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Supercomputing when | was a
student (~1972)
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Punchcard

Control console, disk and tape drives

CDC 6600: 10MHz




Outline ) i

e Purpose of peridynamics
e Basic equations
e Dynamic fracture examples

Continuum-particle connection: self-assembly

Nonlocality in heterogeneous media: composites

Multiscale peridynamics




Purpose of peridynamics h
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e To unify the mechanics of continuous and discontinuous media within a single, consistent

set of equations.

Continuous body
with a defect

Discrete particles

Continuous body
e Why do this?
e Avoid coupling dissimilar mathematical systems (A to C).

e Model complex fracture patterns.

e Communicate across length scales.




Peridynamics basics: )
Horizon and family

e Any point x interacts directly with other points within a distance ¢ called the “horizon.”

e The material within a distance 0 of x is called the “family” of x, H.

0 = horizo

Hy = family of x
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Strain energy at a point

Continuum Discrete particles Discrete structures

Family of x

Deformation




Potential energy minimization yields™
the peridynamic equilibrium equation

e Potential energy:
<I>:/(W—b-y) av,
B

where W is the strain energy density, y is the deformation map, b is the
applied external force density, and B is the body.

e Euler-Lagrange equation is the equilibrium equation:

/ f(q,x) dVq+b(x)=0

X

for all x.




Peridynamics basics: )
Bonds and bond force density

e The vector from x to any point q in its family in the reference configuration is called a bond.
§=q-x
e Each bond has a pairwise force density vector that is applied at both points:

f(q,x,1t).

e Equation of motion is an integro-differential equation, not a PDE:

p(x)y(x,t) = /Hf(q,x,t) dVy + b(x,t).




Peridynamics basics: ) s
The nature of internal forces

Standard theory Peridynamics

Stress tensor field Bond forces between neighboring points
(assumes continuity of forces) (allowing discontinuity)
[
+2 P
q,x
12 /
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Force state maps bonds
onto bond forces

Stress tensor maps surface
normal vectors onto
surface forces

pit(x,t) =V-o(x,t)+ b(x,t) pii(x, t) = j f(q,x)dVy + b(x,t)
Hy

Differentiation of surface forces

Summation over bond forces




Peridynamics basics: )
What determines bond forces?

Each pairwise bond force vector f(q, x,t) is determined jointly by:

the collective deformation of H, and

the collective deformation of H,.

Bond forces are antisymmetric: f(x,q,t) = —f(q,x,1).

Deformation y(-, )
~ A

Undeformed families
Deformed families and bond forces




Bond based materials h) i,

* If each bond response is independent of the others, the resulting material model is
called bond-based.
* The material model is then simply a graph of bond force density vs. bond strain.
* Main advantage: simplicity.
* Main disadvantage: restricts the material response.
* Poisson ratio always = 1/4.

Bond force density 1

N
7

Bond strain




Damage due to bond breakage

Recall: each bond carries a force.
Damage is implemented at the bond level.

Bonds break irreversibly according to some criterion.
Broken bonds carry no force.

Examples of criteria:

Critical bond strain (brittle).
Hashin failure criterion (composites).
Gurson (ductile metals).

Bond force density 1
Bond breakage

n

Bond stra'in

Critical bond strain damage model
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Autonomous crack growth ) 5.

cececceccecceccceccecscssssseses — Brokenbond
ceceecceccecccccsabeceeceaaess — Crackpath
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e When a bond breaks, its load is shifted to its neighbors, leading to progressive failure.
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EMU numerical method

= Integral is replaced by a finite sum: resulting method is meshless and Lagrangian.

py(x,t) = / f(x',x,t) dVy + b(x,1)
H

i

pyr =Y f(xp,xi,t) AVj + b}
keH




Critical bond strain:

h

Relation to critical energy release rate

If the work required to break the bond & is wq(&), then the energy
release rate is found by summing this work per unit crack area (J.

G:/Od/mwo(s)dvgds

Foster):

Ry

Crack\v %

/¢

£

7z

Wo

N

v S

Can then get the critical strain for bond breakage s* in terms of G.

