SAND2014- 19463P

Sandia

Exceptional service in the national interest @ National
Laboratories

2D Partitioning for Scalable Matrix

Computations on Scale-Free Graphs

Erik Boman, Karen Devine, Sivasankaran Rajamanickam
Sandia National Laboratories

Dagstuhl, Nov. 2014

/ﬂl 5w ow

\: Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
‘j ENERGY #VASE : . ged an fia Corporation

Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Sandia

Introduction o

= Big data is a challenge to HPC

= Large graphs/networks are pervasive

= E.g., WWW, social networks
= Scale-free, small-world
= Skewed degree distribution

= Very different from PDE
discretizations

= How to do efficient parallel
computations?

= Using distributed-memory computers
= Data layout is important

BGP graph (credit: Richardson, Chung)
http://math.ucsd.edu/~fan/graphs/gallery

Sandia

Key Message -

= 2D (edge-based) partitioning is important for data analytics.
= Scale-free, small-world, skewed degree distribution.

= Long predicted, but demonstrated only recently, and not yet widely
appreciated.

= Computing a “good” 2D distribution is no harder than 1D!

= Still active research area.

Sandia

Sparse matvec (SpMV) important i

= Linear algebra is a useful analysis tool for graphs
= Both adjacency matrix and graph Laplacian are of interest
= Spectral analysis using extreme eigenpairs
= SpMV is core kernel in iterative methods

= SpMV is bottleneck for scale-free graphs on large distributed-
memory computers
= Example: For a social network (orkut) on 64 cores
= SpMV took 95% of the compute time in an eigensolver

= Maximum #messages, over all processes, is typically p-1
= Due to some very high-degree vertices

Sandia

1D and 2D Matrix Distributions =,

We view graphs as sparse matrices.
= 1D (vertex) distribution:
= Entire rows (or columns) of matrix assigned to a
processor
= Required in most software I

= 2D (edge) distribution: 1D row-wise matrix

distribution; 6 processes
Cartesian methods: Each process owns
intersection of some rows & columns

Processes are logically arranged in a 2D grid

This limits #messages per process to 0(p?

Long used in parallel dense solvers (ScalLapack

Beneficial also for sparse matrices (Fox et al. ‘88,
Lewis & van de Geijn ‘93, Hendrickson et al. ’95) I

, . 2D matrix
Yoo et al. (SC'11) demonstrated benefit over 1D gjstribution; 6 processes

layouts for eigensolves on scale-free graphs

Sandia

Benefit of 2D Matrix Distribution =

= During matrix-vector multiplication
(y=Ax), communication occurs only
along rows or columns of
processors.

" Expand (vertical):
Vector entries x; sent to
column processors to compute
local product y? = AP x

Fold (horizontal):
Local products y? summed along

FOW processors; y = 2yP

= |n 1D, fold is not needed, but
expand may be all-to-all.

Sandia

Benefit of 2D Matrix Distribution =

= During matrix-vector
multiplication, communication
occurs only along rows or
columns of processors.
= Expand (vertical):
Vector entries Xj sent to

column processors to compute
local product y? = AP x

= Fold (horizontal):
Local products y?» summed along

FOW Processors; y = 2P

= |n 1D, fold is not needed, but
expand may be all-to-all.

2D Partitioning Methods)

Cartesian 2D block (Fox et al. ‘88)
= Simple/fast to compute but ignores the structure of the graph.
= Low #messages, but communication volume may be high.

= Coarse-grain hypergraph (Catalyurek & Aykanat ‘01)

= Cartesian product, but uses the matrix structure.
= Requires multiconstraint hypergraph partitioning. =", . :

= Fine-grain hypergraph (Catalyurek & Ayk. ‘01)
= Assign each nonzero separately
= Not Cartesian, high #messages
= Larger hypergraph, impractical for big problems

= Mondriaan (Vastenhouw & Bisseling ‘05)

= Recursive bisection, hypergraph partitioning

= Not Cartesian, no bound on #messages

Trilinos Computational N &
Science Toolkit 7’1[17105

= Collection of ~¥60 packages
= Heroux et al., Sandia

Petra Object Model

= Maps describe the distribution of

= Trilinos Capabilities: global IDs for rows/columns/vector
Scalable Linear & Eigen Solvers entries to processors.

Discretizations, Meshes & Load
Balancing

Four maps needed in most general

Nonlinear & Optimization Solvers case:

Software Engineering Technologies & = Row map for matrix
Integration = Column map for matrix

= |n this project, we used = Range map for vector
Distributed Matrix/Vector classes = Domain map for vector

Epetra Implemented in Epetra (and Tpetra)
Partitioning package Zoltan packages

Eigensolver package Anasazi Allows 2D distributions!

