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We are working toward the evaluation of a new
Magnetized Liner Inertial Fusion (MagLIF)* concept
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Integrated experiments have been
performed (Matt Gomez) producing 1el2 —
2el2 neutrons

cm

= Aninitial 10 T axial magnetic field
applied

= Laser preheat applied when inner surface
starts to move

= ~400J Pre-pulse to disassemble window followed
by ~2kJ main pulse

= Likely that poor coupling of laser energy is
presently limiting performance (A. Sefkow APS
2014 invited)

= Implosion instabilities have the potential
to disrupt fuel compression and
confinement

= Have been heavily diagnosed in stand alone
experiments
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We are working toward the evaluation of a new
Magnetized Liner Inertial Fusion (MagLIF)* concept
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Previous work to reproduce instability structure observed during
implosion required an imposed azimuthal correlation

(a) Experiment (b) GORGON 3D (c) GORGON 3D
(random pert.) (random+az.pert.)
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Data from Ryan McBride (PRL)

To match radiography data required
Imposing some azimuthally
correlated component to a random
20 micron surface roughness.

Unwrapped surface




Tom Awe experiments imposed an axial magnetic field (~10T)

Helical structures were clearly observed to develop in the imploding liners
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We can impose helical perturbation as a small Density slice
amplitude initial surface perturbation iy

Initial Conditions

7.2 degree helix etched onto liner
surface at 20 micron grid resolution

Convergence of 6.4

Simulated Radiographs

» Helical structure grows enough to be retained
in radiographs during implosion.

* These calculations did not include initial 10T

Bz field. It is not required for initial

perturbation to persist

I’/?lli/\lll—l—



Observed helical structure consistent with evolution of an
initial surface perturbation.
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Evolution of Pitch Angle
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Contraction of outer surface C

Bz field helps set the initial
conditions, but beyond that it is
Changes in pitch angle are consistent not dynamically significant
with contraction of a helical structure in
simulation and experiment.




Perturbation structure imprinted at very early time

Current is flowing predominantly in liner
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Final Pinch Structure Measured with Time Integrated Self-
emission

22613

Eric Harding fielded a
crystal imager, recording
time integrated self
emission from the

Integrated
Experiments
performed by M.

Gomez. assembled pinch.
DD fuel
+ -
L aser Preheat Apparent helical
+ structure
Applied Bz
Axial variations in
Generated emission observed.

~1012 neutrons
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Output self emission from integrated calculation driven with
helical perturbation

Follow match to Density at Stagnation Crystal Imaging 3+6keV
radiography throughto —> ) RS b
stagnation 5

Data =

Sim. =

Convergence of 6.4




Helical structure in emission is not the result of post stagnation m=1
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Helical structure is feeding through from the outer surface

5000

15000 20000 Fuel
Kg/m3 Kg/m3 X

Different density surfaces 0.3ns before
peak neutron.

Instability structure is feeding through from

outer surface. This helix was imposed as

a liner surface condition.
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To better understand axial temperature variations we can appeal to
the CRITR axially resolved time integrated spectrometer
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Temperature measurement from CRITR potentially influenced by
reabsorption from the dense liner material

Ar
Imager

CRITR

Low temperature (1.8keV)
emission potentially obscured
by liner reabsorption
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Ar imager reconstruction includes 3 and 6 keV emission.
CRITR reconstruction in range 8 — 15keV, with 400 micron geometric broadening from slit.
Simulated CRITR ~ 2.6keV.
On the low side. Although this calculation is under-resolved (20micron grid)
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Expanding Photon Energy Range, the liner absorption is significant at
lower photon energies
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Crystal imager is sensitive to 3,6,9 and 12keV emission, so is likely getting significant
contributions from the higher photon energies
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Some axial structure the result of reabsorption from liner structure,
but some represents emission variations

From Eric Harding’s
photometric calculations of
this instrument, the
sensitivity is comparable at
6 and 9keV




To better understand where stagnation structure we need to
understand stagnation process so we appeal to time resolved imaging

diagnostic MLM pinhole camera

Z2591
Output from
MLM soft
filtered pinhole
camera
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Narrow column of bright
emission followed ~
2.5ns later by emission
at large diameter.

