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In situ TEM
microscopy

has recently
undergone
significant growth
providing
capabilities to
investigate the
structural evolution
that occurs due to
various extreme
environments and
combinations
thereof
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Plasma-Surface Interactions In Situ lon Irradiation

lon Beam Analysis (IBA) lon Beam Modification (IBM)

Shootingacharged Changing the
particle at an optical,
unknown material to mechanical, and
determine it’s chemical
identity, local proper'Fles
. of materials
chemistry, and o
structure. via ion
implantation
to meet
technological

needs

Microscopy (I13M)
Bombarding nano
samples with various

particles and observing
the changes in real time

to understand how
materials will behave in

extreme environments.

The IBL has a unique and comprehensive
capability ion beam set including and In situ lon
Irradiation Transmission Electron Microscopy.

Radiation Effects
Microscopy (REM)

Using ion emissions to determine the
Radiation hardness of microelectronics,

identifying potential weaknesses.




Use the Nearest Stone

to

m Radar charts and Ashby plots of current
m Accelerated and field testing

m Scientist create a new materials.
Engineers find an application.
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Potential Evolution of System Design

Materials by Design

m Physics-based approach

m Requires multiscale modeling

m Engineers require given
properties, Scientists tailor
the chemistry and
microstructure to achieve it.

Great vision! We are making
strides, but we are not there yet
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_Investigating the nm Scale to Understand the km Scale
~to Understand Materials Response in the Extremes
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To develop predictive physics-based models, a
fundamental understanding of the structure of mater,
defects, an the kinetics of structural evolution in the
environments of interest are needed
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Multiscale Simulation & Experiments to Understand
and Predict the Sources of Material Variability
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Atoms-up: Develop physics-based models to provide scientific insight

Continuum-down: Augment engineering-scale models to provide improved fidelity

111! Sandia National Laboratories




w have lon Beam Modified Materials been Utilized?

lon Beam Modification (IBM) Dopants in Si found in every
. microelectronic device

Changing the optical, mechanical, and
chemical properties of materials via ion
implantation to meet technological needs
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Development of a Dual-Gated Bilayer Graphene Device

Collaborators: S. Howell, T. Ohta, & T. Beechem

| Top-Gate (Vq) |

2D hexagonal net of sp2
bonded carbon atoms

A combination of displacements
(top & bottom gates) are needed to:

Top Gate ]_Ef
Dielectric

Source ~—~, Drain @q
Bottom Gate T %

- Induce a bandgap
¢ Dave 70

- Control Fermi Level (&) to
charge neutrality point (CNP)

+oD=0

Zhang et al., Nature, 439, 820 (2009)



3 MV NEC e
Pelletron i

3 MeV Nitrogen Implants to Form a
Back-Gate in Semi-Insulating SiC

Collaborators: S. Howell, T. Ohta, & T. Beechem

TRIM Simulation of Blanket

¥ SiC Implant Depth Distribution
Y4 . Sample e e

TEM Validation of

lon Implantation Results

Microstructure

*Implanted N ions (target
depth of 1 um)

« Capacitance
measurements indicated
an isolated conductive
layer at a depth of ~ 700
nm in the SiC

Validation of Implant Depth (SIMS)
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Bandgap Control via Dual Gating
(15t Demonstration of scalable dual-gate BLG FETs)
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Interest In Scintillators

Plastic Scintillators
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Scintillators with low energy resolution &
detection efficiency cannot distinguish High-Z ME,
radiation type or quantify radiation Nanoscintillator 111/ Sandia National Laboratories
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Spectrometry
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Collaborators: J. Villone & G. Vizkelethy

Decay Time
— Bicron BC430
0.08exp(-t/0.0125)
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excitation

Scintillation light
collected as ion beam
excites sample

sample

spectrometer

3 MeV H* beam used as

Light collected with OM-
40 microscope or fiber
optic mounted close to

- Avantes AvaSpec 2048

Intensity (arb units)

