. This is especially important when considering that the algorithms and

source code for the developed platform will be shared with collaborators and
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will need to be accessible to other parties for testing, verification, and integra-
tion without undue difficulty. Another reason to select these specific evaluation
boards is that they are supported by the ARM Mbed platform and operating
system which is designed to simplify the development of devices for the Inter-
net of Things (IoT) and enable code reuse across ARM devices. The complete
node is packed with a 3D-printed case (as shown in Figure 3), which is lo-
cally manufactured at Oak Ridge National Laboratory (ORNL)’s Manufactuing
Demonstration Facility.

The first step in creation of the sensing node is to determine an appropriate
mapping between each sensor and the selected development boards available
interfaces. A connectivity diagram of the selected sensors and how they inter-
face with the FRDM-KL46Z development platform is shown in Figure 4. The
development platform is the block in the center, and all the blocks surrounding

it are the sensors that are externally interfaced to it.

3. Sensor Placement

To determine the ideal or optimal placement of sensors for determining the
system state, it is important to understand what the underlying causes of the
state changes are and how they evolve the system state. Observation of state
changes, such as a person passing between zones or exiting the building, pro-
vides information on the current state. As advanced estimation methods are
developed, the goal is to be able to operate with a number of sensors at or
below the number needed for full state capture.

The proposed innovation will be threefold:

e First, we provide efficient approximation algorithms that select a small
number of sensors to optimize the estimation error based on real occupancy

across different zones.

e Second, we develop an optimal deployment algorithm for the occupancy
sensors (the number of sensors is the optimized result from the first ac-

complishment).

13



(a) (b)

(c)

Figure 3: Packed node inside 3D-printed cases

e Third, we solve the scheduling problem to improve the lifetime of such a

sensor network based on the deployment scheme.

Any building can be modeled as an un-directed graph depicting zone connect-
edness within the building and the external environment. Consider an arbitrary
floor plan for an office building. An automated graph model can be directly
generated based on the connectedness of each zone. Figure 5 shows a graph
model for a floor plan with four zones. Each vertex of the graph represents a
zone, and every connection between zones is represented by an edge. The outer

gold boundary is the boundary of the system delineating between the interior

14



Nordic Semi Microchip
NnRF24L01 MRF89XAMOA
\ Radio
Melexis
MLX90621
. SPI 0
Panasonic
Grid-Eye 12C 0
i Panasonic
SPI1 rrom-kuaez | Digitall AMN32111
(MKL462256 MCU)
FLR 12C 1 Analog In
Lepton PIR
LWIR
ON Semi
Tl Silicon Labs pot1212
TMP123 Si7006-A20

Ambient Light

Temperature and %RH

Figure 4: Connectivity diagram of sensor node.

of the building and the exterior. Each zone is depicted as a node in the graph,
shown as Z;. It should be mentioned that it is possible for multiple edges to
connect each zone such as illustrated between Zone 4 and the exterior of the
system.

Each edge represents a boundary between zones that people can cross, such
as a door or a point along a hallway. Note that the aggregate system occupancy
is determined solely by information available on the green edges. Zone i occu-
pancy, Z;, is solely determined by information available on those edges with a
vertex on Z;, which includes both inter-zone boundaries and system boundaries.
The total number of people in the system is then the sum of all the individual
zone counts ||Z||; or simply ||Z|| from hereon.

Note that the entire state of the system is given by the zone count vector
Z and that the system state is only affected by movement of people across the
edges of the graph. In particular, the system occupancy ||Z|| is only affected by
movement across the system boundary (green edges), whereas each individual
zone occupancy Z; is affected by movement across inter-zone boundaries (blue

edges) as well as system boundaries. Given these observations it is arguable that
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+—— |nter-Zone Boundary

<+ System Boundary

Figure 5: Sensor Placement.

information available through observation of the zone boundaries is sufficient to
completely determine the system state.

Each boundary is typically representative of a physical boundary in a build-
ing such as a doorway, or a virtual boundary such as a specific location such as
where two hallways meet or join together. It can be assumed that there exists a
small area within each zone from which each connected edge or boundary can be
observed. The majority of any given zone potentially provides no information
about edge behavior since the boundaries may not be observable such as from
inside an office or closet. Figure 6 shows a closeup view of Zone 2 from Figure 5.
The dashed lines delineate the areas within the zone from which the associated
edges are observable. The system boundary in this case is observable from a
small area, and the two inter-zone boundaries are both observable from another
small area.

