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Tomography

56



Tomography is the!
characterization of systems

Control - making systems do interesting things

Characterization - what does this system even do?

Diagnostics - why does the system not do what I want it to?
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SNL Quantum Dot (Matthew J Curry, CINT)



UCSB gmon Transmon Qubit (Michael Fang)



NIST Ion Trap



US Air Force Research Laboratory Laser



Tomography is device agnostic…

…and tells us what’s going on
49



A Standard Tomographic Process

Quantum State Measurement

Data

Estimate
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A Standard Tomographic Process

Quantum State Measurement

Data

Estimate

State Preparation Measurement Implementation

Estimate Reconstruction

Error Evaluation

Lots of great 
work/results…
not the focus of 

this talk. 47



A Standard Tomographic Process

Quantum State Measurement

Data

Estimate

What’s 
Missing?

46



Better Tomography

 It is of the highest importance in the art 
of detection to be able to recognize, out 
of a number of facts, which … [are] 
vital.

—Sherlock Holmes (The Reigate Puzzle)
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Hilbert Space dimension!
is vital for tomography!
Dimension d analogous to number of accessible degrees of 
freedom

Quantum states are d x d matrices  (density operator)

You need to know d to do a reconstruction!

Other, more “practical” reasons?….

44



We want our devices!
to behave as qubits….

By Glosser.ca (Own work) [CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons

…should we not check!
if this is the case?

=

43



We try to isolate!
our devices…

Is anybody!
out there?

40



…sometimes they couple to 
the environment, introduce 
non-Markovian!
noise…

out….

….and back
39



…and our “system” is!
bigger than we thought!

38

Need a method to describe 
dynamics on everything



Physical intuition tells us!
some systems have !
small dimension…

too high energy

low enough energy(optical phase space)
42



…but how small is too 
large?

too large?

too small?

just right?

41



Why Dimension Matters
Implementation-independent 
qubits!
!

Do not know where to truncate!
!

Coupling expands system size

37



A Better Tomographic Process

Quantum State Measurement

Data

Estimate

Pick Dimension

How to do this?

35



2

7

65

43

8 9

Too many choices!
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2

7

65

43

8 9

We need a tool to help 
choose…

33



Classical Statistical Inference

32



Inference can use hypothesis tests 
and/or information criteria

Likelihood Ratios

Likelihoods
What are these likelihoods !

you speak of?

31

Hypothesis Testing Information Criteria



Likelihoods are Data Driven

30

p(n) =

✓
N

n

◆
bn(1� b)N�n

A coin with bias b!
comes up heads n times!
out of N throws.

What is the probability p this happens?



Likelihoods are Data Driven

29

A coin comes up heads !
n times out of N throws.

What inferences do the data support?

Can we say anything about the bias b?



Likelihoods are Data Driven

29

A coin comes up heads !
n times out of N throws.

What is probability of the data,!
given a fixed choice of bias?

L(b) = p(n|b) =
✓
N

n

◆
bn(1� b)N�n



A Single Flip…

The likelihood for the bias being 0 is 0.
"2006 Benjamin Franklin Silver Dollar (Obverse)". 

Licensed under Public domain via Wikimedia Commons

L(b) ⇠ b

28

N = 1

n = 1



Flip Once More…

The likelihood for the bias being 1 is 0.
"2006 Benjamin Franklin Silver Dollar (Reverse)". Licensed under Public 

domain via Wikimedia Commons

L(b) = b(1� b)

27

N = 2

n = 1



Likelihoods of Models for Coins

Model = description of possible outcomes!
Model = probability simplex

TLS RBK

26

p = (.75, .25, 0)

p = (.05, .05, .9)

p = (heads, tails, edge)



Likelihoods of Models for Coins

TLS RBK

26

p = (.75, .25, 0)

p = (.05, .05, .9)

If any edge shows up, TLS is wrong -!
assigned 0 probability to that outcome!

oops!



Likelihoods of Models for Coins

TLS RBK

26

p = (.75, .25, 0)

p = (.05, .05, .9)

If no edge shows up, RBK can do no better than TLS 
- has extra outcome to account for

� irrelevant!



Can we quantify who has a 
better model?

23



We compare models with  
loglikelihood ratio statistics (LLRS).
Compare models =  compare maximum likelihoods

� = �2 log

✓
max

p2TLS L(p)
max

p2RBK L(p)

◆

22

Whose model assigns higher probability to data we saw?

Quantify weight of evidence for one model or another.



We compare models with  
loglikelihood ratio statistics (LLRS).