Radiation Hardness
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Radiation hardness
experiments performed
with 3 MeV H* beam
from Tandem accelerator

IBIL spectra measured
constantly as sample
exposed to beam

- Overall decrease in
emitted light observed

due to radiation damage

Sandia National Laboratories
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IBIL of MOFs

Collaborators: P. Feng, F.P. Doty, & J. Villone

Metal-organic frameworks demonstrate spectral discrimination with IBIL/CL
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IBIL of Oxides

Collaborators: J. Villone & G. Vizkelethy

P47 phosphor studied for potential in radiation effects microscopy
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« Degradation in optical properties also

w« Oxides demonstrate improved radiation
tolerance compared to organic scintillators
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- & ~ IBIL of Nanoscintillators

Collaborators: B.A. Hernandez-Sanchez, S.M. Hoppe, T.J. Boyle, J. Villone & P. Yang
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-\-_:_} Nead;y In situ SEM of Nanoscintillators

Collaborators: B.A. Hernandez-Sanchez, S.M. Hoppe, T.J. Boyle, J. Villone & P. Yang

Nearly In-situ SEM lon Irradiation of Nanoscintillators
As deposited Nanoparticles 3 MeV H* 7 nA 1 sec 3 MeV H* 7 nA 5 sec 3 MeV H* 7 nA 30 sec

= Drop cast films of PbWO, nanoscintillators irradiated with 3 MeV H* beam, then imaged with SEM
= Material being ablated off of the surface — need better technique to study microstructural changes

Can we understand how the microstructure is affected by irradiation?
How does the influences effect optical properties?

Sandia National Laboratories




Benefits & Limitations of in situ TEM

Benefits
1. Real-time nanoscale resolution observations of microstructural dynamics

Limitations

- :'l_-"JM ‘?':' »8 ‘I'f{.l i

1. Predominantly limited to microstructural characterization
- Some work in thermal, optical, and mechanical properties

T
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2. Limited to electron transparent films P i (]
- Can often prefer surface mechanisms to bulk mechanisms :Jﬁcz‘»_f_:érf&wwm
tw,m%.hﬁ?

- Local stresses state in the sample is difficult to predict
3.  Electron beam effects
- Radiolysis and Knock-on Damage

B e/ i d caselon,
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4. Vacuum conditions _ , :
- 107 Torr limits gas and liquid experlments feasibility ¥ i —L]
5. Local probing ' . J ‘j
- Portions of the world study is small } [
| e
( — -
1 1
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Fig. 6: Wing surfacs of the house fly. Fig. 2: Sketch by the author (9 March 1931) of the cathode ray tube for testing one-stage and two-
(First internal photography, U = 60 kV, M, = 2200) T X . i . . X
(Driest, E, and Miller, H.O.. Z. Wise. Miksosko opie 52, 5357 (1933) stage electron-optical imaging by means of two magnetic electron lenses (slectron microscope) [5]




History of In situ lon Irradiation TEM

ion beam line

Courtesy of: J. Hinks

1931 <——
The invention of \/-
the TEM
1968 1978
1961 First TEM First in-situ ion irradiation
beamline

O- emission reported experiments at ANL

from a TEM filament

by Pashley, Presland,
and Meneter at Tl

Labs, Cambridge, UK

combination by
Thackery, Nelson,
and Sansom at
AERE Harwell,
UK

1976

First HYEM with ion
irradiation at UVA, USA

“The direct observation of ion
damage in the electron microscope
thus represents a powerful means
of studying radiation damage”

B D.W. Pashley and A.E.B. Presland Phil Mag. 6(68) 1961 p. 1003

Workshop on lon
Irradiation TEM

Huddersfield, UK (2008)
Albuquerque, USA (2011)
Saporro, Japan (2013)

\ 1990s

First dual beam system
developed at JAERI and
NIMS, Japan

Breakdown by Year
6

5

4

Facilities reported in literature
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In situ lon Irradiation TEM Facility

