SAND2014- 19503P

Sandia

Exceptional service in the national interest @ National
Laboratories

Manycore Graph Algorithms
and the Kokkos Library

Erik Boman, Dagstuhl, Nov. 2014
Joint work with Siva Rajamanickam

(7' \‘.\,) U.S. DEPARTMENT OF Iwn ' ' og’ﬁ
£ 7 A’ o Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
9/ENERGY # VA~

Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Outline)

= Computer architecture challenges
What is Kokkos?
Kokkos for Graphs

Example: Graph Coloring

Motivation rh) pes

= Current trend is greater parallelism on node

= Diversity in architectures and programming models:
= Distributed memory: MPI, PGAS
= Shared memory: OpenMP, pthreads, TBB, Cilk+, etc.
= GPU: CUDA, OpenACC
= XMT: proprietary directives
= Software must be ported several times to support all
platforms
= Algorithms may also change to optimize performance

= Many choices for X in MPI+X. What to do?

What is Kokkos?)

= Library and programming model for multithreaded and
manycore programming

= Key feature: Performance portable across range of
architectures, including
= Multicore CPU
" |ntel MIC (Xeon Phi)
= GPU

= Main focus: Scientific computing

= Will support on-node kernels in Trilinos (huge collection of scientific
computing packages)

= |nitial version is data parallel

= Task parallelism is coming

Kokkos Core Features) i,

= Kokkos::View is the primary data type
= Multi-dimensional array
= Abstraction that hides underlying memory layout
= Default layout depends on your architecture
= Also provides “first-touch” optimization

= Data parallel constructs:
= Parallel_for
= Parallel_reduce
= Parallel_scan

= Functor or lambda API
= User writes code as functor to be invoked by Kokkos
= Simple operations can be done inline using lambdas (C++11)

Execution and Memory Spaces) .

= The execution space defines where and how code is executed.

= You may think of this as a "back end”. Current options:
= Pthreads, gthreads
= OpenMP
= CUDA

= MemorySpace defines where data live
= Capability (Fast but small), capacity (slow but big), etc.
= Will be mapped to something appropriate on your hardware

= Each ExecutionSpace has a default MemorySpace and vice
versa

Hierarchical Parallelism) i,

= Hierarchical parallelism is important on many architectures
= GPUs have SMs, warps, thread blocks
= Thread synchronization time can vary significantly!

= Abstraction: Teams and leagues

= Ateam is a group of threads working together
= Aleague is a group of teams

= Sports analogy borrowed from OpenMP

Kokkos for Graph Algorithms 1) .

= Kokkos was designed for “regular” applications
= FEM assembly and solve
= Numerical linear algebra (SpMV)
= Molycelar dynamics

= |s Kokkos useful for “irregular” graph algorithms?

Case Study: Graph Coloring).

= Given a graph G(V,E), find a
coloring c:V=2N such that
no two adjacent vertices
have the same color.

= We wish to (approximately)
minimize the number of
colors.

= Exact solution is NP-hard

= But linear-time greedy Applications: Parallel
methods work well in scheduling, register allocation,
practice! sparse matrix ordering,

preconditioning, AD

National

Serial Greedy Algorithm) S

Procedure Greedy(G(V,E))
Allocate forbidden
foreachvin Vdo
forbidden[*] = false
foreach w in adj(v) do
forbidden[color[w]] = true
color[v] = min {i>0 | forbidden[i] == false}
End

Coloring depends on the order vertices are visited. Good
heuristics are Largest-First (LF) and Smallest-Last (SL). In parallel,

we cannot impose any ordering.

Parallel Algorithms h) =,

= The serial greedy algorithm is inherently sequential, difficult
to parallelize.

= Several parallel algorithms have been proposed. The two
most popular ones are.
= Jones-Plassmann ('93): Color sequence of independent sets.
= Gebremedhin-Manne (‘00): Speculative coloring. Make some mistakes
(allow conflicts), go back and fix them later.
= The JP algorithm was popular in the 90’s but now the GM
method is generally preferred, due to less synchronization.
= Zoltan implements the GM speculative method.

= Extension to distributed-memory by Boman et al. (‘05), Bozdag et al.
(“10)

Sandia
r.h National
Laboratories

Multithreaded: lterative
Greedy Algorithm

Proc IterativeGreedy (G = (V, E))
U is set of vertices to be colored, and R to be recolored
while U is not empty
1. Speculatively color vertices
for v € U in parallel
for each neighbor w of v
Mark color[w] as forbidden to v
Assign smallest available value to color[v]
2. Detect conflicts and create recoloring list
for v € U in parallel
for each neighbor w of v
iIf color[w] = color|[v]
add higher-numbered vertex to R
U=R

end proc Forbidden Colors C.
|

‘| | v | | v

Algorithmic Issues) .

= Conflict resolution options:
= Since #conflicts is small, recolor these in serial.
= GPU: Do on device, or copy over to host?
= |terate until all conflicts resolved. Simple in parallel.

= Another option is to ensure NO conflicts by using atomics, locks, or
CAS. This variation is not speculative!

= How to find smallest available color:

= Typically, a “forbidden” array is used but this requires a lot of memory

" max-degree is often too pessimistic upper bound, but dynamic allocation
is expensive

= Dynamic reallocation too expensive on Phi and GPU.

= Can do linear search, which saves memory but increases the work
complexity.

Sandia

Coloring Results for FEM) i

Machine: 16 cores CPU (SandyBridge) + Xeon Phi (KNC)
Graph: audikw1 (944K vertices, 39M edges)

Algorithm: Gebremedhin-Manne with serial conflict resolution
Implementation: Kokkos with OpenMP

CPU CPU CPU CPU MIC MIC(11 MIC

(1) (4) (16) &7)) (57) 4) (228)
Total time 0.38 0.18 0.08 0.04 0.17 0.11 0.09
Time 0.23 0.12 0.05 0.03 0.08 0.05 0.04
speculative
Time 0.15 0.05 0.03 0.01 0.07 0.04 0.03
conflict det.
Time 0.00 0.00 0.00 0.00 0.02 0.02 0.03
conflict res.
#colors 54 60 63 63 63 63 63
#conflicts 0 116 540 730 210 416 794

Related Efforts)

= Several teams are testing Kokkos for graph algorithms
= MTGL interface to Kokkos (Berry et al.)

= BFS and SCC using Kokkos (Slota, Rajamanickam, Madduri)
" Need “Manhattan loop” trick for GPU performance

Sandia

Conclusions) &

= Manycore programming is hard!
= Maybe harder than MPI on distributed memory.
= Choice of algorithm and data structure often tricky.

= Kokkos is useful, but unproven for graph algorithms
= Works great for scientific computing.

= Hard to do graph algorithms with just parallel_for, reduce, and
atomics. Coloring is a simple problem, so feasible.

= Task-parallel capabilities in progress; needed for many algorithms.
" GPU performance?
= No magic bullet to get optimal performance everywhere
= Must customize (CUDA-style) to get good GPU performance.
= But this is often slower on CPU/MIC than OpenMP program.
= Still: Kokkos good option for cross-platform development.

Extra Slides) &

Sandia

Serial Greedy Algorithm (2)) .

Procedure Greedy(G(V,E))
Allocate and initialize forbidden
foreachvin Vdo
foreach w in adj(v) do
forbidden[color[w]] = v
color[v] = min {i>0 | forbidden]i] != v}
End

This optimization saves re-initializing the forbidden array inside
the first loop, but requires a sequential order (problematic in
parallel).