� = �2 log

✓
max

p2TLS L(p)
max

p2RBK L(p)

◆

22

Any edge: � = �2 log(0) = 1
No edge:

Quantify weight of evidence for one model or another.

(Go with RBK)

� = �2 log(1) = 0

(Go with TLS)



General Framework/Important Results

LLRS � is a random variable;

in some cases, its distribution p(�)
can be computed.

22

Quantify weight of evidence for one model or another.

� = �2 log

✓
max

p21

L(p)
max

p22

L(p)

◆



Two General Cases….

Where is the truth?
20

true    
true



Case 1
Model Mismatch:

� / N

When truth outside one model or both!
LLRS grows with sample size 20

true    



Case 2
The Wilks theorem: � ⇠ �2

k2�k1

kj is number of parameters in model j

21

When truth inside smaller model!
LLRS has chi-squared distribution

h�i = k2 � k1
(��)2 = 2(k2 � k1)

true



Behavior of LLRS

�

N

N

�

19



To Sum Up….

Need tool for dimension decisions

Project Goal: Devise, Use, and Evaluate a rule 
based on LLRS

Hypothesis testing provides a framework via LLRS�

Hypotheses: state is d or D dimensional

18



Ideas and Results

17



Using Hypothesis Testing to Establish 
Thresholds for Dimension

�

N

Both equally good? Bad?

Keep this one!

Reject this!

Can we use pattern matching (“just plot it!”) and achieve!
the same result? 16



Using Hypothesis Testing to Establish 
Thresholds for Dimension

�

N

Can we compute some threshold value of LLRS and compare 
data against it?

Both equally good?

Keep this one!

Reject this!

14



Testing the Rule

Estimate (do MLE) in many dimensions

Examine relationship between !
LLRS and sample size

Pick a quantum system optical modes

Simulate measurements coherent state projection

12

|↵ih↵|

Compute LLRS�

Pick some (fiducial) quantum state ⇢true



6

Case 1:

Larger model contains true state;!
smaller model does not



Linear Growth Observed

5

Loglikelihood Ratio for ⇢ = |2ih2|



Case 2:!
!

Smaller model contains true state

11



n/m = �2 log

✓
max

p2n L(p)
max

p2m L(p)

◆

Asymptotic Convergence?

10

Loglikelihood ratio for ⇢ = |0ih0|



Does the Wilks theorem work?

k2 � k1 = d22 � d21

The Wilks theorem 
predicts values which 
are way too high?

Mixed State Estimates

⇢ ⇠

Expected: h�i = (�d)2 + 2d1(�d)

Observed: h�i / (�d)

9

Loglikelihood ratio for ⇢ = |0ih0|



Too high energy Fock state = contributes 0 to density matrix

~ 0

Only “coherencies” with smaller model are retained?

Does the Wilks theorem work?

7



Does the Wilks theorem work?

An effect of 
reconstruction?!
Of true state?

“Pure” State Estimates

k2 � k1 = 2(d2 � d1)

Loglikelihood ratio for ⇢ = |0ih0|

⇢ ⇠

Observed: h�i / (�d)

Expected: h�i / (�d)

8

Loglikelihood ratio for ⇢ = |0ih0|



Observations

Asymptotic convergence observed,!
but not as expected from naive!
application of the Wilks theorem

When smaller model does not fit,!
we observe linear growth

Loglikelihood Ratio for ⇢ = |2ih2|

Loglikelihood ratio for ⇢ = |0ih0|

4



The Road Ahead

❖ Develop a general 
theory for LLRS 
and tomography!

❖ Use information 
criteria instead?!

❖ “Real life” use?

3

Hypothesis 
Testing

Information 
Criteria

Tries to Fit Past Data Future Data

True Model? Yes No

Arbitrary 
Complexity? Possible Not Usually

Right Now Future



I have a question!

2



Take Away
❖ Determining system 

dimension is a big deal.!
❖ Practical use for 

diagnosing errors/
couplings!

❖ LLRS is a way to go!
❖ Develop a theory for 

LLRS & quantum 
tomography!

❖ Use information criteria?
1
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Qudit quantum-state tomography

R. T. Thew*
Center for Quantum Computer Technology, University of Queensland, QLD 4072, Brisbane, Australia
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Recently quantum tomography has been proposed as a fundamental tool for prototyping a few qubit quan-
tum device. It allows the complete reconstruction of the state produced from a given input into the device.
From this reconstructed density matrix, relevant quantum information quantities such as the degree of entangle-
ment and entropy can be calculated. Generally, orthogonal measurements have been discussed for this tomog-
raphic reconstruction. In this paper, we extend the tomographic reconstruction technique to two new regimes.
First, we show how nonorthogonal measurements allow the reconstruction of the state of the system provided
the measurements span the Hilbert space. We then detail how quantum-state tomography can be performed for
multiqudits with a specific example illustrating how to achieve this in one- and two-qutrit systems.