Proposed Capabilities

= 200 kV LaB,; TEM
= lon beams considered:
= Range of Sputtered lons
= 10 keV D?*
s 10 keV He*
a All beams hit same location

In situ PL, CL, and IBIL

= In situ vapor phase stage
= In situ liquid mixing stage
= In situ heating

= Tomography stage (2x)

= In situ cooling stage

= In situ electrical bias stage
= In Situ straining stage

( Electron
'.I‘j Beam
Light and Heavy Ay = / Light
lon Beam : I‘J’ .. lon Beam
1 | -
—
i
:
i AL
e T
N

0t Generation
1

Hummingbird

1st Gelneration

S_:" Switching
& Magnet
t | Cup& (Erontrc;I 5
i arge
Custo l Viewing
Adaptorr{l  Screen Chamber olutron _ Steering 8
| - Slits Magnets
Loosgh ' « v
Bellows ™ *D o
= | v- % A
Gate : Steering G el ——t—7 Beam Fored
| Magnets atepagnet : Profile
. = Valve Focusing et Valve
P Y iy Lens oarcy
= lon Pudmp lon Pump
3ol 3’ stand
!
| 6’ stand
W @ AlPedestals g g !'I'l Sandia National Laboratories

12x(6” dx6 3/4"thickness)




m
\ i atic of the In situ TEM Beamline

. Collaborators: M.T. Marshall J.A. Scott, & D.L. Buller
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IBIL from a quartz stage inside the TEM

Sandia’s Concurrent In situ lon
Irradiation TEM Facility

Collaborator: D.L. Buller

10 kV Colutron - 200 kV TEM - 6 MV Tandem

Direct real time observation
of ion irradiation,

ion implantation, or both
with nanometer resolution

lon species & energy introduced into the TEM

50 |
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Sandia National Laboratories




CdWO, Irradiated with 50 nA of 3 MeV Cu3*

Collaborators: S.M. Hoppe & B.A. Hernandez-Sanchez

100 nm 100 nm 7 100 nm
LA

100 nm
e

Over 1 hr, nanorods broke into small pieces and sputtered
onto nearby lace.

— — —




Radiation Tolerance is Needed in Advanced Scintillators
for Non-proliferation Applications

Contributors: S.M. Hoppe, B.A. Hernandez-Sanchez, T. Boyle

In situ lon Irradiation TEM (ISTEM)

Un-irradiated

AP
’ s

& R »
High-Z nanoparticles are promising, . J—-—
but are radiation sensitive Hummingbird

tomography stage

CdWO4 Rods —— ASR
1000 ] 3MeV cu

—— 50 sec
—— 250 sec
500 sec
——— 2500 sec
—— 5000 sec
—— 7500 sec|

800 +

600 -

Intensity (arb units)

400

Tomography of Irradiated CAWO,:
s s 3 MeV Cu3tat ~30 nA
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Cumulative Effects of lon Irradiation as a Function of
lon Energy and Au Particle Size

60 Nnm 20 nm 5nm Collaborator: D.C. Bufford

46 keV Aut-
3.4 X10% /cm?

. 80 nm 60 nm

- _ P Particle and ion
! ' ' energy dictate
the ratio of

. i i ) sputtering,
2.8 MeV Au#* X : : particle motion,

particle
agglomeration,
and other active
mechanisms

4 X 1013 /cm? ‘

80 nm
¥
y »
10 MeV Aud* »

1.3 x 102 /cm? &\
’. 80 nm

’ ]




Single lon Effects with 46 keV Autl-ions: 20 nm

Collaborator: D.C. Bufford




Single lon Effects with 46 keV Autl-ions: 5 nm

Collaborator: D.C. Bufford




Single lon Strikes

Collaborators: C. Chisholm & A. Minor

7.9 x 10%ions/cm?/s 6.7 X 107 ions/cm?/s

Improved vibrational and ion beam stability permits us to work at 120kx
or higher permitting imaging of single cascade events




In situ Implantation

Collaborators: C. Chisholm & A. Minor

Gold thin-film implanted
with 10keV He?*

Result: porous
microstructure




H, He, and Displacement Damage Synergy

Coupling Effect

H and He are produced as
decay products

The relationship between
the point defects present, the
interstitial hydrogen, and the
He bubbles in the system
that results in the increased
g& void swelling has only been
theorized.