It can be argued that within a zone, one sensor per boundary is sufficient to
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<— |nter-Zone Boundary

<+——— System Boundary

Figure 6: Closeup view of Zone 2.

capture occupancy count for that zone. Minimizing the number of sensors nec-
essary to provide zone count information is therefore inherently upper bounded
by the number of edges at a given vertex (3 in this case). In this case since
the two inter-zone boundaries are potentially both visible using a single sen-
sor reducing the sensor count by 1 (down to 2 sensors). Reducing the sensor
count further in this case requires estimating occupancy based on data from
a single sensor somewhere within the zone. Based on this proposed placement
algorithm, we will discuss two use cases, one for office environments and another

for warehouse environments.

3.1. Edge Coverage for Office

Considering the limited geometrical size of normal offices and the detection
range of PIR sensors, we can directly deploy single sensor for each concerned
boundary as shown in Figure 7. We use the same floor plan as mentioned
earlier in Figure 5, where four interconnected zones are involved. As shown in
the figure, all the potential edges and door entrances are monitored by sensors
denoted by blue S7, S5, S3,.54. Here we assume the field of view of each sensor
is larger than 90 degrees, allowing the use of as few as four sensors to cover the

entire office area. Several observations are noted below:
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1. By tuning the direction of Sensor 1 (S1), it is potentially able to observe
both Door 1 and the zone boundary between Zone 3 and Zone 1;

2. Though there are two paths connecting Zone 3 and Zone 4, its possible
to use Sensor 2 ( S2) alone to monitor the edge as long as the detection
range is long enough;

3. Sensor 3 (S3), with an appropriate field of view, can view the boundary
between Zone 2 and Zone 3, and also Door 2 which crosses the system
boundary;

4. Sensor 4 (S;) will cover all the possible paths from Zone 1 to Zone 2

including the hallway and a door to one of the offices in Zone 2.

S2e

I S1 | Door1
Door2 I ezl |
$Zone2 B4
I S3
— — — — —
— L

Figure 7: Example sensor deployment in an office.

It should be remarked that the aforementioned sensor placement is based on

the assumption that the detection range and field of view meet the correspond-
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ing requirements, respectively. Additional sensors may be necessary if these
condition are not satisfied. For example, if S5 is not able detect movement at
the far hallway, then a separate senor should be placed close to that hallway. Or
if S35 is unable to view both Door 2 and the hallway transition simultaneously,
then two vertically oriented sensors may be considered instead of one single

sensor.

3.2. Edge Coverage for Warehouse

Now, we will study the second example about deployment in a warehouse. A
top view of a typical warehouse floor plan is depicted in Figure 8. The warehouse
is divided into 6 zones denoted with different colors. There are several shelving
units placed in each zone. The warehouse has two main entrances at the bottom,
and 5 emergency exits around the other three sides of the building. Notice that
the dotted red line connecting Ex 1 and Ex 5 (in Figure 8), as well as the vertical
zone boundaries, can reach over 100 ft in length.

For simplicity, we focus on the red dotted line in Figure 8. It can be easily
generalized to any boundary/edge between zones. After abstraction, the red
dotted line can be viewed as the horizontal black line in Figure 9. Several pairs
of sensors can be placed along the line to cover the entire boundary. To achieve
the best coverage performance, two sensors are deployed side by side towards
opposite directions. Particularly, the red ones face toward the left, while the

blue ones to the right in Figure 9.

4. Occupancy Counting Algorithm

Image and video processing is well studied and many methods exist for object
detection, segmentation, and tracking.Accurate low-level counting of individuals
can be achieved through standard particle or Kalman filtering or particle flow
methods to eliminate certain errors obtained with other methodologies using
a similar combination of sensors. Depending on the geometry of a building,

it is also possible for an imager to sense a much larger area, allowing much
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Ex2 Ex3 Ex4

Zone 4 Zone 5 Zone 6
Ex1 Ex5I
Zone 1 Zone 2 | ZIne 3
Main Entrance 1 Main Entrance 2

Figure 8: Example sensor deployment in a warehouse.