7

Bond strain

Could also use the peridynamic J-integral as a bond breakage criterion.
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Energy balance for a crack: ) ..
validation

- Grid 1?1al energy vs. cr?ck hp' posnlllon l l I
=1
>~ 2,25 .
2.00 r ]
W = External work
1.75 .
1.50 i
>
D .25 | - .
) E = Strain energy
[
w 1.00 f .
R, From bond T T
Crack . 0.75% ¢ — .
N 4 properties, energy \\Ar
R release rate @80 I
should be 0.25 | Slope A
S
el W-E = Consumed energy |
_O : 25 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10
Crack tip position

» This confirms that the energy consumed per unit crack growth area equals the expected
value from bond breakage properties.




Dynamic fracture in a hard steel ) %,
plate

e Dynamic fracture in maraging steel (Kalthoff & Winkler, 1988)
e Mode-Il loading at notch tips results in mode-| cracks at 70deg angle.
e 3D EMU model reproduces the crack angle.

Experiment
/

S. A. Silling, Dynamic fracture modeling with a meshfree peridynamic code, in Computational Fluid and
Solid Mechanics 2003, K.J. Bathe, ed., Elsevier, pp. 641-644.
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Dynamic fracture in membranes

Early high speed photograph by Harold Edgerton
(MIT collection)
EMU model of a balloon penetrated http://mit.edu/6.933/www/Fall2000/edgerton/edgerton.ppt

by a fragment

18
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Pressurized shell struck by a fragment

Video




h

Examples: Membranes and thin films

Videos

A0

Oscillatory crack path Crack interaction in a sheet Aging of a film

20



Dynamic fracture in PMMA: ) 5,
Damage features

Microbranching

Mirror-mist-hackle transition*

St Microcracks

A g T, = L e

D gy P % P o
—— LA ~\._.(":‘.,‘(W/ e o %‘:"-‘h

Initial defect Surface roughness

EMU damage EMU crack surfaces

* J. Fineberg & M. Marder, Physics Reports 313 (1999) 1-108
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Dynamic fracture in PMMA:
Crack tip velocity

e Crack velocity increases to a critical value, then oscillates.

Cr(:(:kI Velo]cily | ]
Q)
S ™
~— ()]
> = 500 E
S &
% G B R . | |
S 2
e z
+ (9]
X 2
S g
@)
0
_50 1 1 1 1 1 1 1 1 1 1 1 1
-100 -50 OT. 50 100 150 200 _100 0 100 200
iIme (us
(ks) Time #(psec)
EMU Experiment*

* J. Fineberg & M. Marder, Physics Reports 313 (1999) 1-108
I —————




Sandia
m National

Laboratories

Dynamic crack branching

e Similar to previous example but
with higher strain rate applied at
the boundaries.

e Red indicates bonds currently
undergoing damage.

e These appear ahead of
the visible
discontinuities.

e Blue/green indicate damage
(broken bonds).

e More and more energy is being
built up ahead of the crack — it
can’t keep up.

e Leads to fragmentation.




Sandia
rh National

Laboratories

Dynamic crack branching

e Similar to previous example but
with higher strain rate applied at
the boundaries.

e Red indicates bonds currently
undergoing damage.

e These appear ahead of
the visible
discontinuities.

e Blue/green indicate damage
(broken bonds).

e More and more energy is being
built up ahead of the crack — it
can’t keep up.

e Leads to fragmentation.

Video




Example:
Impact on reinforced concrete

Video




Nonlocality —is it real?

* Itis commonly assumed that the local model (PDE-based) is an excellent
approximation for continuous media, due to the small size of interatomic
distances.

e This is true if we model the system in sufficient detail.

* When we use a “smoothed out” displacement field, nonlocality appears in the
equations. Example...

Sandia
National
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us(x)

bl

Compliant 4 uc(%,y)
Stiff <7

Layered composite (1D)

v Vv L/
\ 2




Sandia
rl1 National

Laboratories

Nonlocality in a homogenized model

* Choose to model the composite as a single mass-weighted average
displacement field ©(x).

