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ABSTRACT

This work quantifies the physical characteristics of infrasound signal and noise, assesses their
temporal variations, and determines the degree to which these effects can be predicted by
time-varying atmospheric models to estimate array and network performance. An automated
detector that accounts for both correlated and uncorrelated noise is applied to infrasound data
from three, seismo-acoustic arrays (BRDAR, CHNAR, and KSGAR) in South Korea, cooperatively
operated by Korea Institute of Geoscience and Mineral Resources (KIGAM) and Southern Meth-
odist University (SMU). The ocean arrays have higher noise power than the continent array,
consistent with both higher wind speeds and seasonably variable ocean wave contributions.
Based on the adaptive F-detector utilizing the time variable environmental effects, the
time-dependent scaling variable is shown to be dependent on both weather conditions and
local site effects. Significant seasonal variations in infrasound detections including daily time of
occurrence, detection numbers, and phase velocity/azimuth estimates are documented. These
time-dependent effects are strongly correlated with atmospheric winds and temperatures and
are predicted by available atmospheric specifications. This suggests that commonly available
atmospheric specifications can be used to predict both station and network detection perfor-
mance, and an appropriate forward model improves location capabilities as a function of time.
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3. Atmospheric Effects and Model Prediction

Seasonal variations in infrasound detections at three arrays are compared with variations in atmospheric esti-

mates from the G2S atmospheric specifications (Drob et al., 2003).

effective sound speed from G2S estimates (bottom middle figure).

spheric fractions for each array (bottom right figure).

1) There is strong correlation between seasonal changes in detection azimuths and the seasonal re-
versal of tropospheric and stratospheric winds. However, the number of detections (1 80° < az <360°)
during the winter is reduced, indicating that stratospheric winds produce a mixture of eastward and
westward propagation (i.e. sudden stratospheric warmings) (bottom left figure).

2) Phase velocity can also be affected by seasonal variations of temperature, static sound speed and

3) Based on the omnidirectional G2S ducting fractions, calculated percentage of energy ducted in a
particular mode, different tropospheric fractions are predicted for three arrays, with similar strato-
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STUDY AREA

A one-year dataset
(12/2009-11/2010)
recorded at infrasound
arrays in South Korea ;
(right figure)
was used for this study.
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Analysis focuses on seasons.
Winter: Dec 2009 - Feb 2010
Julian days 335(2009)-059(2010)
Spring: Mar - May 2010
Julian days 060-151 (2010)
Summer: Jun - Aug 2010 I

Julian days 152_243 (201 O) 122°E 124°E 126'E 128°'E 130°E 132°E _11 0 1
X (km)
Fall: Sep - Nov 2010 The location of infrasound arrays (black triangles) - BRDAR, CHNAR and KSGAR

Julian days 244-334 (2010) and buoy stations (white triangles) - Deokjeokdo (Buoy1), Oeyundo (Buoy?2),

Chilbaldo (Buoy3), Donghae (Buoy4), and Pohang (Buoy5) in South Korea.
Black circles in the right designate the location of individual array elements.

tions at BRDAR have relatively high correlations, espe-
cially for sources from the NE with many detections.

(a) Total number of detections displayed by array (BRDAR, CHNAR, and
KSGAR) for one-year separated into winter, spring, summer, and fall. The
total number of detections are summarized at the top. The number of in-

frasound detections as a function of (b) hour of the day and (c) day of the
week at BRDAR, CHNAR, and KSGAR using the one-year dataset.
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PHYSICAL EXPLANATION OF OBSERVATION

ADAPTIVE F-DETECTOR (AFD)

AFD (Arrowsmith et al., 2009) is a modification to F-detector that accounts for
temporal changes in noise by using an adaptive window to update the detection
distribution. The scaling factor, C, aligns the peak of the F-distribution in the time
window with the peak of the theoretical F-distribution.

Adaptive F-statistic Fit

C-value=1.2

Two panels are displayed for each hour of BRDAR
data for Julian day 081, 2010 (a) 06:00:00~07:00:00
UTC and (b)14:00:00~15:00:00 UTC.

The left panel without adaptation and the right after
adaptively remapping the empirical distribution.