Load-Balancing by Randomization

= Simple “block” partitioning balances rows but not nonzeros

= Randomization is a simple but powerful technique

= Oninput, randomly permute matrix rows/columns
= Eliminates any inherent structure in input file (e.g., high degree nodes first)
= @Gives better balance in number of nonzeros per processor for 1D and 2D
= But can drastically increase communication volume

i Sandia
National
Laboratories

liveJournal matrix (4M rows; 73M nonzeros) on 1024 processes

Method

Imbalance in nonzeros
(Max/Avg per proc)

Max #
Messages
per SpMV

Comm. Vol.
per SpMV
(doubles)

100 SpMV
time (secs)

1D-Block

12.8

1023

34.5M

2.14

1D-Random

1.3

1023

55.3M

1.52

2D-Block

62

43.4M

0.95

2D-Random

64.2M

New Method: Graph Partitioning + 2D @&=.

= Qur idea: Apply (hyper)graph partitioning and 2D distribution
together
= Compute vertex-based partition of graph using ParMETIS or Zoltan
= Apply 2D distribution to the resulting permuted graph/matrix

= Advantages:
= Balance the number of nonzeros per process
= Exploit structure in the graph to reduce communication volume
= Reduce the number of messages via 2D distribution

= Don’t optimize a single objective but try do fairly well in all

Sandia

2D (Hyper-)Graph Partitioning (GP/HP) 1.

= Partition vertices of original Due to partitioning,

graph into p parts diagonal blocks of A

il be denser:
m USing standard (hyper)graph Wi e aenser

partitioner

= Implicitly, let A____ = PAPT

perm
= Where P is permutation from
partitioning above
" Assign A, to processes
using Cartesian block 2D
layout

Observations

= We first partition into p
parts

= NOT sqrt(p)
= Many choices for Cartesian

2d layout in second step

= Fast method: just use (l,j)
indices, ignore structure

= Future: Pick “best” option
based on structure

Sandia
National
Laboratories

Example: Another
possible 2d layout

Sandia

Results 1D vs 2D (Block, Random, GP)®&x..

Platform: cab cluster at LLNL (1200 Intel Xeon E5 16-core nodes
operating at 2.6 GHz, 32 GB memory/node, Infiniband)
All matrices from UF collection (some originally from SNAP, etc.)

1D-Block

1D-Random

2D-Block

2D-Random

Strong scaling

Sandia
National _
Laboratories

Time (seconds)

com-orkut

[
o
o
o

\

VA

Y

%0.37

64 256 1024 4096

#Cores

—1D - |D-Random —* 1D-GP
=<=2D “-2D-Random ~“2D-GP

Orkut social network
3.1M rows; 237M nonzeros
Max nonzeros/row = 33K

Time (seconds)

cit-Patents

/

B
\ 0.15

/
=

0.10-
64 256 1024 4096

#Cores
~+-1D -*-|D-Random ~*1D-GP
-=2D —“-2D-Random ~*2D-GP
Patent citations network
3.8M rows; 37M nonzeros
Max nonzeros/row = 1K

1D stops scaling around 1024 processes due to high communication cost.

“Weak Scaling”

= R-MAT matrices (Chakrabarti et al., 2004) with Graph-500

parameters (a=0.57; b=c=0.19; d=0.05)

= rmat_22 on 256 procs
= 4.2M vertices
= 38M edges

= rmat_24 on 1024 procs
= 16.8M vertices
= 151M edges

= rmat_26 on 4096 procs
= 67.1M vertices
= 604M edges

Times for 100 SpMV

2D-HP maintains best
weak scaling.

Sandia
|I1 National

Laboratories

100 1
90 -
80 -
70
60 -
50 -
40 -
30 -
20 -
10

Time (Seconds)

S
x

256 1024

Number of Processes

4096

-#=1D-Block
~*1D-HP
=<2D-Block
—2D-HP

Sandia

Performance Profile i

= 10 matrices: 1.1M-67.5M rows; 36 M-1.6B nonzeros
= 2D-GP/HP best in all but one experiment

= Benefit of 2D even greater for large numbers of processes

1

All experiments: 64-4096 procs Large runs only: 1024-4096 procs

o

1D-Block
—— 1D-Random
—*—1D-GP/HP
—v— 2D-Block
—8—2D-Random
—4*— 2D-GP/HP

o
o
»

o
o
~

o
(&)

Fraction of problems
o
Fraction of problems
o
&

©
w

1D-Block
—6— 1D-Random
—— 1D-GP/HP
—v— 2D-Block
—&— 2D-Random
—%*— 2D-GP/HP

8 6 8
Relative Time to the best method Relative Time to the best method

7,

©
N>
o
N

o
—

(=)

