
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Run	
 Time	
 Systems	
 R&D	
 	

with	
 the	
 Qthreads	

Mul7threading	
 Library	

Dylan	
 Stark,	
 Stephen	
 Olivier	

Dept.	
 1423,	
 Sandia	
 Na9onal	
 Laboratories,	
 NM	

	

Technical	
 Seminar	

Sandia	
 -­‐	
 California	
 Site	

	

November	
 4,	
 2014	

SAND2014-19476PE

Outline	

§  Introduc7on	

§  Node-­‐level	
 work	

§  OpenMP	
 interface	

§  Locality	
 and	
 Power-­‐awareness	

§  Kokkos	
 interface	

§  Distributed	
 memory	
 work	

§  Chapel	
 interface	

§  Unified	
 Scalable	
 Parallel	
 Run7me	

§  MPI+Qthreads	
 integra7on	

Qthreads	
 Philosophy	

§  Qthreads	
 as	
 a	
 vehicle	
 for	
 run	
 7me	
 system	
 research	

§  Co-­‐design	
 efforts	
 with	
 architecture	
 and	
 applica7ons	

§  Modular	
 for	
 flexibility	
 and	
 extensibility	

§  Interfaces	
 to	
 OpenMP,	
 Kokkos,	
 Chapel,	
 <your	
 language	
 here>	

§  Different	
 schedulers,	
 e.g.,	
 work	
 stealing,	
 hierarchical	

§  Crowded	
 space	
 of	
 run	
 7me	
 system	
 solu7ons	

§  Don’t	
 claim	
 to	
 have	
 the	
 best,	
 but	
 strive	
 to	
 improve	

§  S7ll	
 many	
 unsolved	
 problems	

§  Want	
 to	
 gain	
 understanding	

§  Seek	
 collabora7on	
 	

Qthreads	
 Overview	

§  Programmer	
 exposes	
 applica7on	
 parallelism	
 as	
 massive	

numbers	
 of	
 lightweight	
 tasks	
 (qthreads)	

§  Problem-­‐centric	
 rather	
 than	
 processor-­‐centric	
 decomposi7on	

enhances	
 produc7vity,	
 transparent	
 scaling	

§  Both	
 loop-­‐based	
 and	
 task-­‐based	
 parallelism	
 supported	

§  Full/empty	
 bit	
 primi7ves	
 for	
 powerful,	
 lightweight	
 synchroniza7on	

(emulates	
 Tera/Cray	
 MTA/XMT	
 behavior)	

§  C	
 API	
 with	
 no	
 special	
 compiler	
 support	
 required	

§  Dynamic	
 run	
 7me	
 system	
 manages	
 the	
 scheduling	
 of	
 tasks	
 for	

locality	
 and	
 performance	

§  Heavyweight	
 worker	
 pthreads	
 execute	
 the	
 tasks	

§  Worker	
 pthreads	
 pinned	
 to	
 underlying	
 hardware	

Qthreads	
 Capabili7es	

§  Locality-­‐aware	
 load	
 balancing	
 of	
 tasks	
 to	
 support	
 NUMA	
 and	

complex	
 cache	
 hierarchies	

§  Locality	
 domain	
 with	
 work	
 queue	
 shared	
 among	
 worker	
 threads	
 that	

share	
 cache	
 and	
 memory	

§  Work	
 stealing	
 between	
 locality	
 domains	
 for	
 global	
 load	
 balancing	

§  Lightweight	
 task	
 context	
 switching	

	

§  Ported	
 to	
 x86,	
 Phi,	
 PPC,	
 Sparc,	
 Tilera	

Qthreads	
 Run	
 Time	
 View	
 of	
 Locality	

6	

(WORK STEALING)

OpenMP-­‐over-­‐Qthreads	

§  Qthreads	
 as	
 run	
 7me	
 for	
 OpenMP	

§  Allows	
 execu7on	
 of	
 OpenMP	
 codes	
 without	
 por7ng	
 to	
 Qthreads	
 API	