> u(x)
Ustiff C
u A >
— ?'

ucompliant \;\
>
X >
>
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Nonlocality in a homogenized model

* After computing the force transfer between the phases, the equation of
motion turns out to be

o, 2) = Bl (x, ) + vkX® / (@(p, ) — alz, £)e= =~ dp + b(a, 1),

L Eehohe _ length scale
A\ 3pc(hs +he) '

Strain in each phase if the homogenized strain follows a step function

Strain 4

7

Homogenized strain @' (x)

Stiff strain %

Compliant strain




Are composites nonlocal? ) .

= Peridynamic model is more accurate than the local model for predicting stress
concentration in a laminate.

" he=h,=04mm, E; = 150GPa, u. =4GPa.
= =1/A=1.41mm.

i I l I

300 o ESPI

250 —— Lekhnitskii's |
200 —a&— Abaqus

150 —— Emuo-2mm |

100 TE

(&)}
(@)

0

Normal stress distribution (Mpa)

25 35 45 B55 65 75 85 95 105 116 126

EMU: contours of longitudinal stress X position (mm)
Horizon = 2mm

Data of Toubal, Karama, and Lorrain, Composite Structures 68 (2005) 31-36
I —————



Splitting and fracture mode change @)
In composites

e Distribution of fiber directions between plies strongly influences the way cracks
grow.

Typical crack growth in a notched laminate

EMU simulations for different layups (photo courtesy Boeing)




Self-assembly and long-range forces

e Potential importance for self-assembled

nanostructures.
e All forces are treated as long-range.

Failure in a nanofiber membrane
(F. Bobaru, Univ. of Nebraska)

Dislocation
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Micelles spatially
separate and R

organize hard & soft Bes -
precursors WATER oiL

ETHANOL, MONOMERS,
SILICA CROSSLINKERS,

(hard) INITIATORS, ETC.

(soft)

Nanofiber self-shaping

Self-assembly is driven by long-range forces

Image: Brinker, Lu, & Sellinger, Advanced Materials (1999)

Carbon nanotube

31



Self-assembly example =

e Solution of long rods modeled as a peridynamic continuum:
* Ends of the rods attract.
* Inner parts of the rods repel.
* Rods have a small resistance to bending.
* Rods are initially straight, then find a lower energy configuration.
* Peridynamics is useful because of the problem involves both continuum and long-range interactions.

Video

32
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Bone: A composite material with many ()&=
length scales

Millimeter

Micrometer

Nanometer

Bone structure helps delay, deflect crack growth. Image:
Chan, Chan, and Nicolella, Bone 45 (2009) 427-434

Bone contains a heirarchy of structures at many
length scales. Image: Wang and Gupta, Ann. Rev.
Mat. Sci. 41 (2011) 41-73




Multiple length scales ) .

* Objective: apply a suitable microscale model for processes near a crack tip at whatever
length scale is dictated by physics.
* Method: hierarchy of models at different length scales.

* Level 0: smallest.

* Level > 0: coarsened.
The details of damage evolution are Each successive level has a larger

Crack process zone
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Concurrent solution strategy L

=  The equation of motion is applied only within each level.

Lower levels provide coarsened material properties (including damage) to higher

levels.
A Level
m
Yy S
79 o®
iz o &
> ‘8¢ o

Schematic of communication between levels in a 2D body

Higher levels provide boundary conditions (really volume constraints) on lower levels.




Branching in a heterogeneous ) .
medium

e Crack grows between randomly placed hard inclusions.

37



Heterogeneous medium

Video

38



Discussion ) S

» All forces are treated as long-range forces.
* The basic equations allow discontinuities — compatible with cracks.
e Cracks do whatever they want — no need for supplemental equations.
* Some practical difficulties:
* Slower than standard finite elements.
* Boundary conditions are different than in the standard theory.




\

Extra slides
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Dependencies between levels ) .

