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Elastomers that are expected to last for decades in air environments,
Normal approach- extrapolate results from accelerated aging studies made at
higher than ambient environments (e.g., accelerated aging temperatures).

Talk will describe several potential problems and offer some solutions.

1.

il

Changes in degradation chemistry with changes in accelerating
temperature- can test by using complete degradation curves in analyses
(time-temperature superposition)

Diffusion-limited Oxidation (DLO) problems under accelerated aging
conditions where DLO effects are not present under ambient aging
conditions.

Can calculate the importance of DLO effects by estimating or measuring
oxygen consumption rates and oxygen permeability coefficients under the
accelerating conditions

Can experimentally monitor DLO effects using various profiling techniques

. Can one trust linear Arrhenius extrapolations or is there a better approach?

Solution for oxidation-dominated degradation is measurements of oxygen
consumption rates at temperatures much lower than accessible to
conventional accelerated aging temperatures @ Sanda
How does one extrapolate humidity effects?

Laboratories




Vs'

—
&

Historic Arrhenius Approach for Lifetime Prediction

« Extrapolate to make predictions

- Measure “failure” (induction- time) vs accelerating temperature
* Create Arrhenius plot [f~exp(-E /RT)] of “failure” times

EPDM O-RING

* Long life predicted if £,
remains constant

* But long extrapolation

e Only uses a single point on
degradation curve

* Therefore little confidence
in the prediction

K. T. Gillen, et.al., Trends in Polymer
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Two methods to screen for changing chemistry
1. Time-temperature superposition analyses
2. Obtain data in normal extrapolation regime using sensitive data _
. . Sandia
techniques (e.g., oxygen consumption) @ National
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}.‘ First approach- time-temperature (#-7) superposition

Principle of accelerated aging- raise 7 to increase overall reaction rate
- implies curves at 2 7’s related by constant multiplier (constant acceleration)
- implies same curve shape for identical chemistry when plotted versus log time

- choose reference T (multiplicative shift factor a,; = 1)
- at each 7, find empirical a, that gives optimum superposition

1.0
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0.6

Normalized elongation, e / e 0

0.0

0.4+  125°
<> 111°C

0.2 95°C J. Wise, et.al., Polym. Degrad. &
A sooc Stabil., 49, 403 (1995)
V  e45°C
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Aging time

, days
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1000

Commercial nitrile rubber
- e vs. T and time

NOTE
- 2 years of aging at 64.5°C
-minimizes extrapolation
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%.' Nitrile- empirical -7 superposition at 64.5°C
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a; defined as shift factor for temperature 7
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Normal Arrhenius- 1 point per 7 (e.g., time to e/e, = 0.25)
Superposition- every datum point is used in the analysis @ E@Eﬂ'ﬁm_
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%‘ Can Test Various Models on Empirical a;’s

If Arrhenius,

a7=explE,/RII(1/ T,o)-(1/ )

a;=1 at 64.5°C (ref. 7)
(NOTE- 2 years aging to
minimize extrapolation
since probability of slope
change increases with
extrapolation distance)

Shift factor a .

Dashed line (a,<1) gives
unconfirmed extrapolation
to lower 7’s

3

10" E | | | | | e
102 =5 =
- 90 kd/mol .
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E Data region E
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1000/T, K~
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DSC scans of 4 EPR cable materials- the two
Anaconda materials show little evidence of
crystallinity

-10 to 180°C at 5C/min under Ar - all first runs

1.0
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Anaconda Durasheeth EPR unaged
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0.4 -

Anaconda Flameguard EPR unaged
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Eaton Dekoron EPR white unaged J\
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t- T superposition of 2 Anaconda EPRs over similar T ranges

no evidence of chemistry changes

Evidence of T- dependent chemistry
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Conclusion- always best to use t-T superposition analyses

Ref- K. T. Gillen, R. Bernstein, R. L. Clough and M. Celina, Polym. Deg. & Stabil.,

91, 2146(2006)
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Brandrex XLPO

Might expect chemistry changes as you || Elongation data confirms expectation

move across crystalline m. p. region 400 — T
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Ref- K. T. Gillen, R. A. Assink & R. Bernstein, SAND2005-7331 (November, 2005)
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Time-temperature superposition is