Figure 9: Sensor coverage of the long edge.

higher-order occupancy statistics to be obtained. Additionally, a 3-dimensional
thermal profile of a building can be achieved through a low-complexity template
matching method to obtain these pieces of information from the thermal image
at the sensor node itself with little computation. A volumetric thermal profile of
the building can be constructed in real time through sensor data fusion that can
be used to identify register outflow temperature, leaks around doors or windows,
and stratification. The combination sensor can be realized in a small form factor

(< 1in.?) at low cost.
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4.1. Control Logic

Appropriate software control of each node is necessary to meet the various
requirements including low power operation and multiple sensor support. A
flowchart outlining the basic ideal operation of a sensing node is illustrated in
Figure 10. When the node first powers up, it will begin by initializing all the
peripherals within the MCU itself which includes the various communication
buses necessary to communicate with each sensor. The node will then register
itself on the sensing network indicating to the control node that it is active and
present, and afterward place the radio in a standby mode until it is needed
again.

All of the Tier 1 sensors will then be enabled and the MCU will be placed in
a low-power sleep state. At this point the only significant power consumption
will be by the Tier 1 sensors including PIR, temperature, humidity, and illumi-
nation. Each of these sensors can be configured to trigger an interrupt when
a certain threshold is met waking up the MCU. The thresholds at which each
sensor triggers can be selected based on motion or other state changes (such
as temperature) in the sensing region that may be indicative of an impending
change in occupancy.

Once the MCU awakens it will immediately enable the Tier 2 sensor(s), in
this case one or more LWIR FPAs. The data from the FPA is processed frame
by frame. A frame is captured from the FPA and detection of occupants is
performed. If no occupants are detected and no activity has been recorded
by either the Tier 1 or Tier 2 sensors for some predefined period of time then
the Tier 2 sensors are disabled and the MCU goes back to the sleep state to
await further activity. If instead occupants are detected, then each occupant
is individually tracked. If the result of the tracking between the current and
previous frame indicates a change in zone count then an appropriate message
is sent to the control node indicating the change. Otherwise another frame is

captured from the FPA and processing continues again at the detection stage.
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4.2. Occupancy Detection Algorithm

The algorithm for detection and tracking is based on basic image process-
ing methods including thresholding, region growing, and blob detection. These
methods have existed since at least the 1960s and are well covered in any in-
troductory image processing textbook. The application of these algorithms for
the goals of this project are described below for the case where the sensor is
mounted above a walkway looking straight down.

The acquired sensor data can be viewed as an image in which each pixel’s
value is a temperature of some object in the scene. The objects of interest in
this case are people who are assumed to be at a higher temperature than the
surrounding objects in an office environment. Given this observation the first
step in the processing chain is to threshold the image by setting any pixel value
below some threshold temperature to 0, and all other pixels to 1.

One way to do this would be to select a fixed threshold temperature just be-
low human body temperature. However, a fixed threshold will not work reliably
in this case due to the fact that radiated body temperature is in general lower
than internal body temperature and may vary significantly between individuals.
The temperature distribution in a scene without any humans present may also
vary between pixels and over time either triggering false detections when no
humans are present, or by missing detections due to a human appearing below
the selected temperature threshold due to circumstances such as just walking
indoors on a cold day.

Instead of a fixed threshold, a per-pixel adaptive threshold is used. The
threshold at each pixel in this case is set as 2 °C above a rolling average over a
fixed number of frames. In our implementation we have chosen to average over
20 frames, and only those frames with no detected blobs (background only)
are used in the calculation. Setting the threshold slightly above the average
allows small variations in the background temperature without triggering a false
detection. The assumption here is that the majority of the variation is from the

sensor itself, and that the background is only slowly varying in time.
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After thresholding, a blob detection algorithm is used to find all the contigu-
ous regions in the image that were identified as non-background. As part of the
blob detection, each blob is assigned a unique label and statistics are obtained
including its centroid and size. As the detected blobs move through the scene,
they cross several virtual boundaries that are used to determine whether a blob
needs to be actively tracked, as well as whether the blob has contributed to a
change in occupancy.