=

Boundary : Material
. Deformation .
condition properties

A

*
IYn+1 — Yn41 < Lt

//'

~

yn 1 > Yn—_1<— 1, 4

Level

——> Momentum balance
-2 Define boundary conditions

—> C(oarse grain material properties

Level n problem




Flow of information in a time step @&

Timestepm ——

5 $ @ gyt
T Si i >I m+1
Ys' Y2
NN
ygq,o o—0-0-0-0-00-9 ng
—> Momentum bal

@ - computed deformation




Multiscale examples: )
Crack growth in a brittle plate

Level 2

Initial damage

Damage: process zone




Crack growth in a brittle plate: )
Bond strains

Colors show the largest strain among all bonds connected to each node.

44



Levels move as the crack grows T .

Damage Process zone

v, velocity

45



Results with and without multiscale @&:.

* All three levels give essentially the

2.25
same answer.

* Higher levels substantially reduce
the computational cost.

2.00
1.75
1.50
1.25

1.00
75
.50

Boundary load

0
0
0.25
0.00
-0.25

-0.50 1

Load vs. time

Q 100

200 300 400 500 600 700

Boundary displacement

Level Wall clock time (min) with
28K nodes in coarse grid

Wall clock time (min) with
110K nodes in coarse grid

0 30
2 8

168
16




Contact mechanics: Rigid spherical
indenter

<«— Rigid sliding boundary

47



Spherical indenter, ctd. ) .

Level 0

Radial cracks

Hertz cone crack Fragmentation pattern

48



Multiscale method discussion ) e,

* Advantages
* Avoids need for strong coupling (forces acting between different levels).
 Combines multiscale with adaptive refinement.
* Provides damaged material properties to higher levels.

* Disadvantages
* Difficult to know where to unrefine.
* Pervasive fracture leads to a large number of level 0 DOFs.
 Don’t yet have a general coarse graining method for heterogenous media.
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Reduced mesh effects

e Plate with a pre-existing defect is subjected to prescribed
boundary velocities. ] ] ] [ ] ] [

e These BC correspond to mostly Mode-I loading with a little
Mode-II. —

5-:(0,2585[8011] HJHH




Effect of rotating the grid ) 5.

v

Original grid direction Rotated grid direction

Network of identical bonds in many
directions allows cracks to grow in
any direction.

Displacement




Convergence in a fragmentation ) e
problem

0 = 3Ax

Brittle ring with
initial radial velocity

52



Convergence in a fragmentation h

problem

CDF

- u

Cumulative distribution function for 4 grid spacings

I I I I I I I I

dx = 3.33 mm
dx = 2.00 mm
dix = 143 mm

dx = 1,00 mm

1.43mm

T
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National
Laboratories

Ax (mm) Mean
fragment
mass (g)
3.33 27.1
2.00 37.8
1.43 35.9
1.00 335
A

Q 10 20 30 40 50 60 70
Mass (107 *kg)

/

Solution appears
essentially converged




Dynamic fracture

54



Fracture mode transition ) i,

Initial crack

Prescribed velocity on ends
(mode Il loading)

Crack plane rotates 45deg,
continues as mode |



Nonlocality as a result of homogenization

- Homogenization, neglecting the natural length scales of a system, often
doesn’t give good answers.

Stress

Homogenized, local

Indentor

Claim: Nonlocality is an essential feature of a realistic
homogenized model of a heterogeneous material.

Sandia
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Proposed experimental method for

measuring the peridynamic horizon

- Measure how much a step wave spreads as it goes through a sample.
- Fit the horizon in a 1D peridynamic model to match the observed spread.

Projectile

Laser

Visar

A

Free surface
velocity

Peridynamic 1D

»

Time

Spread

Local model would predict zero spread.

Sandia
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Material modeling:
Composites

e Special case: fiber reinforced composite lamina.

e Bonds in the fiber direction are stiffer than the others.

Bond force,

/
Fiber Bond7* %
&

X

Fibers—

Matrix

7 Bond elongaiion

Sandia
National
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Splitting and fracture mode change in composites

» Distribution of fiber directions between plies strongly influences the way cracks grow.

Typical crack growth in a notched laminate
(photo courtesy Boeing)

EMU simulations for different layups

frame 59 @
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Peridynamic dislocation model ) i

Example: Dislocation segment in a square with free edges
100 x 100 EMU grid

Contours of uy Contours of log W
W =elastic energy density



Example of long-range forces: ) i,
Nanofiber network

* Peridynamics treats all internal forces as long-range.
* This makes it a natural way to treat van der Waals and
surface forces.

