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Overview
With recent advances in sensor and computation technology, unprecedented large
volumes of hydro-geophysical and geochemical data sets can be obtained to achieve
high-resolution images of subsurface properties for more accurate and reliable subsur-
face flow and reactive transport prediction. However, massive data set inversion is
challenging due to the cost of:
1) numerous simulation model runs to compute Jacobian matrix
2) large and dense matrix multiplications and storage
To tackle these challenges, the Principal Component Geostatistical Ap-
proach (PCGA) [1-3] has been proposed with following advantages:

•Jacobian-free: no need to compute/store full Jacobian matrix
• forward model runs independent of the problem size:
often runs much smaller number of simulations in practice

• linear scalability: matrix computation/storage costs grow linearly with respect
to the problem size; independent parallel forward model executions

•easy to implement: linked with any “black-box” multi-physics simulation
models without invasive changes

Principal Component Geostatistical Approach

With m unknowns, nobs measurements and forward model(s) h, one needs:
•Jacobian matrix H, i.e., sensitivity of the data to unknown parameters ∂h

∂s
•Jacobian products with the prior covariance matrix Q, i.e., HQ and HQHT

For large-scale/joint inversions (large m and nobs), one faces several challenges such as
• time-consuming, invasive changes in multi-physics simulation code for efficient
adjoint-state method implementation to evaluate Jacobian H

• expensive Jacobian construction requiring nobs (≥ O(104)) simulations
•prohibitive large dense matrix multiplication/storage for large m (≥ O(106))

In order to tackle these challenges, we developed PCGA that avoids expensive Jaco-
bian evaluation and its matrix products (cross-covariance) by using a fast truncated
decomposition [2] of the prior covariance

Q ≈ Qκ = Σκ
i=1ζiζ

T
i

and finite-difference approximation:

Hζi ≈
1
δ

[h (s + δζi)− h(s)] , HQ ≈ Σκ
i=1 (Hζi) ζT

i

scales linearly⇐ (Cost O(mκ2))

total κ + 1
⇐ simulations!

Thus, PCGA can achieve a significant speed-up with reasonable accuracy,
using simulation outputs without modifying multi-physics simulation code.

Data Reduction using Temporal Moments

• Individual measurement contains little information on the unknowns.
•Data dimension can be reduced to obtain a similar result from entire dataset inversion.
• In this study, we use the zero-th temporal moment:

m0(x) =
∫ T
0 C(x, t)dt

, which is equivalent to the mean tracer travel time for a continuous injection case [3].

Application to MRI tracer BTC data set

Objective: reconstruct 99,072 logK of a laboratory-scale sand box from 5,777,408 tracer concentration measurements obtained from MRI [3].
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Figure 1: The design packing pattern (1st row), best estimate (2nd row), and estimation variance (3rd row).

Experimental & Numerical Setup

The entire flowcell has dimensions of 21.5 × 9 × 8.5 cm, and is packed with 1 cm cubes
of five different sand types [4]:

Figure 2: Illustration of 3-D flowcell Figure 3: Sand packing in 3 layers (out of 8 layers)

•Sand distribution was created using SISIM in GSLIB to construct a heterogeneous K
field for the central portion (14 × 8 × 8 cm3).

•Constant water flow rate with a uniform tracer concentration was imposed.
•∼ 6 million transient tracer concentrations were imaged using MRI at a resolution of

0.253 cm3 at a regular interval time over the heterogeneous K region.
•A uniform grid spacing of 0.25 cm was used for MODFLOW and MT3DMS.
•Forward simulations and inversions were executed on a 36 core workstation.
•Using the zero-th temporal moment, 5,777,408 data records were reduced to 51,584
mean travel time records for the inversion.

Figure 4: Packing with a brass divider with 1cm3 openings (left), flowcell (upper right), MRI magnet (lower
left) and normalized signal intensity at a voxel (lower right).

Results

•A total of 1,952 MODFLOW-MT3DMS simulation runs were required in 5 hours.
•κ = 500 forward simulations for each iteration were enough to approximate a full
geostatistical inverse solution, which would normally require 51,584 simulations.
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Figure 5: The best estimate with different κ values (left); data fitting with κ = 500 (right).

Conclusion

• PCGA performed a data-intensive inversion efficiently using coupled black-box
simulation models.
• Key patterns of the original sand packing design were identified successfully.
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