Significant non-superposition for the 4 reasonable for 2 lowest temperatures

examined temperatures (below main m. p. peak)
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}' Diffusion-Limited Oxidation (DLO)

O, O,
0: o, O |0 .o __02 0, 0,
O, O, 0O, 0O,
rxn rate > diffusion rate rxn rate < diffusion rate

Heterogeneous Homogeneous

Since the E_ for reaction is typically much greater than the E, of diffusion,
DLO effects are often important and temperature dependent at accelerated
aging temperatures but unimportant at ambient temperatures @ Sandia
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AP Theory for DLO

Ref- K. T. Gillen and R. L. Clough, Polymer, 33, 4358 (1992)

Lo ~ [2PPoy/ ¢ 1°°

Lg, = thickness for 90% integrated oxidation
p = surrounding oxygen partial pressure

P, = O, permeability coefficient

¢ = oxygen consumption rate

E_ for degradation (¢) is typically 70 to 130 kd/mol
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P,, measurements up to high Ts- experiments
need modeling to correct for DLO anomalies

=

Ref- Celina and Gillen, Macromolecules, 38, 2754 (2005).

200°C 150°C 100°C 60°C 30°C
10-7 _I 1 I 1 ‘I 1 I 1 ‘I I‘ 1 ‘I I 1 1 I I I‘ I: I
E, for P, is much lower than
| ‘| for oxygen consumption
108 L (27 to 56 kd/mol at low T;
B 14 to 30 kd/mol at high T)
3 Therefore Ly, will decrease as
o aging temperature raised so
107 & DLO will become less
o important as aging T drops
10-10 -

2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4
33,1 Sandi
1T [1 07K ] @ Nagolr?al
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;@‘ Experimental Probes of DLO
Among the most useful- Micro-FTIR & Modulus Profiling

Modulus Profiling- ~50 um resolution, ~5% accuracy

References
K. T. Gillen, R. L. Clough and C. A. Quintana, "Modulus Profiling of Polymers",
Polym. Degrad. & Stabil., 17, 31 (1987)
K. T. Gillen, E. R. Terrill and R. W. Winter, “Modulus Mapping of Rubbers Using
Micro- and Nano-Indentation Techniques”, Rubber Chemistry and Technology-
Rubber Reviews. 74, 428 (2001)

CAPABILITIES INCLUDE
« State of Cure
- uniformity versus position on cross-section
- complex parts
* Heterogeneous Aging Effects
- Diffusion-limited oxidation (DLO)
- Surface effects- examples include uv, ozone,
copper-catalyzed oxidation @ Nagona
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Can see evidence for DLO effects using Modulus profiling

* Allows modulus to be mapped across sample cross-section
* Sandia designed and built- 3 instruments currently exist
- one at Sandia, one at a commercial US company &

one at Akron Research and Development Laboratory
(Analytical service lab available to anyone)

* Typically get ~50 um (2 mil) resolution

 Typical accuracy (repeatability) of ~5% even though it is a

micro technique
* Apparatus completely automated and computer controlled
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y Modulus Profiles- at 125°C & 80°C

Proftiles taken across 2-mm cross-sections of nitrile rubber

1000 - | ‘ — . 1000E P e s
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Given important DLO effects, why is elongation Arrhenius?

Ref- J. Wise, K. T. Gillen & R. L. Clough, Polym. Degrad. & Stabil.,
49, 403 (1995)
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& EQUILIBRIUM OXIDATION AT SURFACE

1000

100

Surface Modulus, MPa

10

+ OO <K

64.5°C
80°C
95°C
111°C
125°C

1

10

100

Aging time, days

1000

+ S0P <

Time-temperature superposition

1T T TTTH

0.1

10

a_'t (shifted aging time), years at 64.5°C
* Surface values shift with 90 kJ/mol (same as e/e) !