15 -4

’.
TN~

b )
/
>,

\
2
o]
=

Nanofiber membrane (F. Bobaru, Univ. of Nebraska)
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Concurrent solution strategy

Level O region follows the crack tip Concurrent solution strategy

Solve (coarse)

Level n L
Level 1 Level n \1’4\ _ > \1/04\ >

Level 2 Level 2 & @ ¢ 5 eg

S VA G S VA 5

Levell —° %g ® %g
; Level)  ©00000000800080000
Crack —> >

Solve (fine)
Time
>

Level O:
Within distance d of ongoing damage

* Refinement:
« Level 1 acts as a boundary condition on level 0.

« Coarsening:
» Level O supplies material properties (e.g., damage) to higher levels.




Any standard material model can be
used in peridynamics

« Example: Large-deformation, strain-hardening, rate-dependent material model.
— Material model implementation by John Foster.

Test

Emu

Taylor impact test

0% strain 100% strain

Necking of a bar under tension



Rescaling an elastic material model

e Start with a material model W7 which has some fixed horizon 4;.

e Define a mapping that takes a new, larger horizon ¢ into the
original:

(BN = rY(€/r), =<

e [hen set

Scaled down deformation state

Deformation state

Sandia
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Comparison with XFEM, interface

elements

24
22
20
18
16
14

12

Fy (N)

10

interface element model (v=1/3)
--------- XFEM model (v=0.22)

—— Pd run 9e5 (v=1/3, 3 pt BC)
—— Pd run 9e5 (v=1/3, 6 pt BC)

i mesh: ds=0.05 mm, horizon = 6 ds i
_ I \ ﬂ\ ]
. | A —
! W o
i
Jlld ]
I | ]
I |
| il | 1
i Ul | \ L f\ | (.
H I ﬂﬂ ) }“ i ’ﬁ\ /,f ) \ ”\

! VAL b a
’ L LA
SR
0 0.004 0.008 0.012 0.016

AUy (mm)
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Peridynamics basics: ) s
The nature of internal forces

Peridynamics
Bond forces within small neighborhoods
(allow discontinuity)

Standard theory
Stress tensor field
(assumes contact forces and
smooth deformation)

Horizon &

-
-
-
-
-
J——
—

Family of x

Internal surface

pii(x,t) = V- o(x, ) + b(x, 1) pii(x, £) = f £(@0)dV, + b(x, )
Hy

Differentiation of contact forces

Summation over bond forces



Peridynamics basics: ) .
States

e A peridynamic state is a mapping on bonds in a family.

e \We write:

u=A(¢)

where £ is a bond, A is a state, and u is some vector.

e States play a role in peridynamics similar to that of second order tensors in
the local theory.




Peridynamics basics: )
Kinematics

e The deformation state is the function that maps each bond &
into its deformed image:

Y(&) =vyla)

where y is the deformation and
/ N
Deformatlon y
Bond £ q
Deformed images of bonds:

State description allows complexity

Undeformed family of x Deformed family of x




Peridynamics basics: )
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Force state

e f(x,q) has contributions from the material models at both x and q.
f(x,q) = t(x,q) — t(q,x)
t(x,q) =T[x/(q—x),  t(x,q)=T[q/(x—q)

e T[x]| is the force state: maps bonds onto bond force densities. It is found
from the constitutive model:

T =T(Y)

where T maps the deformation state to the force state.




Peridynamics basics: ) e
Elastic materials

e A peridynamic elastic material has strain energy density given by

W(Y).

e The force state is given by

A

T(Y) =Wy(Y)

where Wy is the Frechet derivative of the strain energy density.




Peridynamics converges to the local g
theory

e Can prove that if the deformation is smooth, then in the limit 0 — 0 while
holding the bulk material properties constant, for any bond &:

e Y (&) — F¢, where F=deformation gradient tensor

e There exists a tensor field o such that ff — V - o, so the standard PDE is
recovered.

In this sense, the standard theory is a subset of peridynamics.