DOI: 10.1103/PhysRevA.66.012303 PACS number!s": 03.67.!a, 42.50.!p

I. INTRODUCTION

With increasing interest in quantum computing, cryptog-
raphy, and communication, it is of paramount importance
that there exist means of benchmarking quantum information
experiments. A singularly useful tool in this regard is
quantum-state tomography !QST", which provides a means
of fully reconstructing the density matrix for a state. The
procedure relies on the ability to reproduce a large number of
identical states and perform a series of measurements on
complimentary aspects of the state within an ensemble. The
concept is not new, with the first such techniques developed
by Stokes #1$ to determine the polarization state of a light
beam. Recently, James et al. #2$ gave an extensive analysis
of qubit systems specifically focusing on polarization en-
tangled qubits, building on earlier experimental work #3$, but
more generally for any number of qubits. We also refer the
reader to Leonhardt‘s book #4$ that gives an introduction to
some of the concepts and experimental techniques of tomog-
raphy relating to continuous variable systems in modern
quantum optics.
It is our aim here to expand on the work of James et al. in

two ways: first, to detail how to perform QST on systems of
n qudits; second, to show how to perform QST when access
to a full range of single qubit rotations and hence the state
space is restricted. The first point is also motivated with re-
spect to fundamental questions regarding nonlocality in
higher dimensions #5,6$ as well as quantum information pro-
cessing with improved security for quantum key distribution

#7,8$ and the need to characterize these larger quantum
states. The second point provides a much larger cross section
of the physics community with the possibility of performing
QST.

II. 1 QUBIT

To start with, we will first introduce the Pauli operators
using the group theoretical definition of them as generators.
This is not crucial, though facilitates the procedure of going
to higher dimensions with more subsystems without confus-
ing notation changes. Hence, we can write a complete Her-
mitian operator basis for the qubit space:

I%&̂0"!1 0
0 1" , X%&̂1"!0 1

1 0" ,
!1"

Y%&̂2"!0 !i
i 0 " , Z%&̂3"!1 0

0 !1" ,
corresponding to the 2#2 identity operator &̂0 and the gen-
erators of the SU!2" group &̂ j , j"1,2,3. The reason for de-
noting these with &̂ j will become apparent as we go to higher
dimensions. For a single qubit we can always write the den-
sity matrix as

'̂2"
1
2 (

j"0

3

r j&̂ j ,r j!Re. !2"

As the generators of SU!2" are all traceless operators, the
normalization of the density matrix '̂2 requires r0 set to one,*Electronic address: Robert.Thew@physics.unige.ch

PHYSICAL REVIEW A 66, 012303 !2002"

1050-2947/2002/66!1"/012303!6"/$20.00 ©2002 The American Physical Society66 012303-1

PHYSICAL REVIEW A 84, 062101 (2011)

Tomography of the quantum state of photons entangled in high dimensions

Megan Agnew,1 Jonathan Leach,1 Melanie McLaren,2 F. Stef Roux,2 and Robert W. Boyd1,3

1Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario, K1N 6N5 Canada
2CSIR National Laser Centre, Pretoria 0001, South Africa

3Institute of Optics, University of Rochester, Rochester, New York 14627, USA
(Received 28 September 2011; published 2 December 2011)

Systems entangled in high dimensions have recently been proposed as important tools for various quantum
information protocols, such as multibit quantum key distribution and loophole-free tests of nonlocality. It is
therefore important to have precise knowledge of the nature of such entangled quantum states. We tomographically
reconstruct the quantum state of the two photons produced by parametric downconversion that are entangled
in a d-dimensional orbital angular momentum basis. We determine exactly the density matrix of the entangled
two-qudit state with d ranging from 2 to 8. The recording of higher-dimensional states is limited only by the
number of data points required and therefore the length of time needed to complete the measurements. We find
all the measured states to have fidelities and linear entropies that satisfy the criteria required for a violation of
the appropriate high-dimensional Bell inequality. Our results therefore precisely characterize the nature of the
entanglement, thus establishing the suitability of such states for applications in quantum information science.