)

—_
-

Cavity Size (nm)

Cavity Number Density (X 102" m~-

=

Math The mechanisms which
governs the increased void

swelling under the presence
of He and H have never been
experimental determined

Void Swelling (%)

No capability currently
exist for triple beam
irradiation in the U.S. and
No capability for tripple
beam TEM ion irradiation

T. Tanaka et al. “Synergistic effect of helium and hydrogen for deffect exists in the world
evolution under milt-ion irradiation of Fe-Cr ferritic alloys”

J. of Nuclear Materials 329-333 (2004) 294-298




In situ Successive Implantation &

Irradiation

Collaborators: C. Chisholm & A. Minor

Successive Au?* then Hel*

@ )
de

> e
Successive Hel* then Au®*




In situ Concurrent Implantation &
Irradiation

Collaborators: C. Chisholm & A. Minor

Hel* implantation and Au#* irradiation
of a gold thin film




Single lon Strikes During Concurrent
Irradiation: Nucleation of Helium Cavities

Collaborators: C. Chisholm & A. Minor

a) Initial
microstructure

b) Cascade: Creation
of dislocation loops,
vacancy clusters,
and three cavities

d) Cascade damage
still evolving

e) Apparent stability

f) Final
microstructure: Only
two remaining
cavities




Nature of Metallic Surfaces

No surface is perfectly flat

/ A
J / Real area of contact (A,) to be
e — e A: Physisorbed/Chemisorbed .. d f | dh .
— — B B: Oxides (Chemically Reacted) minimize or ilow a esion

C: Deformed layers i
I - (Low Adnesive Wear

Or maximized for reduced
electrical contact resistance (ECR)

R Undeformed Base Metal/Alloy

Asperity Contacts, Constriction, Asperity Contacts and Surface Films
areal sum of asperity contacts and surface films define electrical contact resistance

P > H ... for metal contacts the

5 real area is a function of
hardness and contact force
(Bowden & Tabor, 1939):

e e e ... ECR is a function of the

e e
E‘//E / constriction and film
//

resistances:

W= £CR=Y (R, +R,,)

high local pressures A I
(plastic deformation) r— H constriction resistance, R. film resistance, R;

~_n

Archard, Journal of Applied Physics (1953) 24:981

R. Holm, Electrical Contacts Handbook (1958) Berlin: Springer-Verlag
Greenwood & Williamson, Proc. Royal Society (1966) A295:300 ) . )
T.W. Scharf & S.V. Prasad, Journal of Material Science (2013) 48:511-531 !1‘! Sandia National Laboratories




ECR-Friction Behavior of Pure Au

Collaborators: J-E Mogonye & S.V. Prasad

pure Au film sliding against Neyoro G

1.5 - high adhesion
<«

> |
= 1 | . I
1.3:] | _debris 1 Major
- - 1formationt We€ar
S 1.1 _\ <€<—>! event(s) |
g Tl : ——>| transition to sliding on substrate
0.9 : ' >
(] ' | |
o — | I
V) | |
[ = 0.7 Ti | 4
Qo . .
g 05
0.3 - —
0.1 - ; i
—_ ' ]
€ 05- ' : :
v 4 - 1 |
e 04 I I I
© E I ! I
& 03 - : : :
) g 0.2 ! : :
o Neyoro G (Au-Cu), = in. radius T 014 ! :
hemispherical tip rider % 0.0 1=
o F,=100mN (=290 MPa contact stress) S (') 1'0 2'0 3'0 4'0 5'0 GIO 7'0 810 9'0 160
o 100Cycles @ v=1mm/s cycle
o 1-2mV bias to achieve approximately
100 mA

o Lab air environment at room temperature 7] Sandia National Laboratories



Modeling and STEM of He Implantation

Collaborators: P. Kotula, J-E Mogonye & S.V. Prasad

Sample Surface
.+ Simulations: SRIM 2008 (The Stopping and P Ak R :
Range of lons in Matter, J.F. Ziegler, M.D. S EE__—
Ziegler and J.P. Biersack)
Monte-Carlo simulation of kinematic |

interaction based on empirical data
fitted functions

* Input variables of target material
include density, AMU, and thickness.