§  Enables	
 experimenta7on	
 with	
 poten7al	
 new	
 OpenMP	
 features	

§  Leverage	
 exis7ng	
 OpenMP	
 front-­‐ends	

§  ROSE	
 /	
 XOMP	
 interface	
 (LLNL	
 -­‐-­‐	
 Quinlan/Liao)	
 	

§  Mappings	
 for	
 OpenMP	
 constructs	
 to	
 run	
 7me	
 library	
 func7ons	

§  Supports	
 OpenMP	
 3.1	

§  Intel’s	
 OpenMP	
 interface	
 (open-­‐sourced	
 at	
 openmprtl.org)	

§  Early	
 inves7ga7ons	

§  OpenMP	
 4.0	
 and	
 beyond	

7	

OpenMP	
 Locality	
 Extensions	
 	

§  Added	
 support	
 for	
 placing	
 tasks	
 onto	
 locality	
 domains	

§  Map	
 to	
 NUMA	
 regions	
 to	
 avoid	
 remote	
 memory	
 accesses	

§  Builds	
 on	
 hierarchical	
 scheduler	
 in	
 Qthreads	

§  Increased	
 performance	
 on	
 	
 Health	
 and	
 Heat	
 benchmarks	

[SC12	
 paper	
 with	
 Mar7n	
 Schulz,	
 Bronis	
 de	
 Supinski,	
 Jan	
 Prins]	
 8	

 0

 4

 8

 12

 16

 20

 24

 28

 32

 0 4 8 12 16 20 24 28 32

Sp
ee

du
p

Number of Threads

Ideal Speedup
Qthreads Locality-based

Qthreads Spread-init
Qthreads

Intel

 0

 4

 8

 12

 16

 20

 24

 28

 32

 0 4 8 12 16 20 24 28 32

Sp
ee

du
p

Number of Threads

Ideal Speedup
Qthreads Locality-based

Qthreads
Intel

Sample	
 Schedule:	
 Locality	
 Oblivious	

9	

Threads

Ti
m

e

Chip 0
 Chip 1
 Chip 2
 Chip 3

Locality-­‐Based	
 Schedule	

10	

Threads

Ti
m

e

Chip 0
 Chip 1
 Chip 2
 Chip 3

Dynamic	
 Concurrency	
 Thromling	

§  Observe	
 memory	
 satura7on	
 in	
 some	
 OpenMP	
 codes	

§  Could	
 use	
 fewer	
 than	
 the	
 maximum	
 available	
 cores	

§  Save	
 power	
 by	
 shunng	
 down	
 unused	
 cores	

§  RCRTool	
 (Allan	
 Porterfield	
 of	
 RENCI)	

§  Monitors	
 hardware	
 performance	
 counters	

§  Reports	
 CPU,	
 memory,	
 power	
 data	
 on	
 a	
 blackboard	

§  Maestro	
 (power-­‐aware	
 Qthreads,	
 also	
 with	
 Porterfield)	

§  Qthreads	
 queries	
 RCR	
 blackboard	
 data	
 when	
 scheduling	
 tasks	

§  If	
 memory	
 saturated,	
 shuts	
 down	
 some	
 worker	
 threads	

§  Corresponding	
 cores	
 clocked	
 down	

§  Spin	
 back	
 up	
 later	
 if	
 condi7ons	
 change	
 	

11	

Dynamic	
 Concurrency	
 Thromling	

§  Evalua7on	
 on	
 LULESH	

§  OpenMP+MPI	
 hybrid	
 code	

§  Independent	
 Qthreads	
 instance	
 on	
 each	
 node	

§  Unmodified	
 MPI	
 across	
 27	
 nodes	

§  Power	
 savings	
 on	
 16-­‐core	
 SandyBridge	
 by	
 thromling	
 to	
 12	
 cores	

§  Relief	
 of	
 memory	
 pressure	
 improves	
 performance	
 over	
 16-­‐core	
 runs	

[HP-­‐PAC14	
 and	
 HP-­‐PAC13	
 (Grant	
 et	
 al.,	
 Porterfield	
 et	
 al.)]	