* Cracks initiate at hardened surfaces, then immediately propagate
* Internal material irrelevant to elongation values
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Normalized tensile strength, T/ T ,

=21

' TENSILE STRENGTH- FORCE AT BREAK INTEGRATED
ACROSS CROSS-SECTION- DLO EFFECTS IMPORTANT

* Superposition attempted using a,’s from elongation
* Superposition clearly impossible

14 [ [ [ |||||| I I I |||||| I [ T T T 171
1.2 — o O
L V. \V4 B
1.0 0&7+g| %V V% A
P \D+<>D<[>AD@ o
0.8 -+ T, °C a o % _
|V 645 1 + + n |
061 A 80 37 + n .
[0 95 14 T
0.4 O 1M1 B2 n
4+ 125 130 y
02 h | | | IIIIIi I/ | | IIIII| | L L]
0.1 1 10

aT*t (shifted aging time), years at 64.5°C

When DLO important, any
measurement that averages

across the cross-section will
average oxidized and non-
oxidized areas and will therefore
be useless for predictive purposes.
Examples- tensile strength,
modulus, density, DSC, TGA,
OIT, OITP, IR of total X-section,
compression stress relaxation, etc.
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; 7 ' Example- Compression stress relaxation

of Parker butyl B612-70

Standard 12.7 mm diam. disk samples- important DLO effects affect Arrhenius plots

DLO effects. 2 mm diam. eliminates DLO 103 1 | | | | | | | T | —
1 0 I | I | I | I | I | I | I | I | I ] E E
— (7)) i i
> - _

_ (4]

- °
in N2 1 @ 102 - -
in air (14.7 mm)-DLO o - .
(¢b} — _
W © in air (2 mm)- no DLO %’ - .
TN 1 I |
NC i 80 kJ/mol i

Lo

P
1 210 ¢ =
(b) B _
E - X 14.7 mm disk (DLO important) | ]
I ¢ 2mmdisks (DLO unimportant)| |
01 | | | | | | | | | | | | | | | | | | |
0O 20 40 60 80 100 120 140 160 180 200 0 T e
Aging time at 125°C, days o4 25 26 27 28 29 30
1000/T, K

Sandia
Ref- K. T. Gillen, M. Celina & M. R. Keenan, Rubber Chem. Technol., 73, 265 (2000). @ o
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& Lo~ [2pPo,l ¢ 17°

Rule of thumb- severe mechanical degradation after ~6e-4 mol O, /g
absorption- this leads to following rough estimates for ¢ versus
~lifetime. Adding rough P, estimates gives rough L, estimates.

Lifetime 1 wk 6 mo 70 yr
@, mol/g/s 1e-9 3.8e-11 2.7e-13
Po, ,ccSTP/cm/s/cmHg 8e-9 3e-9 2e-10
Lgg mm 1.1 3.4 10

Conclusion- DLO expected for high T but should drop out for long lifetimes

We’ll see below that 1e-13 mol/g/s can be easily measured!

@ Sandia
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-s; ' How do you extrapolate to long times?

One way is to find old samples!

We had RT aged samples of Okonite chloroprene from cable studied in 1978-79

Measured e values for 19-23 years at ~24°C t-T superposition with 24°C reference T
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z 02— N~ 80°c [ S5 40| 4+ 111 1430 ) —
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Aglng time, years a_*t (shifted aging time), years at 24°C

Ref- K. T. Gillen, R. Bernstein and D. K. Derzon, Polym. Deg. & Stabil., 87, 57(2005). @ il
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Chloroprene result

' Evidence of drop in £, from Arrhenius plots of elongation data

agh-

CSPE results out to S years at 70°C

2
10" £ \ \ ]
10* =3 AL A L L L L L L = - | | | | O cspE1| -
E 7 i A CSPE-2 |
3 B ] () CSPE-3| -
5 10 3 3 s > CsPE4| |
*g N - 10 - V  CSPES| -
c i i i $ CSPE6| |
L) 2 _|
o 10 S E c; - O csPET
HC_L E E = X CSPE-8
© : 2 10°- E
T 10 & ~71kdimol § o - .
= - s 1 E - ]
a - 4w - -
E I ] | _
L 0L NER .
10°E 89 kJ/mol E 4 Elongation data only
- 1 1008 E
10° -1 ] e b e e b b ey ey b ] E E
24 25 26 27 28 29 30 3.1 3.2 33 34
1000/7, K 102 N T I N U R AU N NS N A
* Old prediction of 96 years to 50% elongation at | " 23 24 25 26 27 28 29 3.0
24°C drops to 36 years 1000/T K
* Shows sensitivity of extrapolated predictions to Sandia
slight £, drop @ P?Jif’r';?éﬁes
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Alternative approach- Oxygen Consumption (¢) measurements

First Approach- J. Wise, K. T. Gillen and R. L. Clough, Polym. Degrad. &
Stabil., 49, 403 (1995)
Seal container with polymer and O,, then age, then do GC analysis
to determine O, consumed

Second Approach- Assink RA, Celina M, Skutnik JM, Harris DJ. Polymer
2005:;46:11648.

