@ National
Laboratories

Exceptional

service

in the

national

interest

Tech

SAND2014- 19476P

Run Time Systems R&D
with the Qthreads
Multithreading Library

nical Seminar

Sandia - California Site

November 4, 2014

F7%, U.S. DEP, V/ VY i

'ARTMENT OF .' DQ”\Q‘
ENERGY #VAOA

ia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
orporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

1 m ﬁ?n?igi?al
O u t I I n e Laboratories

= |ntroduction

= Node-level work
= OpenMP interface
= Locality and Power-awareness
= Kokkos interface

= Distributed memory work
= Chapel interface
= Unified Scalable Parallel Runtime
= MPI+Qthreads integration

Qthreads Philosophy

= Qthreads as a vehicle for run time system research
= Co-design efforts with architecture and applications

= Modular for flexibility and extensibility
Interfaces to OpenMP, Kokkos, Chapel, <your language here>
Different schedulers, e.g., work stealing, hierarchical

= Crowded space of run time system solutions
= Don’t claim to have the best, but strive to improve

= Still many unsolved problems
Want to gain understanding
Seek collaboration

Sandia
National _
Laboratories

National

Qthreads Overview h) e,

" Programmer exposes application parallelism as massive
numbers of lightweight tasks (gthreads)

= Problem-centric rather than processor-centric decomposition
enhances productivity, transparent scaling

= Both loop-based and task-based parallelism supported

= Full/empty bit primitives for powerful, lightweight synchronization
(emulates Tera/Cray MTA/XMT behavior)

= C API with no special compiler support required

= Dynamic run time system manages the scheduling of tasks for
locality and performance
= Heavyweight worker pthreads execute the tasks
= Worker pthreads pinned to underlying hardware

Qthreads Capabilities) 5.

= Locality-aware load balancing of tasks to support NUMA and
complex cache hierarchies

= Locality domain with work queue shared among worker threads that
share cache and memory

= Work stealing between locality domains for global load balancing
= Lightweight task context switching

= Ported to x86, Phi, PPC, Sparc, Tilera

National

Qthreads Run Time View of Locality @&

LOCALITY DOMAIN 0 LOCALITY DOMAIN 1

F————--———

F-—————-——

|
¢ (WORKSTEALING)

q
|

TASK
QUEUE

AR

TASK
QUEUE

AR

CORE | CORE | CORE | CORE CORE | CORE | CORE | CORE
SHARED CACHE SHARED CACHE
MEMORY MEMORY

OpenMP-over-Qthreads) e

= Qthreads as run time for OpenMP
= Allows execution of OpenMP codes without porting to Qthreads API
= Enables experimentation with potential new OpenMP features

= Leverage existing OpenMP front-ends
= ROSE / XOMP interface (LLNL -- Quinlan/Liao)
Mappings for OpenMP constructs to run time library functions
Supports OpenMP 3.1
= |ntel’s OpenMP interface (open-sourced at openmprtl.org)

Early investigations
OpenMP 4.0 and beyond

OpenMP Locality Extensions).

= Added support for placing tasks onto locality domains
= Map to NUMA regions to avoid remote memory accesses
= Builds on hierarchical scheduler in Qthreads

" |ncreased performance on Health and Heat benchmarks

32 T T T T T T T 32 T T T T T T
Ideal Speedup Ideal Speedup
28 | Qthreads Locality-based ===%--- /A __.»* s 28 b Qthreads Locality-based ==-%-== _
Qthreads Spread-init ==m= =" Qthreads «« -
24 + Qthreads ---#--- _ o4 L Intel e |
Intel B |
20 - P N 2 = -
E3 2 e [S or . %
3 » L O _,vx -----
S Ted BT -
(9] 12 F 'o"’ f)‘f::“ -------- A n 12 L “"*— ______________ »--...--...:;
B f‘f‘« 2] B a | Al Lo A — [o P
% e - I LI - I D ¢C Lo PrL LA - iU
8 I Prasttt . 8 | et & .
,,I*'“ A 'ﬂ‘ ““““““““““
4 i . Ar e .
O | | | | | | | 0 - | | | | | | |
0 4 8 12 16 20 24 28 32 0 4 8 12 16 20 24 28 32
Number of Threads Number of Threads