First emission peak
coincident with neutron
production




Neutron Production Comes and Goes While the Liner Still Implodes

MLM reconstruction — Simulation
output on 13 degree LOS soft
filtered (>1keV). Diffraction and
geometric resolution limits applied

Simulation Data
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Neutron Production Comes and Goes While the Liner Still Implodes

output on 13 degree LOS soft
filtered (>1keV). Diffraction and
geometric resolution limits applied

= MLM reconstruction — Simulation
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Neutron Production Comes and Goes While the Liner Still Implodes

MLM reconstruction — Simulation
output on 13 degree LOS soft
filtered (>1keV). Diffraction and
geometric resolution limits applied

Simulation Data



Neutron Production Comes and Goes While the Liner Still Implodes

MLM reconstruction — Simulation
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Simulation Data



Neutron Production Comes and Goes While the Liner Still Implodes

MLM reconstruction — Simulation

fqm .output on 13 degrge LQS soft
By — filtered (>1keV). Diffraction and
D > geometric resolution limits applied

Simulation Data




Neutron Production Comes and Goes While the Liner Still Implodes

MLM reconstruction — Simulation
output on 13 degree LOS soft
filtered (>1keV). Diffraction and
geometric resolution limits applied
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Neutron Production Comes and Goes While the Liner Still Implodes

MLM reconstruction — Simulation
output on 13 degree LOS soft
filtered (>1keV). Diffraction and
geometric resolution limits applied

Simulation Data



Neutron Production Comes and Goes While the Liner Still Implodes
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Neutron Production Comes and Goes While the Liner Still Implodes

MLM reconstruction — Simulation
output on 13 degree LOS soft
filtered (>1keV). Diffraction and
geometric resolution limits applied

Simulation Data



Neutron Production Comes and Goes While the Liner Still Implodes

MLM reconstruction — Simulation
output on 13 degree LOS soft
filtered (>1keV). Diffraction and
geometric resolution limits applied

Simulation Data



Neutron Production Comes and Goes While the Liner Still Implodes

Simulated PCD traces
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PCD traces (Z2613) S.B. Hansen

First peak of hard radiation is the fuel
compression and neutron production.
Second peak is the final stagnation of
the liner.

Neutron production stops while the
liner is still imploding.

What is the process responsible for
ending the neutron production ?
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Increase grid resolution on central region to study stagnation

Revert to uncorrelated
initial perturbation.
Assume generous 1kJ
uniform spot preheat
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(b) GORGON 3D
(random pert.)
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Azimuthal instabilities significantly reduce fuel confinement time.
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Azimuthal instabilities significantly reduce fuel confinement time.
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This stagnation mechanism is consistent
with observed axial structure

Line outs of simulated and measured time
integrated imaging

Measured Simulated
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These structures are not flute modes. They have both azimuthal and
axial components

Idealized flute Surface defects grow and

modes don’t grow penetrate imploding shell
from outside

Groove of same depth ~100 micron hole
and width (FWHM)
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Finite axial, finite azimuthal instabilities can grow quite aggressively

Initial instability development

These azimuthal asymmetric structures are very detrimental to fuel confinement at stagnation

Side

Iy
C
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Conclusion

« There are a lot of unknowns concerning the performance of
MagLif, but there is an increasing around of data availaibe to
constrain our calculations.

« Imaging data is consistent with helical perturbations feeding
through from the outer liner surface.
 If they’re making it through, what other instabilities might
be making it through with them ?

 We tend to focus on m=0 type MRT instabilities, but there are
other structures that can be detrimental to fuel compression
and confinement.

« These structures are consistent with imaging diagnostics

7/30/2014 38



These azimuthally discrete structures arise from the long wavelength
component of any random initialization

These structures are not cascading up from the short wavelength perturbations. We
can test this by eliminating them from a calculation.
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While the amplitude of resulting perturbations can be effected, the
location is set by the long wavelength components that were already
there

High frequency component of instabilities removed (3095 ns)