For the doorway installation scenario the occupancy count would change as
individuals walk through the doorway. Assuming that the doorway lies vertically
in the center of the image, that means occupancy changes as individuals move
between the left and right halves of the image. To assist in the detection of these
transitions the image is split as shown in Figure 11. The zone boundary in this
case lies vertically through the center of the image. The two zones are labeled
Zone 1 and Zone 2 on the left and right sides of the zone boundary respectively.
Both zones are separated by a transition region that straddles the physical zone
boundary.

This is done for two reasons. The first is that the transition sub-region defines
a region of interest (ROI) outside of which any detected blobs can be ignored.
Any blob that crosses the doorway threshold must pass through the ROI, and
restricting the tracking algorithm to only this region reduces computation time.
The second reason for using two boundaries is that it introduces hysteresis into
the tracking, allowing a blob to potentially cross the doorway threshold multiple
times without affecting the occupancy count until that blob fully enters or exits
into one of the adjacent zones. An example of this would be a person standing
in the doorway itself while talking to a colleague.

Any blob that is detected within the ROI is tracked. This means that its
position when initially found is stored along with its most current position. The
zone from which the blob entered the ROI is assumed to be the zone that it
is closest to upon entry. When a tracked blob exits the ROI through either
boundary it is removed from the list of tracked blobs and the occupancy count

is appropriately updated. Any movement of the blob within the ROI itself does
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not affect the occupancy count.

Blob tracking is performed using the blob statistics mentioned earlier. Those
statistics allow determination to be made as to whether a blob in the current
frame overlaps with a blob in the previous frame. If any overlap exists it is
assumed that both are the same blob which has simply moved between frames.
If the matching blob in the previous frame is being tracked, then its current
location is updated. If there is no matching blob and it is in the ROI in the
current frame, then it is added to the list of actively tracked blobs until it exits
the ROIL

As the blob centroid moves across some defined boundary in the image the

zone count is either incremented or decremented appropriately.

4.8. On-board Communication Solution

For delivering a complete plug-and-play occupancy detection solution, each
occupancy sensor node can be selected as control or sense mode during the
power-on process. As shown in Figure 12, occupancy measurement collected
from the three grey-colored sensors will be transmitted back to the control red-
colored node using wireless communication. The control node can be connected
to any computer or energy management systems via USB. This hierarchical
structure enables the sensor platform to be conveniently deployed at any location
without relying on other communication infrastructure.

This dedicated communication capability has several advantages over the

WiFi-dependant solution.

e Simplify the platform setup since it avoids requirement and procedure of

getting the WiFi connection ready.

e Power conserving since the wireless communication is only activated when
there is an occupancy count change as described in the main sensing logic

(Figure 10).

e Cyber-resilient since this will be separated from the main network which
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is fragile to outside intruder. This helps protect potentially sensitive oc-

cupancy information.

5. Real-field Test and Results

This section presents results for validating the hardware and software de-
signs including the occupancy counting performance, accuracy, communication
and calculation capabilities. To cover different scenarios of human crossing zone
boundaries, we tested people enter/leave the zone separately as well as simul-
taneously.

It is worth mentioning that there are no existing practical solutions for mul-
tiple people tracking and counting since the commercial ready ones (laser beam
based) can count one person at a time, while the camera based solutions have se-
rious concerns related with privacy. Therefore, we want to show our occupancy
detection node fills this gap in state of the art.

Testing occured in a typical office building at ORNL. The developed occu-
pancy sensor node was installed on the top jamb of a doorway (7 ft high) looking
directly down at the floor and covering an approximate region size of 16 sq.ft.
(at floor level). The node was powered by a USB battery bank and connected
to a control node using on-board radio communication as discussed in Section
4.3.

As mentioned before, to minimize communication and centralized computa-
tion, our design distributes all the detection, tracking, and occupancy counting
to the occupancy sensor nodes. Various requirements including low power oper-
ation and multiple sensor support can be met following the control logic defined
in Section 4.1. It should be mentioned that we only implemented it in a office
hallway which can be considered as a typical zone boundary. This works as a
basic proof of concept in that it can count the number of people entering/leaving
the zone by sensing only the boundary itself. For more general deployment with
a wider doorway or larger area, similar results are expected to be achievable by

using higher resolution sensors with an appropriately selected field of view.