Experimentally similar, but different quantification of oxygen loss
in ampoule using a fuel cell detector (Oxzilla system)

* To eliminate DLO effects during ¢, need to age thin pieces

Sandia
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# ¢ results for nitrile rubber

Ref- J. Wise, K. T. Gillen & R. L. Clough, Polym. Degrad. & Stabil., 49, 403 (1995)

10 = T T TTT] T T TTT] T3
5 1 | * results obtained down to
g oL + +FF 4+t | | room temperature (23°C)
g - O o 00@ @E e constant rate at each 7
S A A AAA | | » consistent with constant
s 10" E i = | acceleration assumption
2 i g ZEE X X XX 1 | » therefore ¢ & e data
8 ' ] overlap at high T
c 10121 A 715%C O B E% -
§ L X s2c ]
X Ii o _
@) [ g 4OOC v v vv,
L 23°C )
10-13 —rT Tl Ll L
1 10 100 enoxrioo

Average aging time/days
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t-T superposition of

Integrated O, consumption

integrated consumption

Oxygen consumption, mol/g
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10" = - & u 52°C (a.=16) Z
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a = B g i
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Aging time, hours aTt, shifted aging time at 23°C, years
Arrows indicate where e reaches ~100% @ S
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Compare a, of e, surface modulus & Earlier direct e to 25C of Okonite

UOC- slight curvature in Arrhenius neoprene showed Arrhenius curvature
3

10 E e r 0t 7 E 1()4§ R
10 = Q\ E 108 & _
- ® s
~ 0 15 [ ]
® 10'F * 90 kJ/mol = % el __
O - ] - =
©° B é\ / _ S - .
L - A 4w u ]
= 0 'S = = . -

c 10°E 4 ®©
2 : - 5 10'F . =
] + elongation 1 8 g ~ 71 kd/mol 3
- < surface modulus 80 kd/mol1 B n ) Z
10" — /A oxygen consumption = uEJ 0 i ]
C - — E=
E - 10" E 89 kJ/mol :
10-2 I R IS NN KN T NN TR (NS R S ] - i

22 24 26 28 30 32 34 36 10-1 e P P P b P by b
1000/T, K’ 24 25 26 2.7 28 29 3.0 3.1 32 33 34

1000/T, K™
Same E  in overlap region & UOC finds @

slight drop in E, below 65°C
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# Eight different CSPE cable jackets

Elongation results down to ~70°C- Add ¢ results down to ~35°C-
2curvature obvious at lower 7Ts curvature from e confirmed
10 ; T #]C§¥4 ; 102§ L L L AL L L L L L |§
E A csPE2 E . +  elongation- 9 CSPEs .
i O csPE3| | - X Oxygen consumption- 2 CSPEs | -
11 |
ol - > CsPE4] 10°E ~107 kJ/mol E
= V.  CSPES — C .
B + cspEs| | B ]
m" N O CsPET cul\ 100 - -
© X CSPE-8 o g g
S0 EE-D :
o B 4 o B 7]
E SR E
- . - ~91 kd/mol
.1 Elongation data only B - i
10 3 9
: L0t E
2 T e e 103_|| T R N T N R |||| |_
10,0 94 25 26 27 28 29 30 23 24 2526 27 28 29 30 3.1 3.2 33 34
1000/T K'1 1000/T, K

Sandia
Ref- K. T. Gillen, R. Bernstein and M. Celina, Polym. Deg. & Stabil. 87, 335(2005). @ National
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HTPB/IPDI based polyurethane rubber

Ref- M. Celina, et. al., Rubber Chem. Technol., 73, 678 (2000).