12	

13	

Goal: Unified Task-Data-Vector Manycore API

Performance portable C++ API for CSE and graph applications

Development of New Capabilities
Extend Kokkos API for task

parallelism and graph processing
Extend Qthreads for nested data

parallelism, Phi, GPU tasks

Existing SNL Technologies: Kokkos & Qthreads
Kokkos C++ API for efficient

manycore data-vector parallelism
Qthreads multithreading library for

scalable task parallelism

Kokkos	
 Task	
 Parallel	
 API	
 (LDRD)	

Kokkos	
 Task	
 Parallel	
 API	
 Design	

§  Expand	
 Kokkos	
 API	
 with	
 future	
 objects	

§  Handles	
 to	
 either	
 serial	
 or	
 data	
 parallel	
 tasks	

§  Templated	
 on	
 return	
 type,	
 execu7on	
 space	
 (e.g.,	
 host	
 or	
 accelerator)	

	

§  Targe7ng	
 Mul7-­‐Threaded	
 Graph	
 Library	
 (Berry),	
 hybrid	
 matrix	

factoriza7on	
 (Rajamanickam),	
 Finite	
 Element	
 codes	
 (Edwards)	

§  Just	
 star7ng	
 Year	
 2	
 of	
 LDRD	

14	

15	

Kokkos/Qthread	
 LDRD:	
 Task	
 Parallelism	

§  TaskPolicy<	
 Space	
 >	
 and	
 Future<	
 type	
 ,	
 Space	
 >	

§  Task	
 policy	
 object	
 for	
 a	
 group	
 of	
 poten7ally	
 concurrent	
 tasks	

TaskPolicy<>	
 manager(
 ...	
);	
 //	
 default	
 Space	

Future<type>	
 fa	
 =	
 manager.spawn(
 functor_a	
);	
 //	
 single-­‐thread	
 task	

Future<type>	
 W	
 =	
 manager.spawn(
 functor_b	
);	
 //	
 may	
 be	
 concurrent	

§  Tasks	
 may	
 be	
 data	
 parallel	
 via	
 data	
 parallel	
 pamern	
 and	
 policy	

Future<>	
 	
 	
 	
 	
 	
 	
 	
 	
 fc	
 =	
 manager.foreach(RangePolicy(0,N)).spawn(
 functor_c	
);	
 	

Future<type>	
 fd	
 =	
 manager.reduce(TeamPolicy(N,M)).spawn(
 functor_d	
);	

wait(
 tm	
);	
 //	
 Host	
 can	
 wait	
 for	
 all	
 tasks	
 to	
 complete	

§  Destruc7on	
 of	
 task	
 manager	
 object	
 waits	
 for	
 concurrent	
 tasks	
 to	
 complete	

§  Task	
 Manager	
 :	
 TaskPolicy<	
 Space	
 =	
 Qthread	
 >	

§  Defines	
 a	
 scope	
 for	
 a	
 collec7on	
 of	
 poten7ally	
 concurrent	
 tasks	

§  Have	
 configura7on	
 op7ons	
 for	
 task	
 management	
 and	
 scheduling	

§  Manage	
 resources	
 for	
 scheduling	
 queue	

16	

Kokkos/Qthread	
 LDRD:	
 Task	
 Parallelism	

§  Tasks	
 may	
 have	
 execu9on	
 dependences	

§  Start	
 a	
 task	
 only	
 aser	
 other	
 tasks	
 have	
 completed	

Future<>	
 array_of_dep[
 M	
]	
 =	
 {	
 /*	
 futures	
 for	
 other	
 tasks	
 */	
 };	

§  Single	
 threaded	
 task:	

Future<>	
 fx	
 =	
 manager.spawn(
 functor_x	
 ,	
 array_of_dep	
 ,	
 M	
);	

§  Tasks	
 and	
 their	
 dependences	
 define	
 a	
 directed	
 acyclic	
 graph	
 (dag)	

§ Challenge:	
 A	
 GPU	
 task	
 cannot	
 ‘wait’	
 on	
 dependences	

§  An	
 execu7ng	
 GPU	
 task	
 cannot	
 be	
 suspended	
 –	
 wai7ng	
 blocks	
 a	
 processor	