DOI: 10.1103/PhysRevA.84.062101 PACS number(s): 03.65.Wj, 03.65.Ud, 03.67.Dd

I. INTRODUCTION

Tomographic reconstruction techniques have found ap-
plications in a wide range of disciplines. The concept of
tomography is that properties of an unknown system that
cannot be measured directly are established from a sequence
of measurements on different parts of the system. Knowledge
about the different measurements and their outcomes are
combined to give a best fit to the system that would produce
the outcomes of the measurements. An example of tomography
in image science is the reconstruction of a three-dimensional
object or scene from a number of two-dimensional projections.

Quantum state reconstruction or quantum tomography is the
process in which precise knowledge of an unknown quantum
state is established [1]. As any measurement on a quantum
system will alter the state, the tomographic process requires
measurements to be performed on identical copies of the initial
state. After a set of measurements is performed, which must
form a complete basis in the chosen Hilbert space, the density
matrix or quantum state can be uniquely recovered.

The process of reconstruction of a quantum state was
proposed by Fano in 1957 [1,2]. Since then, many experiments
have been reported, and quantum tomography is an established
field of research [3–11]. Recently, quantum tomography using
compressive sensing was reported [12]. In that work, it
was shown that the number of required measurements to
reconstruct the density matrix can be made to scale favorably
with the dimension of the quantum system. For specific cases
where the density matrix is sparse in a particular basis, there
is a significant reduction in the number of measurements
required.

We use quantum tomography to reconstruct the state of two
entangled photons. Entanglement gives rise to nonclassical
correlations of variables in quantum systems; see Ref. [13]
for a comprehensive review. These correlations are central to
EPR’s paradox [14] and tests of nonlocality through violations
of Bell inequalities [15,16]. Due in part to its importance
for quantum cryptography [17], entanglement has become
an important field of study. High-dimensional entanglement

has been reported up to dimension d = 12 [18]. The state
of hyperentangled photons, which are entangled in several
degrees of freedom, has been characterized via quantum state
tomography [19]. Tomography of entangled states up to dimen-
sion d = 3 has also been reported [7]. Higher-dimensionally
entangled states have not yet been characterized due to the
inherent time demands for the large sets of measurements
required.

In this work we determine the precise quantum state of high-
dimensionally entangled photon pairs generated by parametric
down-conversion. In this process, orbital angular momentum
(OAM) is conserved, resulting in two photons with equal but
opposite OAMs and entangled in the OAM basis [20–24].
We choose to measure in the OAM basis as the states in this
basis are discrete, although the Hilbert space they define is
infinite dimensional. It is therefore a simple process to restrict
the specific size of the state space while retaining the option
of high dimensionality. We see this as an important step in
the characterization of high-dimensionally entangled systems,
which have recently been proposed as a tool that could be used
for loophole-free tests of nonlocality [25].

II. THEORY

The density matrix of a pure quantum state is formed by
the outer product of the state vector with itself,

ρ = |ψ⟩⟨ψ |, (1)

where the state can be represented in a complete basis of
vectors |u⟩ as

|ψ⟩ =
∑

u

au|u⟩. (2)

However, constructing the density matrix from |ψ⟩ requires
knowledge of the complex coefficients au, which in general
cannot be measured directly. This expression also precludes
a mixed state, which cannot be expressed with a state vector.

062101-11050-2947/2011/84(6)/062101(6) ©2011 American Physical Society

Quantum-state tomography for spin-l systems

Holger F. Hofmann* and Shigeki Takeuchi
PRESTO, Japan Science and Technology Corporation (JST), Research Institute for Electronic Science, Hokkaido University,

Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan
(Received 30 September 2003; published 23 April 2004)

We show that the density matrix of a spin-l system can be described entirely in terms of the measurement
statistics of projective spin measurements along a minimum of 4l+1 different spin directions. It is thus possible
to represent the complete quantum statistics of any N-level system within the spherically symmetric three-
dimensional space defined by the spin vector. An explicit method for reconstructing the density matrix of a
spin-1 system from the measurement statistics of five nonorthogonal spin directions is presented and the
generalization to spin-l systems is discussed.

DOI: 10.1103/PhysRevA.69.042108 PACS number(s): 03.65.Wj, 42.50.!p, 03.67.!a

I. INTRODUCTION

As rapid progress is being made in the experimental gen-
eration of quantum states, it becomes necessary to develop
efficient methods of characterizing the actual mixed state
output of each new realization. In particular, various types of
optical spin-1 systems have recently been generated using
parametric down-conversion [1–6]. It is therefore interesting
to consider the measurements necessary to properly identify
the quantum states of such spin systems.
In the most general case, these states can be characterized