25



A novel blob tracking algorithm is applied based on adaptive thresholds for
accurate and reliable detection and tracking of human movement. The images
in the first rows of Figures 13 - 15 show the raw sensor output as one or more
individuals cross the observed zone boundary. This data uses only the Panasonic
Grid-Eye 8x8 pixel thermal imager to show what can be achieved with a minimal
number of pixels on target. Any blob that is detected within the ROI is tracked
and compared with historical data log until they completely leave the transition
region. This enables us to handle the case of more than one object entering
the scene at the same time, which is an open question for most of the existing
occupancy detection solutions.

In particular, Figure 13 represents a simple case, where only one human
crosses the boundary. While Figures 14 and 15 show the scenario when there are
two persons present in the scene. Testing results from Figures 14 and 15 show
that our proposed algorithms can deal with the complicated scenarios where
multiple people crossing the boundary at the same time. In Case 1, one person
first entered the scene from the left, then a second people entered from the right.
Our occupancy detection algorithm correctly reported two occupants during
the test. Similarly, in Case 2, we switched the order of two persons entering
the scene. Our algorithm has also succeeded in reporting correct number of
occupancy in this case.

The data acquisition frequency used while obtaining these results was ap-
proximately 10 frames/sec. It should be mentioned that the sensor was asleep
by default, only waking up when a person approached within view of the 170 de-
gree PIR sensor contained within it, at which point a quick rolling multi-frame
background estimation was performed and continually updated until either a
target entered view or a timeout period with no motion (LWIR or PIR) was
reached.

It is worth mentioning that the neither the raw nor processed images in
Figures 13 - 15 involve any personally identifying information, which meets our

design requirement for privacy protection.
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6. Conclusion and Future Directions

In this work we have presented the design and architecture of a novel plug-
and-play occupancy sensor that enables temporal minimization of building en-
ergy consumption to meet building usage behavior without privacy concerns. We
developed an advanced sensor package consisting of multi-pixel thermal imagers
with low-cost optical enhancements to increase field of view and increase sensi-
tivity to occupant detection (filtering building clutter). Furthermore, standard
filtering and estimation techniques from the image processing and computer
vision communities were introduced to overcome the accuracy issues suffered
by traditional PIR based sensing, especially when occupants remain relatively
still. Accurate low-level counting of individuals has been demonstrated while
maintaining minimal impact on privacy. In addition to the occupancy sensor
node, we have also introduced a practical graph-based optimal sensor placement
algorithm to minimize number and optimize location of the occupancy sensors.

The developed occupancy detection method advances the state-of-the-art
by overcoming multiple challenges including accuracy, cost, energy efficiency,
and privacy preservation, which makes it suitable as a retrofit device to enable
real-time understanding of the building operational state and usage behavior.
Contrary to existing methods, the proposed method is immediately operational
(plug-and-play) as it does not require time-consuming gathering of detailed in-
formation about the physical conditions of the room or the need to wait for ex-
tensive training data prior to reliable operation. This will greatly contribute to
bridge the gap between occupancy detection and occupancy-based control, espe-
cially the emerging model predictive control (MPC). Moreover, our solution will
help evaluate the flexibility and possibility of using buildings for grid-efficient
interactive purposes.

One immediate step in making this occupancy sensor more popular would be
to work with other partners and organizations to test as many of these specific
mechanisms as possible, to confirm that they work as expected and evaluate

any outstanding issues. The content of this report could then be expanded and
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converted into a more comprehensive guide on how to customize and enhance the
platform for various scenarios. This would provide a rich resource for building
owners and researchers who would like to make use of occupancy data. Finally,
there is a need to disseminate case studies, data, and results of this work to
the building energy efficiency community to share the opportunities described
in this study. Many building owners and operators are unaware of the value of

and technical methods to gather these occupancy data.
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Figure 12: Communication between the nodes.
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Figure 13: Raw and processed sensor output as individual modes between zones showing one

person crossing from Zone 1 to Zone 2.
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Figure 14: Raw and processed sensor output as individual modes between zones showing two

persons crossing Zones (Case 1).

Frame Number
425 443

Only Detect Person 2 Track Person 2 Update Counter

Figure 15: Raw and processed sensor output as individual modes between zones showing two

persons crossing Zones (Case 2).
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