§  Other	
 future	
 light-­‐weight	
 core	
 architecture	
 may	
 not	
 be	
 able	
 to	
 block	
 as	
 well	

§  A	
 task	
 may	
 spawn	
 nested	
 tasks	
 and	
 need	
 to	
 wait	
 for	
 their	
 comple7on	

§  Solu7on:	
 ‘respawn’	
 the	
 task	
 with	
 new	
 dependences	

manager.respawn(
 this	
 ,	
 array_of_dep	
 ,	
 M	
);	

return	
 ;	
 //	
 ‘this’	
 returns	
 to	
 be	
 called	
 ader	
 new	
 dependences	
 complete	

Distributed	
 Memory	
 &	
 Qthreads	

§  Three	
 use	
 cases:	

1.  Stove	
 pipe	
 model	
 for	
 Chapel	

2.  Unified	
 run7me	
 model	
 with	
 Portals	
 4	
 for	
 Chapel	

3.  Managed	
 model	
 for	
 MPI+X	

17	

1)	
 STOVE	
 PIPE	
 MODEL	
 FOR	
 CHAPEL	

18	

Chapel	
 compila7on	
 and	
 run7me	
 Chapel Compilation Architecture

Generated
C Code

Chapel
Source
Code

Standard
C Compiler

& Linker

Chapel
Executable

Chapel
Compiler

Chapel-to-C
Compiler

10

Standard
Modules

(in Chapel)

Internal Modules
(in Chapel)

Runtime Support
Library (in C)

Tasks/Threads

C
om

m
unication

M
em

ory

…

Chapel	
 compila7on	
 and	
 run7me	

§  Straighvorward	

§  Works	
 out	
 of	
 the	
 box	

§  Easy	
 to	
 mix	
 and	
 match	
 TPLs	

§  But	
 comes	
 at	
 a	
 cost:	

§  Informa7on	
 must	
 be	
 collected	
 and	
 managed	
 by	
 Chapel	
 shim	

§  Blocked	
 cores	
 for	
 certain	
 comm.	
 opera7ons	

§  Slow-­‐path	
 for	
 task	
 crea7on	
 and	
 synchroniza7on	

20	

2)	
 UNIFIED	
 RUNTIME	
 MODEL	
 WITH	

PORTALS	
 4	
 FOR	
 CHAPEL	

21	

A	
 Unified	
 Run7me	
 Example	

§  Qthreads:	
 Lightweight	
 threading	
 interface	

§  Scalable,	
 lightweight	
 scheduling	
 on	
 NUMA	
 plavorms	

§  Supports	
 a	
 variety	
 of	
 synchroniza7on	
 mechanisms,	

including	
 full/empty	
 bits	
 and	
 atomic	
 opera7ons	

§  Poten7al	
 for	
 direct	
 hardware	
 mapping	

§  Portals	
 4:	
 Lightweight	
 communica9on	
 interface	

§  Seman7cs	
 for	
 suppor7ng	
 both	
 one-­‐sided	
 and	
 tagged	

message	
 passing	

§  Small	
 set	
 of	
 primi7ves,	
 allows	
 offload	
 from	
 main	
 CPU	

§  Supports	
 direct	
 hardware	
 mapping	

§  Kiien:	
 Lightweight	
 OS	
 kernel	

§  Builds	
 on	
 lessons	
 from	
 ASCI	
 Red,	
 Cplant,	
 Red	
 Storm	

§  U7lizes	
 scalable	
 parts	
 of	
 Linux	
 environment	

§  Primarily	
 supports	
 direct	
 hardware	
 mapping	

Scalable Parallel Runtime
(SPR)

Qthreads

Portals

Kitten

ChapelOpenMP

SH
M

EM

M
PI

UP
C

Advanced
Architectures

Testbeds

Si
m

ul
at

or

Applications

Co
nv

. S
ys

.

Chapel	
 with	
 a	
 Unified	
 Run7me	

§  Replaced	
 Qthreads	
 &	
 GASNet	
 with	
 SPR	
 (Qthreads	
 +	
 Portals4)	

§  Single	
 point	
 for	
 ini7alizing	
 both	
 plavorms:	
 spr_init(SPMD,...)	

