
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Photos placed in horizontal position
with even amount of white space

between photos and header
2D Partitioning for Scalable Matrix

Computations on Scale-Free Graphs

Erik Boman, Karen Devine, Sivasankaran Rajamanickam
Sandia National Laboratories

Dagstuhl, Nov. 2014

SAND2014-19463PE

Introduction

 Big data is a challenge to HPC
 Large graphs/networks are pervasive

 E.g., WWW, social networks

 Scale-free, small-world

 Skewed degree distribution

 Very different from PDE
discretizations

 How to do efficient parallel
computations?
 Using distributed-memory computers

 Data layout is important

BGP graph (credit: Richardson, Chung)
http://math.ucsd.edu/~fan/graphs/gallery

Key Message

 2D (edge-based) partitioning is important for data analytics.
 Scale-free, small-world, skewed degree distribution.

 Long predicted, but demonstrated only recently, and not yet widely
appreciated.

 Computing a “good” 2D distribution is no harder than 1D!
 Still active research area.

3

Sparse matvec (SpMV) important

 Linear algebra is a useful analysis tool for graphs
 Both adjacency matrix and graph Laplacian are of interest

 Spectral analysis using extreme eigenpairs

 SpMV is core kernel in iterative methods

 SpMV is bottleneck for scale-free graphs on large distributed-
memory computers
 Example: For a social network (orkut) on 64 cores

 SpMV took 95% of the compute time in an eigensolver

 Maximum #messages, over all processes, is typically p-1

 Due to some very high-degree vertices

4

1D and 2D Matrix Distributions

We view graphs as sparse matrices.

 1D (vertex) distribution:
 Entire rows (or columns) of matrix assigned to a

processor

 Required in most software

 2D (edge) distribution:
 Cartesian methods: Each process owns

intersection of some rows & columns

 Processes are logically arranged in a 2D grid

 This limits #messages per process to

 Long used in parallel dense solvers (ScaLapack)

 Beneficial also for sparse matrices (Fox et al. ‘88,
Lewis & van de Geijn ‘93, Hendrickson et al. ’95)

 Yoo et al. (SC’11) demonstrated benefit over 1D
layouts for eigensolves on scale-free graphs

5

1D row-wise matrix
distribution; 6 processes

2D matrix
distribution; 6 processes

O(p)

Benefit of 2D Matrix Distribution

 During matrix-vector multiplication
(y=Ax), communication occurs only
along rows or columns of
processors.

 Expand (vertical):
Vector entries xj sent to
column processors to compute
local product yp = Ap x

 Fold (horizontal):
Local products yp summed along

row processors; y = Σyp

 In 1D, fold is not needed, but
expand may be all-to-all.

6

Benefit of 2D Matrix Distribution

 During matrix-vector
multiplication, communication
occurs only along rows or
columns of processors.
 Expand (vertical):

Vector entries xj sent to
column processors to compute
local product yp = Ap x

 Fold (horizontal):
Local products yp summed along

row processors; y = Σyp

 In 1D, fold is not needed, but
expand may be all-to-all.

7

2D Partitioning Methods

 Cartesian 2D block (Fox et al. ‘88)
 Simple/fast to compute but ignores the structure of the graph.

 Low #messages, but communication volume may be high.

 Coarse-grain hypergraph (Catalyurek & Aykanat ‘01)
 Cartesian product, but uses the matrix structure.

 Requires multiconstraint hypergraph partitioning.

 Fine-grain hypergraph (Catalyurek & Ayk. ‘01)
 Assign each nonzero separately

 Not Cartesian, high #messages

 Larger hypergraph, impractical for big problems

 Mondriaan (Vastenhouw & Bisseling ‘05)
 Recursive bisection, hypergraph partitioning

 Not Cartesian, no bound on #messages

8

Trilinos Computational
Science Toolkit

 Collection of ~60 packages
 Heroux et al., Sandia

 Trilinos Capabilities:
 Scalable Linear & Eigen Solvers
 Discretizations, Meshes & Load

Balancing
 Nonlinear & Optimization Solvers
 Software Engineering Technologies &

Integration

 In this project, we used
 Distributed Matrix/Vector classes

Epetra
 Partitioning package Zoltan
 Eigensolver package Anasazi

Petra Object Model
 Maps describe the distribution of

global IDs for rows/columns/vector
entries to processors.