Addition of dispersed low
. . . density spherical
* Input variables of ions include AMU,

energy, and angle of incidence.

« Assumes isotropic material, thus no
consideration for channeling effects

« AC-STEM used to observe the distribution
of implanted bubbles

» Bubble locations are in good agreement
with SRIM ion range predictions

He implantation result in small
dispersed spherical structures
.
Dispersion and depth can be tailored

Sandia National Laboratories
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Friction Coefficient

ECR and Wear Measurements
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Collaborators: J-E Mogonye & S.V. Prasad
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Friction is significantly reduced with 3He implantation while maintaining ECR performance

Scanning white light interferometer topographical construction of riders after 100 cycles

-4.379 um I

/ Rider after 100 cycles against Un-implanted Au \

2.925 um I

1}

(ﬁder after 100 Cycles ag

0.02

649 um I

ainst Au implanted to 1E12 cm2
22.5 keV

[ 13um/

Wear is significantly reduced with minimal effect in ECR @Sandia National Laboratories




\ STEM Images of Sub-surfaces

Collaborators: J-E Mogonye & S.V. Prasad

Before Sliding ECR-Test After Sliding ECR Test

22.5 keV
1x 1012 cm2

Recrystallization : :
is observable ‘ ‘
after 100 cycles L .

After Sliding ECR Test

i

An increase in both observable density and diameter of He bubbles,
suggests wear induced He coalescence from interstitial and previously
un-observable He




\ In situ TEM Quantitative Mechanical Testing

Contributors: J. Sharon, B. L. Boyce, C. Chisholm, H. Bei, E.P. George, P. Hosemann, A.M. Minor, & Hysitron Inc.

180.1-
170.0-|
160.0-

- +s } _L - 150.0-
140.0-

130.0-

120.0-

Electron Beam 11004

. 2 90.0-
Indentatlon‘ L ~ \:j/_ 8:2
CG 50.0-
o 40.0-
B R
S J e |
Range of Mechanical Testing Techniques l
= Indentation = Tension sFatigue Displacement (nm)
= Compression =\Wear = Creep l Fundamentals of Mechanical Properties ‘
=Tension )5
Intermediate 1.61 x 104 1.92x10*® Hel*/cm?
dislocation disloc./m-2 1.04x10%5 Ni2*/cm? B
density ?;E
9 15) m
1'
@ 11
g 05 Eirrag = 74 GPa
0 E,icn, = 234 Gpa
0 (no failure)
Einer = 136 Gpa

0.5 1 1 1 1 L L L |
0 0.0050.010.0150.02 0.025 0.03 0.035 0.04

0.5 um 100 nm 100 nm N .
4 - Engineering Strain

} Work has started looking at the quantitative effects of ion irradiation on mechanical properties




\ In situ TEM Corrosion

Contributors: D. Gross, J. Kacher, & .M. Robertson

Electron Beam

SiN Membrane

Flowing Liquid

Scattered Electrons

: Metal Film
SiN Membrane

Microfluidic Stage

= Mixing of two or more channels
= Continuous observation of the reaction channel
= Chamber dimensions are controllable

=Films can be directly deposited on the electron transparent
SiN membrane

Pitting mechanisms during dilute flow of acetic
acid over 99.95% nc-PLD Fe involves many grains.