§  spr_unify()	
 used	
 to	
 transi7on	
 to	
 single	
 thread	
 of	
 control	
 before	

applica7on	
 starts	

§  Most	
 other	
 interface	
 func7ons	
 are	
 no-­‐ops	
 (e.g.,	
 chpl_task_init(),	

chpl_comm_post_task_init(),	
 chpl_comm_rollcall(),	
 ...)	

§  Direct	
 mappings	
 for	
 data	
 movement	
 and	
 work	
 migra7on	

§  Now	
 both	
 layers	
 share	
 ...	

§  Plavorm	
 informa7on	
 discovery	
 (to	
 make	
 room	
 for	
 progress	
 engine)	

§  Memory	
 management	
 (for	
 ac7va7on	
 records,	
 stacks,	
 network	

packets)	

§  Synchroniza7on	
 mechanisms	
 (such	
 as	
 full-­‐empty	
 support)	

§  Direct	
 task	
 spawning	
 and	
 management	

3)	
 MANAGED	
 MODEL	
 FOR	
 MPI+X	

24	

Early	
 explora7on	
 with	

MPI+Qthreads	
 (MPIQ)	
 	

§  Task-­‐parallel	
 run7me	
 for	
 resource	

management	

§  Extension	
 of	
 Sandia	
 Qthreads	
 library	

§  Low-­‐level	
 C	
 API,	
 supports	
 other	
 PMs	

(OpenMP,	
 Sandia	
 Kokkos,	
 etc.)	

	

§  Prac7cal	
 target	
 for	
 C/C++	
 mini-­‐apps	

§  Concurrent	
 MPI	
 calls	
 from	
 any	
 context	

§  Communica7on	
 is	
 just	
 “long	
 latency	
 event”	

§  Requirements	
 on	
 run7me:	

§  Support	
 possible	
 over-­‐subscrip7on	
 of	

concurrent	
 blocking	
 MPI	
 calls	

§  Manage	
 long-­‐latency	
 events	
 in	
 coopera7vely	

scheduled	
 tasks	

§  And	
 co-­‐schedule	
 work	
 and	
 communica7on	

MPI+OpenMP
Application

OpenMP API

Qthreads
Implementation

ICC

Extreme-scale
Platform

Qthreads MPIQ
"shim"

MPI

MPI
Implementation

Qthreads IOMP
"shim"

25	

Code	
 modifica7on	
 for	
 miniGhost	

Data	
 parallel	
 model:	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 int	
 stencil	
 (…)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Exchange_boundary_data	
 (
 …	
);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Apply_boundary_condi7ons	
 (
 …	
);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Apply_stencil	
 (
 …);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	

26	

Code	
 modifica7on	
 for	
 miniGhost	

Data	
 parallel	
 model:	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 int	
 stencil	
 (…)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Exchange_boundary_data	
 (
 …	
);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Apply_boundary_condi7ons	
 (
 …	
);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Apply_stencil	
 (
 …);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	

Task	
 parallel	
 model:	
 Loop	
 over	
 blocks;	
 spawned	
 code	
 is	
 the	
 usual	
 data	
 parallel	

model.	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ierr	
 =	
 MG_Block_init	
 (
 blks,	
 …	
);	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 for	
 (
 i=0;	
 i<numblks;	
 i++	
)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 spawn	
 (
 stencil	
 (
 i,	
 …	
));	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	

27	

Increasing	
 performance	
 	

with	
 over-­‐subscrip7on	

●●

● ●●
●●●●●●●●●

● ●

●
●

● ●●
●●●●●●●●●

● ●

●

●

● ●●
●●●●●●●●

●
●

●

●
●

● ●●
●●●●●●●

●
●
●

●

●●

●
●● ●

● ●

●●

●
●● ●

●
● ●

●

●
●● ●

●
●

●

●

●
●● ●

●
●

●

●

●

●

●

●

 32 64 128 256 4096

 8192 16384 32768 65536 131072

0
25
50
75

0
25
50
75

10 1 10 2 10 3 10 4 10 1 10 2 10 3 10 4 10 1 10 2 10 3 10 4 10 1 10 2 10 3 10 4 10 1 10 2 10 3 10 4