[SC12 paper with Martin Schulz, Bronis de Supinski, Jan Prins] o

National

Sample Schedule: Locality Oblivious @&

Chip 0 Chip 1 Chip 2 Chip 3

0 1 L) ok ° | o o [|
— — oo o 1>tol
— o | — 5 To 2Ll%2]o0 |
o|lo]o
o . I = = 0 o -2 10|
[— |) 0
[3 Q o 0]
| 0 L o o)
0 = = o[o
I 0
| 0 o |
[0
— o 0
(4] T [1])
. . 0 o =
0 o 0 o o | 0 0)
o —
o
) =
[I
0
= o
O o i 0 [1]
(4] [4)
—
) —x —
——1 1 0
— B _—
—
(]
CJ ——— =
E |
N
h 2 s 6 7 8 9 10 11 12 13 14 15 f1e 17 18 19 20 21 22 23 Pz2a 25 26 27 28 29 30 31

Threads >

National

Locality-Based Schedule) e

Chip 0 Chip 1 Chip 2 Chip 3

0 o 5
[+]
[+]
[0
o |l o J[o]lol]o 01 o
o 0 0
) (1] = 0 3) 0
0 0 o o |—
0 0) o 0 =
[
0 o
[+])

=

Threads

Time

I |
d
l
l

10
- ___

Sandia
’11 National
Laboratories

Dynamic Concurrency Throttling

= Observe memory saturation in some OpenMP codes
= Could use fewer than the maximum available cores
= Save power by shutting down unused cores

= RCRTool (Allan Porterfield of RENCI)

= Monitors hardware performance counters
= Reports CPU, memory, power data on a blackboard

= Maestro (power-aware Qthreads, also with Porterfield)
= Qthreads queries RCR blackboard data when scheduling tasks

= |f memory saturated, shuts down some worker threads
Corresponding cores clocked down

Spin back up later if conditions change 1

Dynamic Concurrency Throttling

= Evaluation on LULESH

= OpenMP+MPI hybrid code
Independent Qthreads instance on each node
Unmodified MPI across 27 nodes

= Power savings on 16-core SandyBridge by throttling to 12 cores

i\

= Relief of memory pressure improves performance over 16-core runs

LULESH: Dynamic Concurrency Throttling on 27 Nodes (1 rank/node)

3650

3600

3550

3500

3450

Power (Watts)

3400

3350

¥
3300 !

*

W

X

12 threads/rank dynamic 16 threads/rank

Execution time (sec.)

LULESH: Dynamic Concurrency Throttling on 27 Nodes (1 rank/node)

90

89

88 -

87

86

85

84|

83

§

* HK

x
X
X

12 threads/rank dynamic 16 threads/rank

[HP-PAC14 and HP-PAC13 (Grant et al., Porterfield et al.)]

Sandia
National _
Laboratories

12

Kokkos Task Parallel API (LDRD)) =

Existing SNL Technologies: Kokkos & Qthreads

Development of New Capabilities

Goal: Unified Task-Data-Vector Manycore API

Sandia

Kokkos Task Parallel APl Design) e

= Expand Kokkos APl with future objects
= Handles to either serial or data parallel tasks
= Templated on return type, execution space (e.g., host or accelerator)

= Targeting Multi-Threaded Graph Library (Berry), hybrid matrix

factorization (Rajamanickam), Finite Element codes (Edwards)
= Just starting Year 2 of LDRD

14

15

Kokkos/Qthread LDRD: Task Parallelism) i

= TaskPolicy< Space > and Future< type, Space >
= Task policy object for a group of potentially concurrent tasks

TaskPolicy<> manager(...); // default Space
Future<type> fa = manager.spawn(functor_a); // single-thread task
Future<type> fb = manager.spawn(functor_b); // may be concurrent