 Four maps needed in most general
case:

 Row map for matrix

 Column map for matrix

 Range map for vector

 Domain map for vector

 Implemented in Epetra (and Tpetra)
packages

 Allows 2D distributions!

9

Load-Balancing by Randomization
 Simple “block” partitioning balances rows but not nonzeros
 Randomization is a simple but powerful technique
 On input, randomly permute matrix rows/columns

 Eliminates any inherent structure in input file (e.g., high degree nodes first)
 Gives better balance in number of nonzeros per processor for 1D and 2D
 But can drastically increase communication volume

10

liveJournal matrix (4M rows; 73M nonzeros) on 1024 processes

Method Imbalance in nonzeros
(Max/Avg per proc)

Max #
Messages
per SpMV

Comm. Vol.
per SpMV
(doubles)

100 SpMV
time (secs)

1D-Block 12.8 1023 34.5M 2.14

1D-Random 1.3 1023 55.3M 1.52

2D-Block 11.4 62 43.4M 0.95

2D-Random 1.0 62 64.2M 0.43

New Method: Graph Partitioning + 2D

 Our idea: Apply (hyper)graph partitioning and 2D distribution
together
 Compute vertex-based partition of graph using ParMETIS or Zoltan

 Apply 2D distribution to the resulting permuted graph/matrix

 Advantages:
 Balance the number of nonzeros per process

 Exploit structure in the graph to reduce communication volume

 Reduce the number of messages via 2D distribution

 Don’t optimize a single objective but try do fairly well in all

11

2D (Hyper-)Graph Partitioning (GP/HP)

 Partition vertices of original
graph into p parts

 Using standard (hyper)graph
partitioner

 Implicitly, let Aperm = PAPT

 Where P is permutation from
partitioning above

 Assign Aperm to processes
using Cartesian block 2D
layout

Due to partitioning,
diagonal blocks of Aperm

will be denser:

12

Observations

 We first partition into p
parts

 NOT sqrt(p)

 Many choices for Cartesian
2d layout in second step

 Fast method: just use (I,j)
indices, ignore structure

 Future: Pick “best” option
based on structure

Example: Another
possible 2d layout

13

Results 1D vs 2D (Block, Random, GP)

14

liveJournal matrix (4M rows; 73M nonzeros) on 1024 processes

Method Imbalance in nonzeros
(Max/Avg per proc)

Max #
Messages
per SpMV

Comm. Vol.
per SpMV
(doubles)

100 SpMV
time (secs)

1D-Block 12.8 1023 34.5M 2.14

1D-Random 1.3 1023 55.3M 1.52

1D-GP 1.2 1011 18.9M 0.53

2D-Block 11.4 62 43.4M 0.95

2D-Random 1.0 62 64.2M 0.43

2D-GP 1.4 62 22.4M 0.22

Platform: cab cluster at LLNL (1200 Intel Xeon E5 16-core nodes
operating at 2.6 GHz, 32 GB memory/node, Infiniband)
All matrices from UF collection (some originally from SNAP, etc.)

Strong scaling

15

Orkut social network
3.1M rows; 237M nonzeros
Max nonzeros/row = 33K

Patent citations network
3.8M rows; 37M nonzeros
Max nonzeros/row = 1K

1D stops scaling around 1024 processes due to high communication cost.

“Weak Scaling”

 R-MAT matrices (Chakrabarti et al., 2004) with Graph-500
parameters (a=0.57; b=c=0.19; d=0.05)
 rmat_22 on 256 procs

 4.2M vertices

 38M edges

 rmat_24 on 1024 procs

 16.8M vertices

 151M edges

 rmat_26 on 4096 procs

 67.1M vertices

 604M edges

 Times for 100 SpMV

 2D-HP maintains best
weak scaling.

