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Remember these? h) e,

Knowing structure is POWER...because you can relate it to function!
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What is a Metal-Organic Framework?

Crystalline (therefore ordered), nanoporous structure

Organic

Metal “linker”
“Node”

Zn*3(NO,), +




MOFs are a subset of a growing category of ()i
self-assembled, nanoporous materials
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MOFs can serve as a highly ordered, tailorable s
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platform for controlling interactions at the nanoscale= "=~
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Energy transfer in MOFs via FRET

Electrically conducting MOFs




Organic photovoltaics: potential for low-cost
renewable electricity
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How does OPV work?

Donor Acceptor
Material Material
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Disorder is the enemy of efficiency ) e

Bulk heterojunction

Donor

Acceptor

C. Deibel et al. IEEE Journal Of Selected Topics In Quantum Electronics,
Vol. 16, No. 6, November/December 2010
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p-type CNF

CNF “Nano-Heterojunction”

Ag
PEDOT:PSS
Active Layer

Zn0

ITO

n-type guest



MOF-177: A passive (?) host for donor and ) i
acceptor molecules

Zn(NO,), *6H,0 + H,BTB  ——> MOF-177

1_um

4

» 808 atoms in the primitive unit cell

» Transparent colorless block shaped crystals

» Open three-dimensional and ordered
structure with extra large pores.

» Two unique cavities denoted by “A” and “B”

Optical image of MOF-177 crystals

“l~14 A

Optimized structure: computed using Tight-
Binding Density Functional Theory (DFT-TB)




Infiltrating MOF-177 pores with thiophenes and

PCBM proceeds without an energy barrier
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0" > 180"
Increments of 30"

No phase segregation is observed upon infiltration
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Guest infiltration quenches MOF luminescence
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MOF-guest spectral overlap leads to efficient ) e
energy transfer via FRET

Laboratories

Normalized Absorbance
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A “FRET cascade” is feasible
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The MOF has three functions:

= Confines/stabilizes donor and acceptor
= Prevents phase segregation

= Serve as a photon antenna
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Electrically conducting MOFs




No class of conducting materials combines the high performa of

National

inorganic semiconductors with the tallorablllty of organic materrats™
2. " Crystalline inorganic semiconductor

« High mobility
« Stability
« High cost
Non-flexible
Radiation damage
Disordered organic +

semiconductor

Flexible

Tunable w/ chemistry
Low cost fabrication
Poor mobility
Instability

Low free carrier densities

Crystalline MOF semiconductor
Structurally flexible

Tunable w/ chemistry

Scalable to nanometers

Low cost fabrication
Reconfigurable electronics
Rad-hard

Novel electronic material

MOF semiconductor

MOFs combine features of inorganic and organic materials
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Electrically conducting porous MOFs are rare L JE

e p-type Cu-Ni Dithiolene MOF
— First semiconducting, porous MOF
— Conductivity increases with oxidative doping
— Original Cu-Cu version is not porous
(Inorg. Chem. 2009, 48, 9048)

e Other examples
— MET-3 (Fe-triazolate MOF)
— Mn(thiophenol) MOF: (-Mn—-S-)«~ Chains

* Strategies for conducting MOFs:
— Charge delocalization
— 2"d-3and 3" row transition metals
— Redox-active ligands (e.g., TCNQ)
— Soft ligands (e.g. S-containing molecules)

MET-3 (Fe) Mn(thlophenol) MOF

Gandara et al. L. Sun et al.
Chem. Eur. J. 2012, J. Am. Chem. Soc.
18, 10595 2013, 135, 81856




Can guest molecules induce electrical )
conductivity in an insulating MOF?
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Cu-TCNQ is a well-known conducting CP &
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144 Inorg. Chem. 1999, 38, 144—156

New Insight into the Nature of Cu(TCNQ): Solution Routes to Two Distinct Polymorphs
and Their Relationship to Crystalline Films That Display Bistable Switching Behavior

Robert A. Heintz,* Hanhua Zhao,” Xiang Ouyang,” Giulio Grandinetti,” Jerry Cowen,* and
Kim R. Dunbar**

[Cu™(TCNQ )], = Cu Cu—n o

[ NScc®
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TCNQ-> Cu,(BTC), leads to color change... ()&=
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MOF growth

MOF film grown by layer-by-layer method

Molecule infiltration




TCNQ@Cu,(BTC); produces new absorption band i) fa
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... and >107 increase in conductivity, air stable > 1 year ) s
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IR shift of -C=N indicates charge transfer @ =
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Raman also shows shift of -C=EN ) s
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C=N stretch splitting observed only inside
dark colored, conducting region
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Peak splitting indicates 2 inequivalent -C=N groups )
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DFT: Cu dimers linked by TCNQ

BE=Eltotal — (ELTCNQ +ELMOF )=84 k] /mol

A continuous TCNQ@CuBTC pathway
through the unit cell can be achieved with 4

TCNQs. Based on the experimental loading of

8 TCNQs per unit cell two continuous

pathways are possible.
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Increased coupling between neighboring Cu dimers
lowers barrier to charge transfer
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Guest aromaticity, electronegativity affect conductivity i) faor

Extended it network essential for conductivity
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Cu-BTC band alignments: DFT/PBEsol calculations i) deor
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Effect of fluorination and hydrogenation of TCNQ,
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Solvent, precursor likely responsible for conductivity in as

deposited Cug(BTC)z.
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As deposited: Low but measurable
conductivity, ionic/electronic?

Activated, exposed to ambient: No
measurable conductivity at 10V (<10-12 A)

Infiltrated MOF: s~0.1S/cm, ~108 increase

30
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What about the carrier type (electron or hole?)@ s
Seebeck effectis one way to find out...

Electric Field

Low density High density
of holes of holes

http://www.mn.uio.no/fysikk/english/research/
projects/bate/thermoelectricity/

31
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Example from recent work with CNT films

X. He, N. Fujimura, J. M. Lloyd, K. J. Erickson, A. A. Talin, Q. Zhang, W. Gao, Q.Jiang, Y.
Kawano,R. H. Hauge, F.Léonard, J. Kono, CNT THz detectors, Nano Lett., just accepted

a b c
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High, positive Seebeck coeff. (i.e Fermi level in VB)
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Visions for Molecule@MOF ICs, nanodevices s
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MOFs are hybrid materials with ordered, chemically tunable
porosity
|deal for gas storage, separations, catalysis, sensors,
templates for nanomaterial synthesis
MOF thin films can be grown LBL in solution
Conductivity of Cu,;(BTC), tunable 10-® >10-" S/cm with TCNQ
UV-Vis, IR indicate partial charge transfer
Extended m network essential for conductivity
Opportunities for tuning properties w/ molecule @MOF
expanding

A. A. Talin, A. Centrone, M. E. Foster, V. Stavila, P. Haney, R. A. Kinney, V. Szalai,

F. EI Gabaly, H. P. Yoon, F. Léonard, M. D. Allendorf, Science 343, 66 (2014);

V. Stavila, A. A. Talin, M. D. Allendorf, Chem. Soc. Rev. 10.1039/c4cs00096j
(ASAP)
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