= Tasks may be data parallel via data parallel pattern and policy
Future<> fc = manager.foreach(RangePolicy(0,N)).spawn(functor_c);
Future<type> fd = manager.reduce(TeamPolicy(N,M)).spawn(functor_d);
wait(tm); // Host can wait for all tasks to complete

= Destruction of task manager object waits for concurrent tasks to complete

= Task Manager : TaskPolicy< Space = Qthread >
= Defines a scope for a collection of potentially concurrent tasks

= Have configuration options for task management and scheduling
= Manage resources for scheduling queue

16

Kokkos/Qthread LDRD: Task Parallelism) it

Laboratories

= Tasks may have execution dependences
= Start a task only after other tasks have completed
Future<> array_of_dep[M] = { /* futures for other tasks */ };
= Single threaded task:
Future<> fx = manager.spawn(functor_x, array_of dep, M);
= Tasks and their dependences define a directed acyclic graph (dag)

= Challenge: A GPU task cannot ‘wait’ on dependences
= An executing GPU task cannot be suspended — waiting blocks a processor
= QOther future light-weight core architecture may not be able to block as well
= A task may spawn nested tasks and need to wait for their completion
= Solution: ‘respawn’ the task with new dependences
manager.respawn(this , array_of dep, M);
return ; // ‘this’ returns to be called after new dependences complete

Distributed Memory & Qthreads

= Three use cases:

1. Stove pipe model for Chapel

2. Unified runtime model with Portals 4 for Chapel

3. Managed model for MPI+X

Sandia
National
Laboratories

1) STOVE PIPE MODEL FOR CHAPEL

18

National

Chapel compilation and runtime @i

(Chapel y
- Compiler
P e e e =
/
/
I
gQSfCeel . Chapel-to-C Generated CS?:r?\airlir
Code I Compiler C Code & Linlfer
|
1
1 | :

| Internal Modules : | Runtime Support
Standard | (in Chapel) | Library (in C)
_Modules I : =2
(in Chapel), o || 3

@ 3

| — c

I = =3

\ 2 | 2

Q_ 6'
\ @ >

National

Chapel compilation and runtime @i

= Straightforward
= Works out of the box

= Easy to mix and match TPLs

= But comes at a cost:

= |nformation must be collected and managed by Chapel shim
= Blocked cores for certain comm. operations

= Slow-path for task creation and synchronization

2) UNIFIED RUNTIME MODEL WITH
PORTALS 4 FOR CHAPEL

21

Sandia
"1 National _
Laboratories

A Unified Runtime Example

Applications
= Qthreads: Lightweight threading interface
= Scalable, lightweight scheduling on NUMA platforms
= Supports a variety of synchronization mechanisms, =
including full/empty bits and atomic operations OpenMP | Chapel g % §
= Potential for direct hardware mapping 7

= Portals 4: Lightweight communication interface

= Semantics for.supporhng both one-sided and tagged Scalable Parallel Runtime
message passing (SPR)
= Small set of primitives, allows offload from main CPU

= Supports direct hardware mapping
= Kitten: Lightweight OS kernel

= Builds on lessons from ASCI Red, Cplant, Red Storm Kitten

= Utilizes scalable parts of Linux environment

Qthreads

Portals

= Primarily supports direct hardware mapping

918

Ad_lanced ol =
Architectures s | S
Testbeds S| E
| wn

Chapel with a Unified Runtime) .

= Replaced Qthreads & GASNet with SPR (Qthreads + Portals4)

Single point for initializing both platforms: spr_init(SPMD,...)

spr_unify() used to transition to single thread of control before
application starts

Most other interface functions are no-ops (e.g., chpl_task_init(),
chpl_comm_post_task_init(), chpl_comm_rollcall(), ...)

Direct mappings for data movement and work migration

= Now both layers share ...