Number of blocks

R
un

 ti
m

e
(s

ec
)

28	

More concurrent MPI calls

B
et

te
r p

er
fo

rm
an

ce

Overlapping	
 communica7on	
 	

and	
 computa7on	

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

 32 64 128 256 4096

 8192 16384 32768 65536 131072

0.0
2.5
5.0
7.5

10.0
12.5

0.0
2.5
5.0
7.5

10.0
12.5

10 1 10 2 10 3 10 4 10 1 10 2 10 3 10 4 10 1 10 2 10 3 10 4 10 1 10 2 10 3 10 4 10 1 10 2 10 3 10 4

Number of blocks

R
at

io
 o

f e
la

ps
ed

 c
om

m
. t

o
ru

n
tim

e

29	

More concurrent MPI calls

M
or

e
ov

er
la

p

Spreading	
 message	
 injec7on	

(256	
 cores,	
 or	
 64	
 ranks)	

●
●●
●
●
●
●●
●●
●●
●●
●
●
●●●●●●●●
●
●●●●●●●
●●●●
●
●●●●●●●●●
●●●●●●●
●●
●●
●
●
●●●●
●●●●●
●●
●●●●
●●
●●●●●●●
●●●●●●

● ●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●
●●●●
●●●●●●●●
●●●●●●●●●●●●
●
●●● ●●●●●●●●

●●●●●●●●
●●●●●●●●
●
●●
●
●●
●●
●●●●●●
●
●●●●●●●●●●
●●●●●●●●
●●●●●
●●●●
●●●●
●●

●●●●●●●●●●●●
●●●●●●●●●
●●●●●● ●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●
●
●●●●●●●
●●●●●●●●●●●●●
●●●●●●●
●
●●
●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●
●●●●●

●
●
●
●
●
●
●●●●●
●
●●●●●●

●●●
●●●●
●●●●
●●
●
●●

●
●●●
●
●
●●
●●
●●
●●●
●●●
●●●
●●
●●●
●
●●●●●●●●
●●●
●●
●●●
●●●
●
●
●●●●●●●●
●●●
●●
●●●●●●●●●●●●
●●●●●
●
●●●●
●●●●●●
●●●●
●●●●●●●
●●●●●
●●●●●●●●●●●●●
●●●
●●●●●●
●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●
●●●●●●●
●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●
●
●●
●●●●●●●●●●●●●●
●●●●●●●
●●●●●
●
●
●●●●●
●●●●
●●●●●●●●●●
●
●●●
●●●●●●●●●●
●
●
●●●●●●●●●●●●●●
●
●●●●●●●
●
●●●
●●●●●●●●●
●●●●●●
●●●●●●●●●●●
●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●
●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●
●●●●●●●
●
●●

●

●

●
●
●●
●●

●●

●
●●
●
●●
●

●●

●●●
●●●●
●●
●
●●●●
●
●●●
●
●●●●
●
●●●●
●●●●
●●
●●●●●●●●
●●●
●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●
●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●
●●
●
●●●●●●●
●●●●●●●●●●●●●●●●
●●
●●●●●
●
●●●●●●●●
●
●
●●●●●●●
●
●●
●
●
●●●●
●
●●●●
●
●●●
●
●●●●●●●●●
●●
●●
●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●
●
●
●
●
●●●
●●●●●●
●
●●
●
●●●●●●●
●
●●●●●●●●
●●●●●
●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●
●
●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●

●

●

●●
●
●●●●●●

●

●●
●
●●●●●●
●
●●
●●●●●●●●●●●●
●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●
●●●●●●●●
●
●●●●●●●●●●
●●●●●●●●
●
●●●●●●●
●●●
●
●●●●●●●●
●
●●
●●●●●●●●●●●●●●●●●●
●
●●●●●●●
●●●●●●●
●
●●●●●●●●●●●●●●
●●●●●●●
●●●●●●
●
●●●
●●●●●●●●
●●●●●
●●●●●●●
●●●●●
●
●●●●●●
●
●
●●●●●
●●
●
●●●
●●●●●●●●●●●●●●●●●●●●
●
●●●●●
●
●●
●
●
●
●
●●●●●●●●●●●●●●●
●●●
●
●●
●●●
●●●●●●●●
●●●●●●●●
●
●
●
●
●
●●●
●●
●●●●●●
●
●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●
●●●●●●
●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●● ●●●