C-value = 1.9

The theoretical (black) and empirical (gray) F-distri-
bution is included in each panel with the 99% thresh-
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1. Local Wind Effects

Based on infrasound noise estimates using
Welch’s method (Welch, 1967), BRDAR has
higher noise levels than other arrays, sug-
gesting the primary effect on background
noise is wind speed (bottom ﬁgure).
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(a)Infrasonic noise power density estimates using Welch's
method (Welch, 1967) for BRD42 (blue), CHNO5 (red), and
KSG12 (green) for Julian days 074-094 (2010). (b)Infrasonic
noises at BRDAR (BRD42), CHNAR (CHNO5), and KSGAR (KSG12)
are plotted against wind speed for frequencies of 0.02, 0.05,
0.10, 0.25, 0.50, 1.00, 2.50, and 5.00 Hz for spring, summer, fall,
and winter. CHNAR result during the winter lacks complete
weather data as a result of an equipment failure.

2. Ocean Wave Effects

Average RMS amplitudes for the detected signals at BRDAR
and KSGAR compared to maximum ocean wave heights as a
function of time and azimuth (bottom figure).

Correlation between signal amplitude and ocean wave energy
is stronger during the winter and spring than the summer
when ocean wave height decreases.
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( 2Fhe correlation between seasonal variations in in-
frasound detections and atmospheric winds esti-
mated for 6-hour time intervals (0, 6, 12, and 18
hour in UTC) from the G2S specifications (Drob et
al, 2003) in Korea for the time period
(12/2009-11/2010). (a) Meridional (top) and zonal
(bottom) winds at CHNAR as a function of day for
the one-year time period. (b) Seasonal variations in
the number of infrasound detections per day from
the west, 180°<azimuth<360° (red) and from the
east, 0°<azimuth<180° (blue), at BRDAR, CHNAR
and KSGAR.
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(@) Seasonal variations in phase velocity at BRDAR,
CHNAR, and KSGAR using the one-year dataset (12/2009 -
11/2010). Each bold line indicates the 1-week moving
window averaged phase velocity. (b)The vertically aver-
aged temperature for troposphere (altitude<15km) and
stratosphere (15km<altitude<70km) and (c)the static
sound speed estimated for 6-hour interval (0,6, 12,and 18
hour in UTC) from the G2S specifications in Korea. (d)The
total number of detections as a function of detection azi-
muth and phase velocities with the average effective
sound speeds for troposphere (red lines; 5km<alti-
tude<10km) and for stratosphere (green lines; 40km<alti-
tude<60km and blue lines; 60km<altitude<80km) plot-
ted by seasons.
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The omnidirectional G2S ducting fractions
(tropospheric arrivals < 15 km and 15 km <
stratospheric arrivals < 70 km) from the
6-hour intervals (0, 6, 12, and 18 hour in UTC)
at (a) BRDAR, (b) CHNAR, and (c) KSGAR for
the time period of 12/2009-11/2010.

CONCLUSIONS
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Maximum ocean wave heights as a function of time (blue lines, top) are compared to the aver-
age RMS beamforming amplitude in log scale (Pa) of the detected infrasound signals (col-
or-coded points) using small (middle) and large (bottom) aperture arrays for the one-year
dataset (winter, spring, summer, and fall) at (a) BRDAR and (b) KSGAR.

Bouy 1, Buoy 2, and Buoy 3 are superimposed for comparison with BRDAR detections (a) and
Buoy 4 and Buoy 5 are superimposed for comparison with KSGAR detections (b).

An adaptive F-detector (AFD; Arrowsmith et al., 2009) utilizing the time variable environmental effects is applied
to infrasound data (BRDAR, CHNAR, and KSGAR in South Korea) for the one-year dataset (12/2009-11/2010).

The temporal adaptation of AFD is dependent on both weather conditions and local site effects.
C-value, scaling factor for background noise level, increases with decreasing wind velocity.

Infrasound detections (number of detections, correlation value, phase velocity and azimuth estimates) show
daily and seasonal variations and these observations are affected by environmental conditions such as local
wind, ocean wave and atmospheric condition.

Ocean arrays have higher noise conditions than continental array and their infrasound detections are strongly
related with ocean energy (the higher ocean wave height the higher RMS amplitude of the detected signals).

Seasonal changes in the distribution of infrasound detections are consistent with wind changes as predicted
by G2S specification (Drob et al., 2003). Many infrasound detections in the Korean Peninsula are dependent
on troposphere condition during the winter, spring, and fall, while stratospheric propagation condition is fa-
vorable during the summer but weak during the winter possibly due to sudden stratospheric warmings.
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