by reconstructing the complete density matrix from a suffi-
ciently large set of measurements, a procedure commonly
referred to as quantum tomography [7–10]. For two-level
systems (qubits), quantum tomography is usually realized by
measuring the three orthogonal components of the Bloch
vector represented by the Pauli operators. In spin-1 /2 sys-
tems, the physical meaning of these components is generally
clear. In particular, they represent the components of the
three-dimensional Stokes vector in the commonly studied
case of single-photon polarization [7,8]. In spin-l systems
with higher total spin, the connection between the much
larger number of density-matrix elements and the physical
properties of the system is less clear. For abstract N-level
systems (qudits), an expansion of the density matrix into the
generators most closely related to the individual density-
matrix elements has been proposed [9]. However, the physi-
cal properties corresponding to these operators are quite dif-
ferent from the spin components observed, e.g., in Stern-
Gerlach or n-photon polarization measurements.
In particular, the recently generated n-photon polarization

states are usually characterized by photon detection measure-
ments in a pair of orthogonal polarization directions [1–4].
This corresponds to a projective measurement of one com-
ponent of the three-dimensional Stokes vector, which is for-
mally equivalent to the three-dimensional spin vector. The
direction of the Stokes vector component is determined by
the pair of orthogonal polarization directions detected in the
measurement and can be varied by using standard birefrin-

gent elements such as quarter wave plates and half wave
plates. The experimental characterization of such optical
spin-l systems thus corresponds to the measurement of spin
components L̂i along a set of well-defined measurement di-
rections i. It is therefore desirable to formulate quantum to-
mography in terms of the measurement statistics obtained in
this kind of measurements.
In the following, we show how the measurement statistics

obtained in measurements of spin components L̂i relate to the
elements of the density matrix. Based on these results, a
systematic approach to the quantum tomography of spin-l
systems is developed. We propose a decomposition of the
density matrix into components that reflect the spherical
symmetry of the spin system and correspond directly to well-
defined contributions in the experimentally observable spin
statistics. It is shown that measurements along a minimum of
4l+1 spin directions are necessary to reconstruct the com-
plete density matrix. An explicit method for reconstructing a
spin-1 density matrix from the measurement probabilities
along five nonorthogonal spin directions is derived and the
extension of this method to general spin-l systems is dis-
cussed. Since this method can be applied equally well to
small (few-level) and large (many-level) quantum systems, it
also provides a useful basis for the discussion of decoherence
and the transition from quantum to classical physics.

II. MEASUREMENT STATISTICS OF A SPIN-l SYSTEM

Each projective von Neumann measurement of a spin
component L̂i results in one of the 2l+1 eigenvalues m of the
quantized spin along the direction corresponding to i. By
repeating the measurement a large number of times, it is
possible to determine the probability distribution pi!m" of the
measurement outcomes m. The information represented by
this probability distribution can also be expressed in terms of
averages of different powers of L̂i,

#!L̂i"n$ =%
m
mnpi!m" . !1"

The probability distribution over the 2l+1 possible outcomes
is then uniquely defined by the 2l averages obtained for n*Electronic address: h.hofmann@osa.org
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We think a lot about Hilbert 
space dimension… 

…but often assume we know 
what it is!



n/m = �2 log

✓
max

p2n L(p)
max

p2m L(p)

◆

Asymptotic Convergence?
Loglikelihood ratio for ⇢ = |1ih1|



Does the Wilks theorem work?

An effect of 
reconstruction?!
Of true state?

“Pure” State Estimates

k2 � k1 = 2(d2 � d1)

⇢ ⇠

Observed: h�i / (�d)

Expected: h�i / (�d)



Loglikelihood Ratio for ⇢ = .1|0ih0|+ .9|3ih3| Loglikelihood Ratio for ⇢ = .9|0ih0|+ .1|3ih3|



Technical Aside

❖ Simple hypotheses = Neyman-Pearson!
❖ Guaranteed best statistic is likelihood ratio!

❖ Composite hypotheses = NO Neyman-Pearson!
❖ A different idea of best test wrt power!
❖ Allows nesting Hilbert space dimensions



Wigner Function Reconstruction

55

Wigner function = 
representation of quantum 
state in phase space

By Gerd Breitenbach (dissertation) [GFDL (http://www.gnu.org/copyleft/fdl.html) or CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0/)], via Wikimedia Commons

Make plots to visualize!
states

Are the wiggles real?

Can we even tell?



Categories of 
POVMs POVM finite dimensional POVM infinite 

dimensional

Finite Number of 
Outcomes

Pauli eigenbasis!
measurement Parity measurement

Countably Infinite 
Outcomes Photon number counting

Uncountably 
Infinite Outcomes

Haar uniform qudit 
projection

Heterodyne/
Homodyne/Coherent 

state projections