(1) Sandia National Laboratories




- Other Fun Uses of Microfluidic Cell

Protocell J BSA o
Drug Crystallization |
Delivery S.H. Pratt
S.H. Pratt,
E. Carnes, ‘ Crystallization of excess
3. Brinker Bovine Serum Albumen
' during flow
Liposome

encapsulated i
Silica destroyed ‘
by the electron

beam
Liposomes
La Structure
In Water _
Formation
S.H. Pratt,
D. Sasaki S.H. Pratt,
T. Nenoff
Liposomes
imaged in La
flowing aqueous Nanostructure
channel form from LacCl,

H,O in wet cell
due to beam
effects




Can In situ TEM Address Hydrogen Storage

‘ Concerns in Extreme Environments?
Contributors: B.G. Clark, P.J. Cappillino, B.W. Jacobs, M.A. Hekmaty, D.B. Robinson, L.R. Parent, I. Arslan. & Protochips, Inc.
—o Op" 2 Vapor-Phase Heating TEM Stage
1 . ;'K'-._ = Compatible with a range of gases
\ @ H lll kil Hatd o = In situ resistive heating
—0—50 0 EB_IT ; J_H_H,,ﬁr.”--q+w-+' = Continuous observation of the reaction channel
gs-l }/"f pues = Chamber dimensions are controllable
/ . § |I ,-"; ""’\\‘ = Compatible with MS and other analytical tools
° / \‘“‘w-e_
4 2 ."f ‘‘‘‘‘ -
ot —— ; 6 a e

Time (days)

R. Delmelle, J., Phys. Chem. Chen Cowgill, D., Fusion Sci. & Tech., 28 (2005) p. 539
Phys. (2011) p.11412 Trinkaus, H. et al., JINM (2003) p. 229

Thiebaut, S. et al. JNM (2000) p. 217

- . = 1 atm H, after several pulses to specified temp.
‘ Harmful effects may be mitigated in nanoporous Pd

300° C

New in situ atmospheric heating
experiments provide great insight into
nanoporous Pd stability




Future Directions Under Pursuit

In-situ TEM CL, IBIL (currently capable)
In situ ion irradiation TEM in liquid or gas (currently capable)
PED: Local texture characterization (arrived & waiting install)
Quantitative in-situ tensile/creep experiments (Sample in development
DTEM: Nanosecond resolution (laser optics needed)

a > w0 bd P

5 Electron Pulse Train

eed Deflector Array

i

erent

5Single Electr: g s
g on Sensitive
CCD Camera

AppFive
NanoMegas

(111 Sandia National Laboratories




Summary

Sandia’s I3TEM is one of only two facilities in the US
= Only facility in the world with a wealth of dual in situ ion irradiation capabilities
= In situ high energy ion irradiation from H to Au
= In situ gas implantation
= 11 TEM stages with various capabilities (two beta-testing)

Apply the current ISTEM capabilities to various material systems
in combined environmental conditions

Expand the I’TEM capability to include Sandia’s FTEM
=  Nano to microsecond imaging although still under
= Laser heating and/or shock to the sample development is
=  Addition of precession electron diffraction providing a wealth of
interesting initial
observations

Collaborators:

IBL: D.C. Bufford, D. Buller, C. Chisholm, B.G. Clark, J. Villone, G. Vizkelethy, B.L.
Doyle, S. H. Pratt, & M.T. Marshall

Sandia: B. Boyce, T.J. Boyle, P.J. Cappillino, J.A. Scott, B.W. Jacobs, M.A. Hekmaty, .
D.B. Robinson, E. Carnes, J. Brinker, D. Sasaki, J.A. Sharon, T. Nenoff, W.M. Mook, \
P. Feng, F.P. Doty, B.A. Hernandez-Sanchez, P. Yang, J-E Mogonye, S.V. Prasad , P.

Kotula, S. Howell, T. Ohta, & T. Beechem

External: A. Minor, L.R. Parent, I. Arslan, H. Bei, E.P. George, P. Hosemann, D.
Gross, J. Kacher, & I.M. Robertson
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