Platform information discovery (to make room for progress engine)

Memory management (for activation records, stacks, network
packets)

Synchronization mechanisms (such as full-empty support)
Direct task spawning and management

3) MANAGED MODEL FOR MPI+X

24

Early exploration with
MPI+Qthreads (MPIQ)

= Task-parallel runtime for resource
management
= Extension of Sandia Qthreads library

= Low-level C API, supports other PMs
(OpenMP, Sandia Kokkos, etc.)

= Practical target for C/C++ mini-apps
= Concurrent MPI calls from any context
= Communication is just “long latency event”

= Requirements on runtime:

= Support possible over-subscription of
concurrent blocking MPI calls

= Manage long-latency events in cooperatively
scheduled tasks

= And co-schedule work and communication

Sandia
’11 National
Laboratories

MPI+OpenMP
Application

A

OpenMP API

MPI

A4

Qthreads IOMP Qthreads MPIQ
"Shim"

llShimll

v / I

Qthreads

Implementation Implementation

MPI

.

Extreme-scale
Platform

25

Code modification for miniGhost

Data parallel model:

int stencil (...) {

Exchange boundary data(...);

Apply_boundary_conditions (...);

Apply_stencil (...);

}

Sandia
National
Laboratories

National

Code modification for miniGhost M.

Data parallel model:

int stencil (...) {

Exchange boundary data(...);

Apply_boundary_conditions (...);

Apply_stencil (...);
}

Task parallel model: Loop over blocks; spawned code is the usual data parallel
model.

ierr = |\/|G_Block_init (blkS,);

for (i=0; i<numblks; i++) {
spawn (stencil (i, ...));

sgudgazlmuzsﬂllzsszu

Increasing performance =
with over-subscription

Laboratories

32 64 128 256 4096
"~ (\‘\-.-f"' /\v '\\vA \/
50"\\“.
8 25
L)
o)
g 8192 16384 32768 65536 131072
GJ e
= 75-\/ \\./ \\/ \ \
qV)
g as 50~
' o5
()]
S- O- |
% 0,%0705°07 10,700705705 20,700706705 0,702706705 2070270570+
m

Number of blocks

More concurrent MPI calls .

Overlapping communication =
and computation

Laboratories

()]
& 32 64 128 256 4096
'-'z 12.5
= 7.5-
_9. £ o- /\/
£ 25-

0.0~

8192 16384 32768 65536 131072

5.01'/\x /\/ /\x
0,%00705707 70,700705%07 70,70706705 20,%0070570% 0,°070570%

Number of blocks

More overlap

More concurrent MPI calls

29

Spreading message injection =,
(256 cores, or 64 ranks)

Laboratories

1 8

10? .
o 181'” W
= .
>
O 343 1331 10648
e 2
5 10
o 107 ~| . .
210 * "
[=
o 27000 91125 729000
et 2
510
e ;—o kn-- X

107 o e

O O S S 240 S A a0 2 & A 7
o B v %, % ‘% % o D v %

Time between sends bins

Longer between sends 20

S u m m a ry m Il“aal}g:g?lllries
= Qthreads: a vehicle for threaded runtime research

= Node-level work
= OpenMP interface
= Locality and Power-awareness
= Kokkos interface

= Distributed memory work
= Chapel interface
= Unified Scalable Parallel Runtime
= MPI+Qthreads integration

Contributors to Qthreads Research ®&=.

= Richard Barrett, Carter Edwards, Ryan Grant, Courtenay
Vaughan, Kevin Pedretti, Jon Berry, Siva Rajamanickam (SNL)

= Kyle Wheeler and Rich Murphy (now at Micron)
= Brian Barrett (now at Amazon)

= George Stelle (UNM)

= Alina and Dragos Sbirlea (Rice)

= Brad Chamberlain and Greg Titus (Cray)

= Allan Porterfield and Jan Prins (UNC/RENCI)

= Bronis de Supinski and Martin Schulz (LLNL)

= Marc Snir and Alex Brooks (UIUC)

Available Online) s

W Qthreads

More info: http://www.cs.sandia.gov/gthreads/

Source: https://code.google.com/p/qgthreads/