●

●
●●●

●●●●●●●●●●●●●●●●●
●●
●●●●●
●
●
●●●●●●●●
●●●●●●●●
●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●
●●●●
●●●
●●●●●●●
●●●●
●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●
●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●
●
●●●●●●●●●●●●●●●●●●●●●
●●

●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●
●
●●●●●●●●●●●●●●
●
●●●●●
●●●

●●

●

●
●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●
●
●●●●●●●●●●●●●●●●●
●●●●●
●●
●
●●●●●●
●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●
●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●
●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●
●●
●●●●●●●●
●●●
●
●
●●●●●●●●●
●
●●●●
●
●●●●●●●●●●●●●●●●●
●
●●
●
●●
●
●
●●

●

●
●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●●●●●●●
●
●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●
●●●●
●
●●●●●●●
●
●
●●
●
●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●
●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●
●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●
●
●●●●●
●
●●

●
●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●
●●

●

●
●
●●●

●●
●●●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●
●
●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●
●
●
●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●
●
●●●●
●●
●
●●●
●●●●●●●●●
●●●●●
●●●●●●
●
●●●
●●●●●●●●●●●●●
●
●●●
●
●
●●●●●●●●●●●●●●●
●●●
●●
●●
●●●
●●
●●●
●
●●●
●●●●●●●●●●●●●●●●●
●
●●●●
●●●●●●●●
●●
●●
●●●●
●●●●●
●●●●●●
●
●●●●●●●●●●●
●●●●
●
●●●●●●
●
●●●●●●
●●●●●●
●
●●●●●●
●
●●●●●●●●●
●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●
●●●

●

 1 8 125

 343 1331 10648

 27000 91125 729000

102

10−1

10−4

102

10−1

10−4

102

10−1

10−4

0 250
500

750
1000

0 250
500

750
1000

0 250
500

750
1000

Time between sends bins

Pe
rc

en
ta

ge
 o

f c
ou

nt
s

30	

Longer between sends

Summary	

§  Qthreads:	
 a	
 vehicle	
 for	
 threaded	
 run7me	
 research	

§  Node-­‐level	
 work	

§  OpenMP	
 interface	

§  Locality	
 and	
 Power-­‐awareness	

§  Kokkos	
 interface	

§  Distributed	
 memory	
 work	

§  Chapel	
 interface	

§  Unified	
 Scalable	
 Parallel	
 Run7me	

§  MPI+Qthreads	
 integra7on	

Contributors	
 to	
 Qthreads	
 Research	

§  Richard	
 Barrem,	
 Carter	
 Edwards,	
 Ryan	
 Grant,	
 Courtenay	

Vaughan,	
 Kevin	
 Pedren,	
 Jon	
 Berry,	
 Siva	
 Rajamanickam	
 (SNL)	

§  Kyle	
 Wheeler	
 and	
 Rich	
 Murphy	
 (now	
 at	
 Micron)	

§  Brian	
 Barrem	
 (now	
 at	
 Amazon)	

§  George	
 Stelle	
 (UNM)	

§  Alina	
 and	
 Dragos	
 Sbirlea	
 (Rice)	

§  Brad	
 Chamberlain	
 and	
 Greg	
 Titus	
 (Cray)	

§  Allan	
 Porterfield	
 and	
 Jan	
 Prins	
 (UNC/RENCI)	

§  Bronis	
 de	
 Supinski	
 and	
 Mar7n	
 Schulz	
 (LLNL)	

§  Marc	
 Snir	
 and	
 Alex	
 Brooks	
 (UIUC)	

Available	
 Online	

33	

Qthreads

More info: http://www.cs.sandia.gov/qthreads/

Source: https://code.google.com/p/qthreads/

