

Exceptional service in the national interest

SDAV Progress Report

Sandia National Laboratories

Kenneth Moreland

June 17, 2014

Not approved for release.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Milestone Activities

- Integration of Dax with VTK and VTK-m [3.3.2 Y3]
 - Collaboration between SNL, LANL, ORNL to combine Dax, Piston, EAVL
 - Established VTK-m repository
 - Demonstrated integration of Piston algorithms with Dax device layer
 - Planning meeting in February to interface Dax with EAVL data
 - Current major complexity combining run-time polymorphism with compile-time templating
 - Designing C++ components to bridge these
 - Building documentation as communication point
- Prototype integration ParaView - Dax [3.3.1 Y4]
 - Not hardened

2.4.2 Vector Traits

The `vtkm::VectorTraits<T>` templated class provides information and accessors to vector and tuple types. It contains the following elements.

ComponentType This type is set to the type for each component in the vector. For example, a `vtkm::Vector3d` has `ComponentType` defined as `vtkm::Scalar`.

NUM_COMPONENTS An integer specifying how many components are contained in the vector.

HasMultipleComponents This type is set to either `vtkm::VectorTraitsTagSingleComponent` if the vector length is size 1 or `vtkm::VectorTraitsTagMultipleComponents` otherwise. This tag can be useful for creating specialized functions when a vector is really just a scalar.

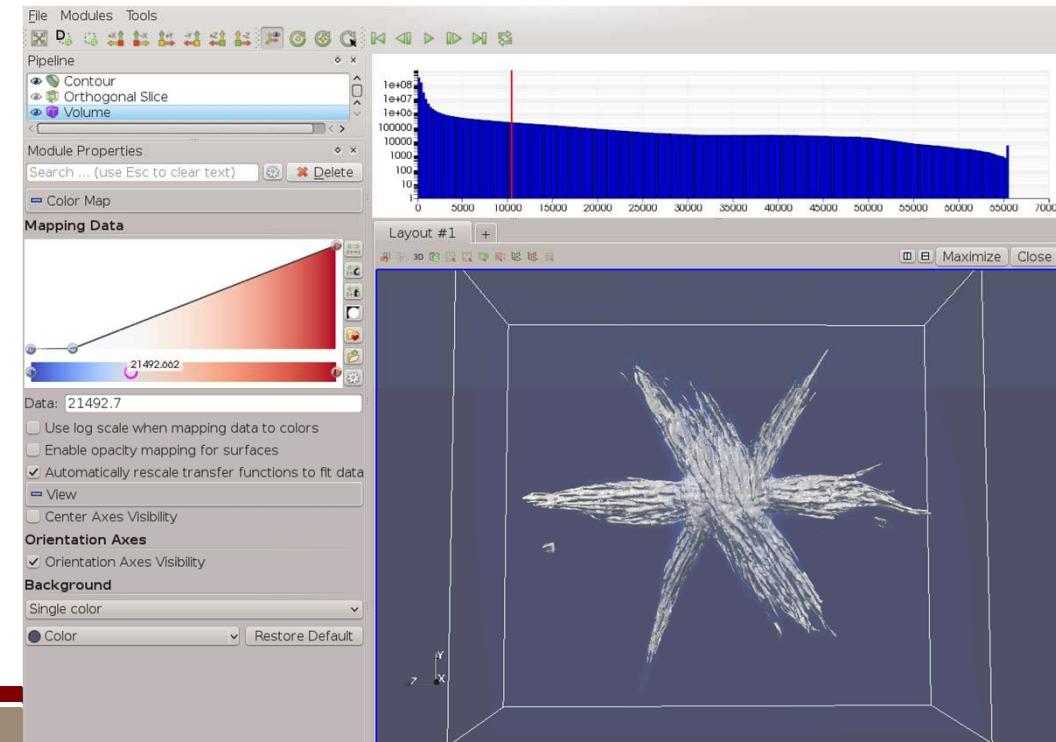
GetComponent A static method that takes a vector and returns a particular component.

SetComponent A static method that takes a vector and sets a particular component to a given value.

ToTuple A static method that converts a vector of the given type to a `vtkm::Tuple`.

The definition of `vtkm::VectorTraits<vtkm::Id3>` could look something like this.

```
Example 2.10: Definition of vtkm::VectorTraits<vtkm::Id3>.
```


```
namespace vtkm {
template<class T>
struct VectorTraits<vtkm::Id3> {
  typedef vtkm::Id ComponentType;
  static const int NUM_COMPONENTS = 3;
  static const bool HasMultipleComponents = true;
  VTKM_EXEC_CONST_EXPORT
  static vtkm::Id GetComponent(vtkm::Id3 &vector, int component) {
    return vector[component];
  }
  VTKM_EXEC_CONST_EXPORT
  static void SetComponent(vtkm::Id3 &vector, int component, vtkm::Id value) {
    vector[component] = value;
  }
  VTKM_EXEC_CONST_EXPORT
  static vtkm::Tuple<vtkm::Id3> ToTuple(vtkm::Id3 vector) {
    return vector;
  }
};
```

// namespace vtkm

The real power of vector traits is that they simplify creating generic operations on any type that can look like a vector. This includes operations on scalar values as if they were

Scanning Transmission Electron Microscopes (S/TEM)

- Generates large (1024^3 and greater) volumes
 - Software limited, proprietary, or non-existent
- TomViz: an open, general S/TEM visualization tool
 - Built on top of ParaView framework
 - Uses Dax for algorithm construction
- Implements streaming, interactive, incremental contouring
 - Streams indexed sub-grids to threaded contouring algorithms
 - Significantly beats VTK's best algorithm in the majority of cases

Other Activities

- Program Committees: EGPGV, IEEE SciVis, LDAV, VISTech
- Panel: “Current Status and Future Trends of Integrated Computational Environments,” 52nd Aerospace Sciences Meeting, AIAA SciTech 2014
- Minisymposium: 16th SIAM Conference on Parallel Processing for Scientific Computing
- Presentation: GPU Technology Conference 2014
- Presentation: NERSC Joint Facilities User Forum on Data-Intensive Computing