*Joint work with R. Lehoucq
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Some results about peridynamics W

* For any choice of horizon, we can fit material model parameters to

match the bulk properties and energy release rate.
e Using nonlocality, can obtain material model parameters from wave
dispersion curves (Weckner).

* Coupled coarse scale and fine scale evolution equations can be derived
for composites (Lipton and Alali).

* A set of discrete particles interacting through any multibody potential
can be represented exactly as a peridynamic body.

* Well posedness has been established under certain conditions
(Mangesha, Du, Gunzburger, Lehoucq).




EMU numerical method ) e

e Integral is replaced by a finite sum: resulting method is meshless and Lagrangian.

py(x,t) = /Hf(q, x, 1) dVy + b(x,1)

l

pyy =) f(xp,%;, 1) AVj + b}
keH

e Looks a lot like MD.
e Unrelated to Smoothed Particle Hydrodynamics

e SPH solves the local equations by fitting spatial
derivatives to the current node values.

Discretized model in the
reference configuration




Example: Dynamic fracture ) .

e Dynamic fracture in maraging steel (Kalthoff & Winkler, 1988)
e Mode-Il loading at notch tips results in mode-I cracks at 70deg angle.
e 3D EMU model reproduces the crack angle.

Experiment
/

S. A. Silling, Dynamic fracture modeling with a meshfree peridynamic code, in Computational Fluid and Solid Mechanics 2003,
K.J. Bathe, ed., Elsevier, pp. 641-644.
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Shear Ioading ) s

Bond strain Damage process zone
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Polycrystals: Mesoscale model*

» What is the effect of grain boundaries on the fracture of a polycrystal?

p=1
Bond force | o _
* Bond within a grain
S; ol
IB ~ %

Sg |
l—t— Interface bond
I .

Large B favors trans-granular fracture. ka S* Bond strain

1 &

* Work by F. Bobaru & students
O - -



Peridynamic vs. local equations 1) .

State notation: State(bond) = vector

Relation Peridynamic theory Standard theory
Kinematics Y{q-x) = y(a) - y(x) F(x) = X (x
X

Linear momentum | ;5 (x) — / (t(q, X) — t(x,q)) dVy+b(x) | PY(X)=V-0o(x)+b(x)
H

balance
Constitutive model t(q,x) = T{q — x), T = i(X) o=o(F)
Angular momentum / Y(q—x) x T(q —x) dVy = 0 o— o’
balance H
Elasticity T = Wy (Fréchet derivative) o = Wr (tensor gradient)
First law ézloi\—l—q—i—r t=ag-F+q+r

N

TeY — /H T(e) Y(€) dVe
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Discrete particles and PD states

e Consider a set of atoms that interact through an N—body po-

tential:

U(Yl) Yo, ... 7yN)7
V1i,...,yn = deformed positions, X1,...,Xy = reference posi-
tions.

e This can be represented exactly as a peridynamic body.

Y1

®Yy;s

Yo

Sandia
National
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Discrete particles and PD states, ctd.

Define a peridynamic body by:

A~

W(Y,x)=A(x—x0)U(Y (x1—Xq), Y(X2—Xq), ..., Y(Xy—X0)),
p(x) = Z Alx —x;)M;
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\

Discrete particles and PD states, ctd.

After evaluating the Frechet derivative T, find

p(x)y(x,t) = /f(x’,x, t) dVy

implies

oU
My(x;,t) = ——, =1,...,N
yXnt) =5
In other words, the PD equation of motion reduces to Newton's second
law.
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Why this is important ) =,

* The standard PDEs are incompatible with the essential physical nature of cracks.
* Can’t apply PDEs on a discontinuity.
* Typical FE approaches implement a fracture model after numerical discretization.
* Need supplemental kinetic relations that are understood only in idealized cases.

Complex crack path in a composite

Real crack FE |
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| e R 2
] ' .gl :;i O

Figure 11.2!) Pull-out: (a) schematic diagram; (b) fracture surface of ‘Silceram’
glass-ceramic reinforced with SiC fibres. (Courtesy H. S. Kim, P. S. Rogers and R. D.
Rawlings.)