(1 = s B L B B B
! []  elongation :
10" | O_ consumption| = .
- 2 : Non-Arrhenius for both ¢
: i and elongation results
I~
T - -
Q B N
= i i
& 2 ]
w 10°E 3
- - Note- room temperature
I i lifetimes reduced by ~85%
10’ = E
i 120 kJ/mol i
100 ol e b b o sy L

25 26 27 28 29 3.0 3.1 3.2 3.3/\3.4 3.5 -
1000/ T, K_1 @ National
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Burke butyl o-ring

Ref- K. T. Gillen, M. Celina & R. Bernstein, Polym. Degrad. Stabil., 82, 25 (2003)

@ agrees with elongation at

[] Force decay

<> Oxygen consumption

high temperatures but
indicates a change in E in
extrapolation regime

10 E
1015—
. i
T 10°
S -
o L
S B
£ L
S 107
10'2;—
107
2.4

2.6

2.8 3.0 3.2 34 @ Sanda
1000/T, K BurkcaT jabatonis



Novel ¢ approach- Burke predicted
Classical extrapolation predicts that to require ~16 yr to reach 50% vs.
Burke has longer life than Parker ~50 years for Parker
103 ET T T T T T T T T T T TS 3 Extrapolation using oxygen consumption
- Extrapolated timesto F/F =05at23°C ~g 10T T T T T T T T T T T TS
= ~150 years for Burke butyl E .E 10% = ~50 years for Parker =8
» - 1O - ~16 years for Burke 50 yr ®@=E _
@ o - 10 @
O L1 | N ]2 o
> 10" = el 1 S @
Lf)h = - a 10 g_ _g N e
: - =) = 40 ©
o L - T — r4o o
[ 0 n - 48 c
10" = =Y 0 ~ ®
& - ] 10 = = © %
- - 43 - 43 ©
el 1= B 1N G
= =NTe) ®
210 "3 107 E =E B
= - < R = 49 €
i e N lo
2 . Ry 1 )
10" = Diamonds- Parker 2 mm disks = T 2 s
= Nl Circles- Parker o-rin ] 107 E 52
- S ircles- Parker o-rings 10 = =2
C 12 Squares- Burke o-rings 1o = 1=
10-3 ol b b e e e e e 3 B | | | | | | | | | ]
4-.: 10- | | | | | | | | | |
24 2.5 26 2.7 28 29 30 31 32 33 3. 24 25 26 2.7 2.8 2.9 3.0 3.1 32 3.3 34
1000/T, K 1000/T. K-
16 to 22 year-old surveillance o-rings show that force loss is ~50%
Sandia
for Burke vs. 10%=+10% for Parker. Curvature therefore confirmed. @ Natoral
oratories
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Conclusions for oxidation-dominated degradation

* t-T superposition is best analysis approach- checks equal acceleration
assumption underlying accelerated aging

* @ measurements represent an excellent approach for testing Arrhenius
extrapolations to temperatures lower than typical accelerated aging 7 range

* Results to date (both mechanical property and ¢) indicate that curvature
to lower E values is common

* This implies lower extrapolated polymer lifetimes

* Oxygen consumption measurements can also be useful for other oxygen-
containing degradation environments- examples include
- high-energy radiation
- UV
- dynamic mechanical straining

@ Sandia
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J“"#_’ SOLUBILITY OF CONDENSABLE FLUIDS (H,0)

. - Replot vs. RH
H,O isotherms- silicone rubber- - P
: | | | | | | | | |
complex shapes 11 ‘ _
o @ s03c |
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O(\I
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00 “ “ \‘ i
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?- APPROACH FOR ANALYZING HUMIDITY AGING
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HUMIDITY AGING EXAMPLE
Ref- K. T. Gillen & K. E. Mead, SAND79-1561

Reversion of polyurethane potting compound- data from G. L. Welch, Natl.
SAMPE Tech. Conf. Proc., Vol. 2 (1970)
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2 i 1 Cellulose- X. Zou, et. al., Cellulose
3, 243(1996).
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Interesting example- Nylon 6,6 aged versus T at 100% RH
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” Ref- R. Bernstein & K. T. Gillen, Polym. Degrad.&

Stabil., 95, 1471(2010).
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