16

0

10

20

30

40

50

60

70

80

90

100

256 1024 4096

T
im

e
(S

ec
on

d
s)

Number of Processes

1D-Block

1D-HP

2D-Block

2D-HP

Performance Profile
 10 matrices: 1.1M - 67.5M rows; 36M-1.6B nonzeros

 2D-GP/HP best in all but one experiment

 Benefit of 2D even greater for large numbers of processes

17

All experiments: 64-4096 procs Large runs only: 1024-4096 procs

Eigensolver Experiments

 Anasazi Toolkit in Trilinos
 Baker, Hetmaniuk,

Lehoucq, Thornquist; ACM
TOMS 2009

 Block-based eigensolvers:
Solve AX = XΛ or AX = BXΛ

 Experiment:
 Find 10 largest eigenvalues

of Laplacian using Block
Krylov-Schur (BKS) solver

 rmat_26 matrix: 67.1M
rows; 604M nonzeros

1

10

100

64 256 1024 4096

S
ol

ve
T

im
e

(s
ec

s)

Number of Processes

rmat_26

1D-Block 1D-HP 2D-Block 2D-HP

Conclusions

 2D distributions allow scalable parallel computations for
small-world (scale-free) graphs.
 For 1D, must use “vertex delegates” or “disaggregation”

 1D (hyper)graph partitioning is effective on scale-free graphs
for moderate number of processes.
 Good load balance, low communication volume

 Combining 2D distribution with (hyper)graph partitioning
gives best results.
 Low number of messages, low communication volume, low imbalance.

 Allows reuse of existing partitioning software.

 Ongoing/future work:
 Compare to other 2D partitioning methods.

 Use faster partitioning method in 1st step (e.g., PULP)

 Optimize 2nd step in algorithm (Cartesian layout)

19

Extra Slides

20

Data Partitioning

 (Hyper-)graph partitioning generally reduces communication
for SpMV

 Software tools (e.g., Metis, Scotch, Zoltan) were designed for
meshes and PDE discretizations
 Not optimized for scale-free graphs

 Focus has been on cut edges and communication volume

 We also wish to reduce #messages

21

Test Matrices & Platform
 Compare times for 100 matrix-vector products with 1D and 2D distributions
 Platform: cab cluster at LLNL (1200 Intel Xeon E5 16-core nodes operating at

2.6 GHz, 32 GB memory/node, Infiniband)
 Matrices from the University of Florida matrix collection. (Symmetrized, if

needed)

22

Name Description Number of
Rows

Number of
Nonzeros

Hollywood-2009 Hollywood movie actor network
(Boldi, Rosa, Santini, Vigna)

1.1M 113M

Wikipedia-20070206 Links between wikipedia pages
(Gleich)

3.5M 85M

Ljournal-2008 LiveJournal social network
(Boldi, Rosa, Santini, Vigna)

5.6M 99M

Wb-edu Links between *.edu webpages
(Gleich)

8.9M 88M

Cit-Patents Citation network among US
patents (Hall, Jaffe, Trajtenberg)

3.8M 33M

1D vs 2D Strong Scaling experiments

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

hollywood wikipedia ljournal wb-edu cit-Patents

23

For each matrix:
Blue = Trilinos 1D Matrix Distribution on 16, 64, 256, 1024 processors (left to right)
Red = Trilinos 2D Matrix Distribution on 16, 64, 256, 1024 processors (left to right)

Times are normalized to the 1D 16-processor runtime for each matrix.

M
a
tV

e
c

ti
m

e
 n

o
rm

a
liz

e
d
 t

o
 1

D
 1

6
-p

ro
ce

s
so

r
ti
m

e

Trilinos: Petra Object Model

 Maps describe the
distribution of global IDs for
rows/columns/vector entries
to processors.

 Four maps needed in most
general case:
 Row map for matrix

 Column map for matrix

 Range map for vector

 Domain map for vector

 Implemented in Epetra (and
Tpetra) packages

 Allows 2D distributions!

24

X X

X X X

X X X

X X X

X X X

X X X

X X X

X X X

X X X

X X X

X X X

X X

Rank 3 (Blue)
Row Map = {4, 5, 8}
Column Map = {4, 5, 6, 7}
Range/Domain Map = {4, 5}

Eigensolver Experiments

 Anasazi Toolkit in Trilinos
 Baker, Hetmaniuk,

Lehoucq, Thornquist; ACM
TOMS 2009

 Block-based eigensolvers:
Solve AX = XΛ or AX = BXΛ

 Experiment:
 Find 10 largest eigenvalues

of Laplacian using Block
Krylov-Schur (BKS) solver

 rmat_26 matrix: 67.1M
rows; 604M nonzeros

 HP = Hypergraph
partitioning in Zoltan

1

10

100

64 256 1024 4096

S
o

lv
e

T
im

e(
se

cs
)

Number of Processes

rmat_26

1D-Block 1D-Random 1D-HP

2D-Block 2D-Random 2D-HP