Eigensolver Experiments

m Anasazi Toolkit in Trilinos rmat 26

Sandia
National _
Laboratories

= Baker, Hetmaniuk,
Lehoucq, Thornquist; ACM
TOMS 2009

= Block-based eigensolvers:
Solve AX = XA or AX = BXA

= Experiment:

= Find 10 largest eigenvalues
of Laplacian using Block
Krylov-Schur (BKS) solver

Solve Time (secs)

= rmat_26 matrix: 67.1M

256 1024
rows; 604M nonzeros

Number of Processes

*1D-Block -+ 1D-HP —=2D-Block

~2D-HP

Sandia

Conclusions i

= 2D distributions allow scalable parallel computations for
small-world (scale-free) graphs.

= For 1D, must use “vertex delegates” or “disaggregation”

= 1D (hyper)graph partitioning is effective on scale-free graphs
for moderate number of processes.
= Good load balance, low communication volume
= Combining 2D distribution with (hyper)graph partitioning
gives best results.

= Low number of messages, low communication volume, low imbalance.

= Allows reuse of existing partitioning software.
= Ongoing/future work:
= Compare to other 2D partitioning methods.

= Use faster partitioning method in 15t step (e.g., PULP)
= Optimize 2" step in algorithm (Cartesian layout)

Extra Slides

Sandia
National

Data Partitioning

= (Hyper-)graph partitioning generally reduces communication
for SpMV

= Software tools (e.g., Metis, Scotch, Zoltan) were designed for
meshes and PDE discretizations

= Not optimized for scale-free graphs
= Focus has been on cut edges and communication volume
= We also wish to reduce #messages

Test Matrices & Platform

Sandia
'I'l National _
Laboratories

Compare times for 100 matrix-vector products with 1D and 2D distributions
Platform: cab cluster at LLNL (1200 Intel Xeon E5 16-core nodes operating at

2.6 GHz, 32 GB memory/node, Infiniband)

Matrices from the University of Florida matrix collection. (Symmetrized, if

needed)

Name Description

Hollywood-2009 Hollywood movie actor network
(Boldi, Rosa, Santini, Vigna)

Wikipedia-20070206 Links between wikipedia pages
(Gleich)

Ljournal-2008 LivedJournal social network
(Boldi, Rosa, Santini, Vigna)

Whb-edu Links between *.edu webpages
(Gleich)

Cit-Patents Citation network among US
patents (Hall, Jaffe, Trajtenberg)

Number of

Rows

1.1M

3.5M

5.6M

8.9M

3.8M

Number of

Nonzeros

113M

85M

99M

88M

33M

1D vs 2D Strong Scaling experiments

For each matrix:
Blue = Trilinos 1D Matrix Distribution on 16, 64, 256, 1024 processors (left to right)
Red = Trilinos 2D Matrix Distribution on 16, 64, 256, 1024 processors (left to right)

Times are normalized to the 1D 16-processor runtime for each matrix.

()
E
-

—

O

(%))

n

()

o

(@)

—

Y
©
<
o
<

O
-+—
©

()
N
©

£

—

(@)

c

()
E
-

5
=

®
=

1.8

1.6

1.4

1.2

1 -

0.8

0.6

0.4 -

0.2 -

0 -

i

hollywood

wikipedia

ljournal

cit-Patents

Sandia
National _
Laboratories

Trilinos: Petra Object Model

Maps describe the
distribution of global IDs for
rows/columns/vector entries
to processors.

Four maps needed in most
general case:

= Row map for matrix

= Column map for matrix

= Range map for vector

= Domain map for vector

Implemented in Epetra (and
Tpetra) packages

Allows 2D distributions!

Rank 3 (Blue)

Row Map = {4, 5, 8}
Column Map = {4, 5, 6, 7}
Range/Domain Map = {4,

Sandia
National
Laboratories

5}

Eigensolver Experiments) .

rmat 26

m Anasazi Toolkit in Trilinos 100

= Baker, Hetmaniuk,
Lehoucq, Thornquist; ACM
TOMS 2009

= Block-based eigensolvers:
Solve AX = XA or AX = BXA

= Experiment:

= Find 10 largest eigenvalues
of Laplacian using Block
Krylov-Schur (BKS) solver

" rmat_26 matrix: 67.1M 1
rows; 604M nonzeros 64 256 1024 4096

= HP = Hype rgra ph Number of Processes

partitioning in Zoltan —+-1D-Block -#-1D-Random —*-1D-HP
—<2D-Block ~@-2D-Random ——2D-HP

Solve Time(secs)
=

